10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Convolutional Networks I

Used Resources

• **Disclaimer**: Much of the material in this lecture was borrowed from Hugo Larochelle's class on Neural Networks: https://sites.google.com/site/deeplearningsummerschool2016/

 Some tutorial slides were borrowed from Rob Fergus' CIFAR tutorial on ConvNets:

https://sites.google.com/site/deeplearningsummerschool2016/speakers

 Some slides were borrowed from Marc'Aurelio Ranzato's CVPR 2014 tutorial on Convolutional Nets https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning

Computer Vision

- Design algorithms that can process visual data to accomplish a given task:
 - For example, object recognition: Given an input image, identify which object it contains

Computer Vision

• Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels =
 22500 inputs, or 3 x 22500 if RGB pixels
- Can exploit the 2D topology of pixels (or 3D for video data)
- Can build in invariance to certain variations: translation, illumination, etc.
- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling hidden units

- Use a local connectivity of hidden units
 - Each hidden unit is connected only to a sub-region (patch) of the input image
 - It is connected to all channels: 1 if grayscale, 3 (R, G, B) if color image
- Why local connectivity?
 - Fully connected layer has a lot of parameters to fit, requires a lot of data
 - Spatial correlation is local

- Units are connected to all channels:
 - > 1 channel if grayscale image,
 - > 3 channels (R, G, B) if color image

• Example: 200x200 image, 40K hidden units, ~2B parameters!

- Spatial correlation is local
- Too many parameters, will require a lot of training data!

• Example: 200x200 image, 40K hidden units, filter size 10x10, 4M parameters!

This parameterization is good when input image is registered

Computer Vision

• Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels =
 22500 inputs, or 3 x 22500 if RGB pixels
- Can exploit the 2D topology of pixels (or 3D for video data)
- Can build in invariance to certain variations: translation, illumination, etc.
- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling hidden units

- Share matrix of parameters across some units
 - Units that are organized into the 'feature map" share parameters
 - Hidden units within a feature map cover different positions in the image

- Why parameter sharing?
 - Reduces even more the number of parameters
 - Will extract the same features at every position (features are "equivariant")

• Share matrix of parameters across certain units

Convolutions with certain kernels

Computer Vision

• Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels =
 22500 inputs, or 3 x 22500 if RGB pixels
- Can exploit the 2D topology of pixels (or 3D for video data)
- Can build in invariance to certain variations: translation, illumination, etc.
- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling hidden units

- Each feature map forms a 2D grid of features
 - can be computed with a discrete convolution (*) of a kernel matrix k_{ij} which is the hidden weights matrix W_{ij} with its rows and columns flipped

$$y_j = g_j \tanh(\sum_i k_{ij} * x_i)$$

- x_i is the ith channel of input
- k_{ij} is the convolution kernel
- g_j is a learned scaling factor
- g_j is the hidden layer

can add bias

Jarret et al. 2009

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example:

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example: $1 \times 0 + 0.5 \times 80 + 0.25 \times 20 + 0 \times 40 = 45$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example: $1 \times 80 + 0.5 \times 40 + 0.25 \times 40 + 0 \times 0 = 110$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example: $1 \times 20 + 0.5 \times 40 + 0.25 \times 0 + 0 \times 0 = 40$

$$(x * k)_{ij} = \sum_{pq} x_{i+p,j+q} k_{r-p,r-q}$$

• Example: $1 \times 40 + 0.5 \times 0 + 0.25 \times 0 + 0 \times 40 = 40$

- **Pre-activations** from channel x_i into feature map y_j can be computed by:
 - > getting the convolution kernel where $k_{ij} = \widetilde{W}_{ij}$ from the connection matrix W_{ij}
 - > applying the convolution $x_{i*} k_{ij}$
- This is equivalent to computing the discrete correlation of \boldsymbol{x}_i with \boldsymbol{W}_{ij}

• Illustration:

• With a non-linearity, we get a detector of a feature at any position in the image:

$$x * k_{ij}$$
, where $W_{ij} = \tilde{W}_{ij}$

x_i						
255	0	0	0	0		
0	255	0	0	0		
0	0	255	0	0		
0	0	255	0	0		
0	0	255	0	0		

0.02	0.19	0.19	0.02
0.02	0.19	0.19	0.02
0.02	0.75	0.02	0.02
0.75	0.02	0.02	0.02

 $sigm(0.02 \ x_i * k_{ij} - 4)$

• Can use "zero padding" to allow going over the borders (*)

Multiple Feature Maps

• Example: 200x200 image, 100 filters, filter size 10x10, 10K parameters

Computer Vision

• Our goal is to design neural networks that are specifically adapted for such problems

- Must deal with very high-dimensional inputs: 150 x 150 pixels =
 22500 inputs, or 3 x 22500 if RGB pixels
- Can exploit the 2D topology of pixels (or 3D for video data)
- Can build in invariance to certain variations: translation, illumination, etc.
- Convolutional networks leverage these ideas
 - Local connectivity
 - Parameter sharing
 - Convolution
 - Pooling / subsampling hidden units

Pooling

- Pool hidden units in same neighborhood
 - pooling is performed in non-overlapping neighborhoods (subsampling)

$$y_{ijk} = \max_{p,q} x_{i,j+p,k+q}$$

- x_i is the ith channel of input
- x_{i,j,k} is value of the ith feature map at position j,k
- p is vertical index in local neighborhood
- q is horizontal index in local neighborhood
- y_{ijk} is pooled / subsampled layer

Jarret et al. 2009

Pooling

- Pool hidden units in same neighborhood
 - > an alternative to "max" pooling is "average" pooling

$$y_{ijk} = \frac{1}{m^2} \sum_{p,q} x_{i,j+p,k+q}$$

Jarret et al. 2009

- x_i is the ith channel of input
- x_{i,j,k} is value of the ith feature map at position j,k
- p is vertical index in local neighborhood
- q is horizontal index in local neighborhood
- y_{ijk} is pooled / subsampled layer
- m is the neighborhood height/width

Example: Pooling

• Illustration of pooling/subsampling operation

- Why pooling?
 - Introduces invariance to local translations
 - Reduces the number of hidden units in hidden layer

Example: Pooling

can we make the detection robust to the exact location of the eye?

Example: Pooling

By "pooling" (e.g., taking max) filter responses at different locations we gain robustness to the exact spatial location of features.

Translation Invariance

- Illustration of local translation invariance
 - both images result in the same feature map after pooling/subsampling

Convolutional Network

 Convolutional neural network alternates between the convolutional and pooling layers

From Yann LeCun's slides

Convolutional Network

- For classification: Output layer is a regular, fully connected layer with softmax non-linearity
 - Output provides an estimate of the conditional probability of each class
- The network is trained by stochastic gradient descent
 - Backpropagation is used similarly as in a fully connected network
 - We have seen how to pass gradients through element-wise activation function
 - We also need to pass gradients through the convolution operation and the pooling operation

Gradient of Convolutional Layer

- Let l be the loss function
 - > For max pooling operation $y_{ijk} = \max_{p,q} x_{i,j+p,k+q}$, the gradient for \mathbf{x}_{ijk} is

 $\underset{\text{where}_{i} \not p^{k}}{\nabla} l = 0, \underset{\text{argmax} x_{i,j+p,k+q}}{\text{max } x_{i,j+p,k+q}} \nabla_{x_{i,j+p',k+q'}} l = \nabla_{y_{ijk}} l$

In other words, only the "winning" units in layer x get the gradient from the pooled layer

> For the average operation $y_{ijk} = \frac{1}{m^2} \sum_{p,q} x_{i,j+p,k+q}$, the gradient for x_{ijk} is $\nabla_x l = \frac{1}{m^2} \text{upsample}(\nabla_y l)$

where upsample inverts subsampling

Convolutional Network

 Convolutional neural network alternates between the convolutional and pooling layers

• Need to introduce other operations that can improve object recognition.

Rectification

- Rectification layer: $y_{ijk} = |x_{ijk}|$
 - introduces invariance to the sign of the unit in the previous layer
 - for instance, loss of information of whether an edge is black-to-white or white-to-black

Local Contrast Normalization

Perform local contrast normalization

Local average

$$v_{ijk} = x_{ijk} - \sum_{ipq} w_{pq} x_{i,j+p,k+q}$$

$$y_{ijk} = v_{ijk} / \max(c, \sigma_{jk})$$

Local stdev
$$\sigma_{jk} = \left(\sum_{ipq} w_{pq} v_{i,j+p,k+q}^2\right)^{1/2} \qquad \sum_{pq} w_{pq} = 1$$

where c is a small constant to prevent division by 0

- reduces unit's activation if neighbors are also active
- creates competition between feature maps
- scales activations at each layer better for learning

Local Contrast Normalization

- Perform local contrast normalization
 - Local mean=0, Local std. = 1, "Local" is 7x7 Gaussian

Feature Maps

Feature Maps after Contrast Normalization

Convolutional Network

• These operations are inserted after the convolutions and before the pooling

Jarret et al. 2009

Remember Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B} = \{x_{1...m}\}$; Parameters to be learned: γ, β **Output:** $\{y_i = BN_{\gamma,\beta}(x_i)\}$ $\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_i$ // mini-batch mean $\sigma_{\mathcal{B}}^2 \leftarrow \frac{1}{m} \sum_{i=1}^m (x_i - \mu_{\mathcal{B}})^2$ // mini-batch variance $\widehat{x}_i \leftarrow \frac{x_i - \mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^2 + \epsilon}}$ // normalize $y_i \leftarrow \gamma \widehat{x}_i + \beta \equiv \mathrm{BN}_{\gamma, \beta}(x_i)$ // scale and shift Learned linear transformation to adapt to non-linear

activation function (γ and β are trained)