10707
Deep Learning

Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

Neural Networks I


mailto:rsalakhu@cs.cmu.edu

Neural Networks Online Course

 Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks

» Hugo's class covers

many other topics: : o
convolutional networks, RESTRICTED BOLTZMANN MACHINE
neural language model, _ 4
B Itzmann maChIneS Topics: RBM, visible layer; hidden layer, energy function
o)
’ OCHOOO0) h-
autoencoders, sparse e
coding, etc. ) N
OCOO0) x— i

« \We will use his ion: E(x,h) = —gvg‘—rc'}x—lﬁhz -

. = - G kTR — CrLT) — D1
material for some of the i k i

tion: p(x,h) = exp(—E(x,h))/Z

other lectures. e




Initialization

* Initialize biases to 0
» For weights
— Can not initialize weights to 0 with tanh activation

> All gradients would be zero (saddle point)

— Can not initialize all weights to the same value
» All hidden units in a layer will always behave the same
» Need to break symmetry

- Sample WE"”;) from {7 [—b, b], where

_ V6 Sample around 0 and
- \/H;€ +Hi 1 break symmetry

\ Size of h(k)(x)




Model Selection

* Training Protocol:
~ Train your model on the Training Set Dtrain

- For model selection, use Validation Set Ppvalid

» Hyper-parameter search: hidden layer size, learning rate,
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set Dtest

« Remember: Generalization is the behavior of the model on
unseen examples.



Early Stopping

* To select the number of epochs, stop training when validation set
error increases (with some look ahead).

O Training O Validation
0,5
0.4 underfitting overfitting
0,3
0,2
0,1
. —O—

number of epochs



Tricks of the Trade:

* Normalizing your (real-valued) data:

» for each dimension x; subtract its training set mean
> divide each dimension x; by its training set standard deviation

> this can speed up training

» Decreasing the learning rate: As we get closer to the optimum,
take smaller update steps:

i.  start with large learning rate (e.g. 0.1)
li.  maintain until validation error stops improving

iii. divide learning rate by 2 and go back to (ii)



Mini-batch, Momentum

« Make updates based on a mini-batch of examples (instead of a
single example):
> the gradient is the average regularized loss for that mini-batch
> can give a more accurate estimate of the gradient

> can leverage matrix/matrix operations, which are more efficient

« Momentum: Can use an exponential average of previous
gradients:

Vo = Vel (f(x®), y®) + BV

> can get pass plateaus more quickly, by “gaining momentum”

=(t—=1)



Adapting Learning Rates

« Updates with adaptive learning rates (“one learning rate per
parameter”)

> Adagrad: learning rates are scaled by the square root of the
cumulative sum of squared gradients

_ 2 —@)  Vel(f(x®),y®
78 = 4l ”+(Vel(f(x(t)),y“))) Ve = Fe ), )

VA + e
> RMSProp: instead of cumulative sum, use exponential moving
average
2
1 = 707D 1 (1 B) (VollE®), )
=) _ Vol(f(x1),yM)
»  Adam: essentially combines Vo = ) + e

RMSProp with momentum



Gradient Checking

 To debug your implementation of fprop/bprop, you can compare
with a finite-difference approximation of the gradient:

0f(z) . flzte)—f(z—¢)
Ox 2¢

f(x) would be the loss
x would be a parameter

f(x + ¢) would be the loss if you add ¢ to the parameter

vV V V VY

f(x — €) would be the loss if you subtract ¢ to the parameter



Debugging on Small Dataset

* If not, investigate the following situations:

>  Are some of the units saturated, even before the first update?
scale down the initialization of your parameters for these units
properly normalize the inputs

> Is the training error bouncing up and down?

decrease the learning rate

 This does not mean that you have computed gradients correctly:

> You could still overfit with some of the gradients being wrong

10



Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Feedforward Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation
- Types of units
- Capacity of neural networks

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization

- Unsupervised Pre-training



Learning Distributed Representations

» Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)

« Each layer learns “distributed representation”

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
>  Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster
13



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models

4 N

* Parameters for each region.
 # of regions is linear with
# of parameters.

Cl1 C2 C3 S o

Learned
prototypes

Bengio, 2009, Foundations and Trends in Machine Léérning



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | C1=1
- C2=1
(- _ ) \
* Parameters for each region. b C3=1

 # of regions is linear with

# of parameters.
\. Y, S

Cl=1 C1=0
\ C2=0 C2=1
~
C2=0 N
C3=0 s
| S~
Cl C2 - ~
€3 \ c1=0 ™
'\ C2=0
Learned €3=1
prototypes

Bengio, 2009, Foundations and Trends in Machine Légrning



Local vs. Distributed Representations

* Clustering, Nearest * RBMs, Factor models,
Neighbors, RBF SVM, local PCA, Sparse Coding,
density estimators Deep models | ¢1=1
f- Parameters for each region. A * Each parameter affects many
 # of regions is linear with regions, not just local.
# of parameters. ) * # of regions grows (roughly)

exponentially in # of parameters.
\CE << CZ=T LJ.EU_)
C2=0 S~ _C3=0 - C2=1
C1=0

C3=0 RO N
~
C2=0 N
C3=0 SS
\ S o
c1 C2 ' ~
w3 \ c1=0 ~
| €2=0
Learned €3=1
prototypes

Bengio, 2009, Foundations and Trends in Machine Légrning



Inspiration from Visual Cortex

[picture from Simon Thorpe]




Success Story. Speech Recognition

100%a According to Microsoft’s
speech group:

Using DL

10%

Word error rate on Switchboard

4%

2%

1%
7 1990 2000 2010

v

18



Success Story: Image Recognition

* Deep Convolutional Nets for Vision (Supervised)

S Ya
container ship _motor scooter

mite container ship motor scooter pard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat b [ snow leopard

P24 P
- o7
s\ L
s
X

30” | ’ “* I . starfish drilling platform ;:Ifc:r: Egyptian cat
1.2 million training images :

grilie _ musnroom cherry adagascar cat

1000 classes " orle proom | raph [T spler monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey

19



Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
> saturated units block gradient

propagation

*This is a well known problem in
recurrent neural networks




Why Training is Hard

« Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

« Might be in a high variance / low bias situation

~n
*

@ ¢

possible f

possible f

low variance/

high bias good trade-off




Why Training is Hard

* First hypothesis (underfitting): better optimize

>  Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training ‘

»  Stochastic drop-out training

« For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

22



Unsupervised Pre-training

* Initialize hidden layers using unsupervised learning

>  Force network to represent latent structure of input distribution
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Encourage hidden layers to encode that structure

23



Unsupervised Pre-training

* Initialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Hence we expect less overfitting

24



Autoencoders: Preview

« Feed-forward neural network trained to reproduce its input at the
output layer

Decoder
x (O@O000) X = oa(x))
—— = \&gin(cj—k W*h(x))
(tied weights) For binary units
h(x) (O@OOO0)
W Encoder

h(x) = gla(x))

x (OOO0000) —  sigm(b + Wx)

25



Autoencoders: Preview
» Loss function for binary inputs

I(f(x)) = =D (@ log(Ty) + (1 — z) log(1 — Ty))

»  Cross-entropy error function f(x) =X

 Loss function for real-valued inputs

(f(x) =5 24Tk — 1)

> sum of squared differences

> we use a linear activation function at the output

26



Pre-training

» We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

> Fix the parameters of previous hidden layers

> Previous layers can be viewed as feature extraction




Pre-training
» Unsupervsed Pre-training

> first layer: find hidden unit features that are more common in
training inputs than in random inputs

> second layer: find combinations of hidden unit features that are
more common than random hidden unit features

>  third layer: find combinations of combinations of ...

 Pre-training initializes the parameters in a region such that the
near local optima overfit less the data

28



Fine-tuning

» Once all layers are pre-trained

> add output layer
> train the whole network using
supervised learning

« Supervised learning is performed as
In a regular network

> forward propagation,
backpropagation and update

« We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative



Why Training is Hard

« First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

»  Stochastic drop-out training ‘

« For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

30



Dropout

« Key idea: Cripple neural network by removing hidden units
stochastically

> each hidden unit is set to 0 with
probability 0.5

> hidden units cannot co-adapt to
other units

> hidden units must be more
generally useful h® (x)

« Could use a different dropout
probability, but 0.5 usually works well




Dropout

» Use random binary masks m®

> layer pre-activation for k>0

a®) (x) = b*¥) + WERE-1 (%)
> hidden layer activation (k=1 to L):

h®) (x) = g(a® (x)) om(®

»  Output activation (k=L+1) h®) (x)

h(E+D) (x) = o(alt+1) (x)) = £(x)




Backpropagation Algorithm

« Perform forward propagation
« Compute output gradient (before activation):

mask m(-7)
 For k=L+1 to 1

- Compute gradients w.r.t. the hidden layer parameters: /
Vwm —log f(x)y <= (Vam(x) —log f(x ‘ h(=1(x) " ‘
Viw —log f(x)y <= Vam(x) —log f(x)y
- Compute gradients w.r.t. the hidden layer below:

|
V-1 (x) = log f(x)y = W (V) — log f(x)y)

- Compute gradients w.r.t. the hidden layer below (before activation):

Va<k_1)(x) —log f(x), <= (thc—l)(x) — log f(X)y) O agl(a(k_l)(x’?j), =

]



Dropout at Test Time

« At test time, we replace the masks by their expectation

> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average

of all neural networks, with all possible binary masks

« Can be combined with unsupervised pre-training

» Beats regular backpropagation on many datasets

« Ensemble: Can be viewed as a geometric average of exponential
number of networks.

34



Why Training is Hard

* First hypothesis (underfitting): better optimize

>  Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

»  Stochastic drop-out training

« For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

35



Batch Normalization

« Normalizing the inputs will speed up training (Lecun et al. 1998)

> could normalization be useful at the level of the hidden layers?

« Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
> each unit’'s pre-activation is normalized
(mean subtraction, stddev division) a® (x) = b* 1+ WERh(k-1) (%)
> during training, mean and stddev is
computed for each minibatch

> backpropagation takes into account the

normalization

> attest time, the global mean / stddev is used

36



Batch Normalization

Input: Values of x over a mini-batch: B = {z1. ,};
Parameters to be learned: v,
Output: {y; = BN, g(z;)}

1 « .
UB — ; T; // mini-batch mean
1 m
0123 — — (x; — ,u3)2 // mini-batch variance
1=1
T; Ti 1B // normalize
_____ BT o __
: Y; < YZ; + B = BN, g(x;) : // scale and shift

Learned linear transformation to adapt to non-linear
activation function (y and [3 are trained) 37



Batch Normalization

* Why normalize the pre-activation?

> can help keep the pre-activation in a non-saturating regime
(though the linear transform ¢, < ~x; + § could cancel this
effect)

* Why use minibatches?

> since hidden units depend on parameters, can’'t compute
mean/stddev once and for all

> adds stochasticity to training, which might regularize

38



Batch Normalization

« How to take into account the normalization in backdrop?

> derivative w.r.t. x; depends on the partial derivative of both: the
mean and stddev
> must also update y and 3

« Why use the global mean and stddev at test time?
> removes the stochasticity of the mean and stddev

> requires a final phase where, from the first to the last hidden layer
propagate all training data to that layer
compute and store the global mean and stddev of each unit

> for early stopping, could use a running average

39



Optimization Tricks

« SGD with momentum, batch-normalization, and dropout usually
works very well

* Pick learning rate by running on a subset of the data

>  Start with large learning rate & divide by 2 until loss does not diverge

> Decay learning rate by a factor of ~100 or more by the end of training
« Use RelLU nonlinearity
« |nitialize parameters so that each feature across layers has

similar variance. Avoid units in saturation.

40
[From Marc'Aurelio Ranzato, CVPR tutorial]



Improving Generalization

» Weight sharing (greatly reduce the number of parameters)
« Dropout

» Weight decay (L2, L1)

« Sparsity in the hidden units

[From Marc'Aurelio Ranzato, CVPR tutorial]

41



Visualization

« Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

« Good training: hidden units
are sparse across samples

samples

hidden unit

42
[From Marc'Aurelio Ranzato, CVPR tutorial]



Visualization

« Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

 Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

too noisy too correlated lack stgucture
[From Marc'Aurelio Ranzato, CVPR tutorial]



Visualization

« Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

« Bad training: many hidden
units ignore the input and/or
exhibit strong correlations

i a4
m o
L

I o

-r'

hidden unit

[From Marc'Aurelio Ranzato, CVPR tutorial]

44



Visualization

« Check gradients numerically by finite differences

* Visualize features (features need to be uncorrelated) and have
high variance

 Visualize parameters: learned features should exhibit structure
and should be uncorrelated and are uncorrelated

« Measure error on both training and validation set

« Test on a small subset of the data and check the error — 0.

45
[From Marc'Aurelio Ranzato, CVPR tutorial]



When it does not work

* Training diverges:
> Learning rate may be too large — decrease learning rate

> BPROP is buggy — numerical gradient checking

« Parameters collapse / loss is minimized but accuracy is low
> Check loss function: Is it appropriate for the task you want to solve?

> Does it have degenerate solutions?

» Network is underperforming
> Compute flops and nr. params. — if too small, make net larger

> Visualize hidden units/params — fix optimization

* Network is too slow
>  GPU,distrib. framework, make net smaller

46
[From Marc'Aurelio Ranzato, CVPR tutorial]



