10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Neural Networks II

Neural Networks Online Course

- **Disclaimer**: Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks: https://sites.google.com/site/deeplearningsummerschool2016/
- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.

http://info.usherbrooke.ca/hlarochelle/neural_networks Click with the mouse or tablet to draw with pen RESTRICTED BOLTZMANN MACH Topics: RBM, visible layer, hidden layer, energy function hidden layer (binary units) **W**← connections 8 Energy function: $E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$ $= -\sum_{j}\sum_{k}W_{j,k}h_{j}x_{k} - \sum_{k}c_{k}x_{k} - \sum_{j}b_{j}h_{j}$ Distribution: $p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z_{\star}$ intractable

• We will use his material for some of the other lectures.

Initialization

- Initialize biases to 0
- For weights
 - Can not initialize weights to 0 with tanh activation
 - > All gradients would be zero (saddle point)
 - Can not initialize all weights to the same value
 - > All hidden units in a layer will always behave the same
 - > Need to break symmetry

– Sample
$$\mathbf{W}_{i,j}^{(k)}$$
 from $\left[{igcup b,b}
ight]$, where

$$b = rac{\sqrt{6}}{\sqrt{H_k + H_{k-1}}}$$
Size of $\mathbf{h}^{(k)}(\mathbf{x})$

Sample around 0 and break symmetry

Model Selection

- Training Protocol:
 - Train your model on the Training Set $\mathcal{D}^{\mathrm{train}}$
 - For model selection, use Validation Set \mathcal{D}^{valid}

> Hyper-parameter search: hidden layer size, learning rate, number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set $\mathcal{D}^{ ext{test}}$
- Remember: Generalization is the behavior of the model on **unseen examples**.

Early Stopping

• To select the number of epochs, stop training when validation set error increases (with some look ahead).

Tricks of the Trade:

- Normalizing your (real-valued) data:
 - > for each dimension x_i subtract its training set mean
 - > divide each dimension x_i by its training set standard deviation
 - this can speed up training
- Decreasing the learning rate: As we get closer to the optimum, take smaller update steps:
 - i. start with large learning rate (e.g. 0.1)
 - ii. maintain until validation error stops improving
 - iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

 Make updates based on a mini-batch of examples (instead of a single example):

- the gradient is the average regularized loss for that mini-batch
- can give a more accurate estimate of the gradient
- can leverage matrix/matrix operations, which are more efficient

Momentum: Can use an exponential average of previous gradients:

$$\overline{\nabla}_{\boldsymbol{\theta}}^{(t)} = \nabla_{\boldsymbol{\theta}} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) + \beta \overline{\nabla}_{\boldsymbol{\theta}}^{(t-1)}$$

can get pass plateaus more quickly, by "gaining momentum"

Adapting Learning Rates

- Updates with adaptive learning rates ("one learning rate per parameter")
 - Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$\gamma^{(t)} = \gamma^{(t-1)} + \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})\right)^2 \quad \overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$$

RMSProp: instead of cumulative sum, use exponential moving average

$$\gamma^{(t)} = \beta \gamma^{(t-1)} + (1-\beta) \left(\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)}) \right)^2$$

Adam: essentially combines RMSProp with momentum $\overline{\nabla}_{\theta}^{(t)} = \frac{\nabla_{\theta} l(\mathbf{f}(\mathbf{x}^{(t)}), y^{(t)})}{\sqrt{\gamma^{(t)} + \epsilon}}$

Gradient Checking

• To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient:

$$\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon) - f(x-\epsilon)}{2\epsilon}$$

- \succ f(x) would be the loss
- \succ x would be a parameter
- > $f(x + \epsilon)$ would be the loss if you add ϵ to the parameter
- > $f(x \epsilon)$ would be the loss if you subtract ϵ to the parameter

Debugging on Small Dataset

- If not, investigate the following situations:
 - > Are some of the units saturated, even before the first update?
 - scale down the initialization of your parameters for these units
 - properly normalize the inputs
 - > Is the training error bouncing up and down?
 - decrease the learning rate
- This does not mean that you have computed gradients correctly:
 - > You could still overfit with some of the gradients being wrong

Feedforward Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Feedforward Neural Networks

- How neural networks predict f(x) given an input x:
 - Forward propagation
 - Types of units
 - Capacity of neural networks
- How to train neural nets:
 - Loss function
 - Backpropagation with gradient descent
- More recent techniques:
 - Dropout
 - Batch normalization
 - Unsupervised Pre-training

Learning Distributed Representations

 Deep learning is research on learning models with multilayer representations

- multilayer (feed-forward) neural networks
- multilayer graphical model (deep belief network, deep Boltzmann machine)
- Each layer learns "distributed representation"
 - > Units in a layer are not mutually exclusive
 - each unit is a separate feature of the input
 - two units can be "active" at the same time
 - Units do not correspond to a partitioning (clustering) of the inputs
 - in clustering, an input can only belong to a single cluster

Local vs. Distributed Representations

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with
 # of parameters.

RBMs, Factor models,
PCA, Sparse Coding,
Deep models

Local vs. Distributed Representations

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

Local vs. Distributed Representations

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

• RBMs, Factor models, PCA, Sparse Coding, **Deep models** C1=1 Each parameter affects many regions, not just local. # of regions grows (roughly) exponentially in # of parameters. L = 1U=U7=1 C2=0 C2=1 C3=0C3=1 C3=(C1=0C2=0C3=0 C2 **C**3 C1=0C2=0C3=1

Bengio, 2009, Foundations and Trends in Machine Learning

Inspiration from Visual Cortex

Success Story: Speech Recognition

Success Story: Image Recognition

• Deep Convolutional Nets for Vision (Supervised)

IM GENET

1.2 million training images1000 classes

mite	container ship	motor scooter	leopard
mite	container ship	motor scooter	leopard
black widow	lifeboat	go-kart	jaguar
cockroach	amphibian	moped	cheetah
tick	fireboat	bumper car	snow leopard
starfish	drilling platform	golfcart	Egyptian cat
grille	mushroom	cherry	Madagascar cat
convertible	agaric	dalmatian	squirrel monkey
grille	mushroom	grape	spider monkey
pickup	jelly fungus	elderberry	titi
beach wagon	gill fungus	ffordshire bullterrier	indri
fire engine	dead-man's-fingers	currant	howler monkey

- First hypothesis: Hard optimization problem (underfitting)
 - vanishing gradient problem
 - saturated units block gradient propagation
- •This is a well known problem in recurrent neural networks

- Second hypothesis: Overfitting
 - we are exploring a space of complex functions
 - deep nets usually have lots of parameters
- Might be in a high variance / low bias situation

- First hypothesis (underfitting): better optimize
 - Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
 - Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
 - Unsupervised pre-training
 - Stochastic drop-out training
- For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Unsupervised Pre-training

- Initialize hidden layers using unsupervised learning
 - Force network to represent latent structure of input distribution \triangleright

Why is one a character

is not?

character image

random image

Encourage hidden layers to encode that structure \triangleright

Unsupervised Pre-training

- Initialize hidden layers using unsupervised learning
 - This is a harder task than supervised learning (classification) \triangleright

Why is one a character

is not?

character image

random image

Hence we expect less overfitting \triangleright

Autoencoders: Preview

 Feed-forward neural network trained to reproduce its input at the output layer

Autoencoders: Preview

Loss function for binary inputs

$$l(f(\mathbf{x})) = -\sum_{k} \left(x_k \log(\widehat{x}_k) + (1 - x_k) \log(1 - \widehat{x}_k) \right)$$

 $f(\mathbf{x}) \equiv \widehat{\mathbf{x}}$

$$l(f(\mathbf{x})) = \frac{1}{2} \sum_{k} (\widehat{x}_k - x_k)^2$$

- sum of squared differences
- we use a linear activation function at the output

Pre-training

- We will use a greedy, layer-wise procedure
 - Train one layer at a time with unsupervised criterion
 - Fix the parameters of previous hidden layers
 - Previous layers can be viewed as feature extraction

Pre-training

- Unsupervsed Pre-training
 - First layer: find hidden unit features that are more common in training inputs than in random inputs
 - second layer: find combinations of hidden unit features that are more common than random hidden unit features
 - third layer: find combinations of combinations of ...
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

Fine-tuning

- Once all layers are pre-trained
 - add output layer
 - train the whole network using supervised learning
- Supervised learning is performed as in a regular network
 - forward propagation,
 backpropagation and update
- We call this last phase fine-tuning
 - all parameters are "tuned" for the supervised task at hand
 - representation is adjusted to be more discriminative

- First hypothesis (underfitting): better optimize
 - Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
 - Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
 - Unsupervised pre-training

Stochastic drop-out training

• For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Dropout

Key idea: Cripple neural network by removing hidden units stochastically

- each hidden unit is set to 0 with probability 0.5
- hidden units cannot co-adapt to other units
- hidden units must be more generally useful

 Could use a different dropout probability, but 0.5 usually works well

Dropout

- Use random binary masks m^(k)
 - layer pre-activation for k>0
 a^(k)(x) = b^(k) + W^(k)h^(k-1)(x)
 hidden layer activation (k=1 to L):
 h^(k)(x) = g(a^(k)(x)) ⊙m^(k)
 - > Output activation (k=L+1) h $\mathbf{h}^{(L+1)}(\mathbf{x}) = \mathbf{o}(\mathbf{a}^{(L+1)}(\mathbf{x})) = \mathbf{f}(\mathbf{x})$

Backpropagation Algorithm

- Perform forward propagation
- Compute output gradient (before activation):

$$\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff -(\mathbf{e}(y) - \mathbf{f}(\mathbf{x}))$$

Includes the mask $\mathbf{m}^{(k-1)}$
• For k=L+1 to 1
- Compute gradients w.r.t. the hidden layer parameters:
$$\nabla_{\mathbf{W}^{(k)}} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y) \mathbf{h}^{(k-1)}(\mathbf{x})^{\top}$$
$$\nabla_{\mathbf{b}^{(k)}} - \log f(\mathbf{x})_y \iff \nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y$$

- Compute gradients w.r.t. the hidden layer below:

$$\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff \mathbf{W}^{(k)^{\top}} \left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})} - \log f(\mathbf{x})_y \right)$$

- Compute gradients w.r.t. the hidden layer below (before activation): $\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y \iff (\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})} - \log f(\mathbf{x})_y) \odot [\dots, g'(a^{(k-1)}(\mathbf{x})_j), \dots]$

Dropout at Test Time

- At test time, we replace the masks by their expectation
 - This is simply the constant vector 0.5 if dropout probability is 0.5
 - For single hidden layer: equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training
- Beats regular backpropagation on many datasets
- Ensemble: Can be viewed as a geometric average of exponential number of networks.

- First hypothesis (underfitting): better optimize
 - Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
 - Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
 - Unsupervised pre-training
 - Stochastic drop-out training
- For many large-scale practical problems, you will need to use both: better optimization and better regularization!

- Normalizing the inputs will speed up training (Lecun et al. 1998)
 - could normalization be useful at the level of the hidden layers?
- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
 - each unit's pre-activation is normalized (mean subtraction, stddev division)
 - during training, mean and stddev is computed for each minibatch
 - backpropagation takes into account the normalization

> at test time, the global mean / stddev is used

- Why normalize the pre-activation?
 - > can help keep the pre-activation in a non-saturating regime (though the linear transform $y_i \leftarrow \gamma \hat{x}_i + \beta$ could cancel this effect)
- Why use minibatches?
 - since hidden units depend on parameters, can't compute mean/stddev once and for all
 - adds stochasticity to training, which might regularize

- How to take into account the normalization in backdrop?
 - > derivative w.r.t. x_i depends on the partial derivative of both: the mean and stddev
 - > must also update γ and β
- Why use the global mean and stddev at test time?
 - removes the stochasticity of the mean and stddev
 - > requires a final phase where, from the first to the last hidden layer
 - propagate all training data to that layer
 - compute and store the global mean and stddev of each unit
 - > for early stopping, could use a running average

Optimization Tricks

- SGD with momentum, batch-normalization, and dropout usually works very well
- Pick learning rate by running on a subset of the data
 - Start with large learning rate & divide by 2 until loss does not diverge
 - Decay learning rate by a factor of ~100 or more by the end of training
- Use ReLU nonlinearity
- Initialize parameters so that each feature across layers has similar variance. Avoid units in saturation.

Improving Generalization

- Weight sharing (greatly reduce the number of parameters)
- Dropout
- Weight decay (L2, L1)
- Sparsity in the hidden units

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance

• Good training: hidden units are sparse across samples

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance
- Visualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance

• Bad training: many hidden units ignore the input and/or exhibit strong correlations

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance
- Visualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated
- Measure error on both training and validation set
- Test on a small subset of the data and check the error \rightarrow 0.

When it does not work

- Training diverges:
 - \blacktriangleright Learning rate may be too large \rightarrow decrease learning rate
 - > BPROP is buggy \rightarrow numerical gradient checking
- Parameters collapse / loss is minimized but accuracy is low
 - Check loss function: Is it appropriate for the task you want to solve?
 - Does it have degenerate solutions?
- Network is underperforming
 - \succ Compute flops and nr. params. \rightarrow if too small, make net larger
 - \succ Visualize hidden units/params \rightarrow fix optimization
- Network is too slow
 - GPU, distrib. framework, make net smaller