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Neural Networks Online Course

• Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc.

• We will use his 
material for some of the 
other lectures. 

• Disclaimer: Much of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/
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Initialization 
• Initialize biases to 0 
• For weights
- Can not initialize weights to 0 with tanh activation

Ø All gradients would be zero (saddle point)

- Can not initialize all weights to the same value
Ø All hidden units in a layer will always behave the same
Ø Need to break symmetry
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Model Selection
• Training Protocol:

- Train your model on the Training Set 
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- For model selection, use Validation Set 
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Ø Hyper-parameter search: hidden layer size, learning rate, 
number of iterations/epochs, etc.

- Estimate generalization performance using the Test Set
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• Remember: Generalization is the behavior of the model on 
unseen examples. 
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Early Stopping
• To select the number of epochs, stop training when validation set 
error increases (with some look ahead).
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Tricks of the Trade:
• Normalizing your (real-valued) data:

• Decreasing the learning rate: As we get closer to the optimum, 
take smaller update steps:

i. start with large learning rate (e.g. 0.1)
ii. maintain until validation error stops improving
iii. divide learning rate by 2 and go back to (ii)

Ø for each dimension xi subtract its training set mean
Ø divide each dimension xi by its training set standard deviation
Ø this can speed up training
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Mini-batch, Momentum
• Make updates based on a mini-batch of examples (instead of a 
single example):

Ø the gradient is the average regularized loss for that mini-batch
Ø can give a more accurate estimate of the gradient
Ø can leverage matrix/matrix operations, which are more efficient

• Momentum: Can use an exponential average of previous 
gradients:
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Ø can get pass plateaus more quickly, by ‘‘gaining momentum’’
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Adapting Learning Rates
• Updates with adaptive learning rates (“one learning rate per 
parameter”)

Ø Adagrad: learning rates are scaled by the square root of the 
cumulative sum of squared gradients
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Gradient Checking
• To debug your implementation of fprop/bprop, you can compare 
with a finite-difference approximation of the gradient:
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Debugging on Small Dataset

Ø Are some of the units saturated, even before the first update? 
• scale down the initialization of your parameters for these units
• properly normalize the inputs

Ø Is the training error bouncing up and down?
• decrease the learning rate

• If not, investigate the following situations:

• This does not mean that you have computed gradients correctly: 

Ø You could still overfit with some of the gradients being wrong
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Feedforward Neural Networks
‣ How neural networks predict f(x) given an input x:

- Forward propagation
- Types of units
- Capacity of neural networks

‣ How to train neural nets: 
- Loss function
- Backpropagation with gradient descent

‣ More recent techniques:
- Dropout
- Batch normalization
- Unsupervised Pre-training

11



Feedforward Neural Networks
‣ How neural networks predict f(x) given an input x:

- Forward propagation
- Types of units
- Capacity of neural networks

‣ How to train neural nets: 
- Loss function
- Backpropagation with gradient descent

‣ More recent techniques:
- Dropout
- Batch normalization
- Unsupervised Pre-training

12



Learning Distributed Representations
• Deep learning is research on learning models with multilayer 
representations

Ø multilayer (feed-forward) neural networks 
Ø multilayer graphical model (deep belief network, deep Boltzmann 

machine)

• Each layer learns ‘‘distributed representation’’

Ø Units in a layer are not mutually exclusive
• each unit is a separate feature of the input
• two units can be ‘‘active’’ at the same time

Ø  Units do not correspond to a partitioning (clustering) of the inputs
• in clustering, an input can only belong to a single cluster
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• Clustering, Nearest 
Neighbors, RBF SVM, local 
density estimators  

Learned 
prototypes

Local regions
C1=1

C1=0

C2=1

C2=1C1=1
C2=0

C1=0
C2=0

• RBMs, Factor models, 
PCA, Sparse Coding, 
Deep models

C2C1 C3

• Parameters for each region.
• # of regions is linear with      
  # of parameters.

Bengio, 2009, Foundations and Trends in Machine Learning

Local vs. Distributed Representations 

14



• Clustering, Nearest 
Neighbors, RBF SVM, local 
density estimators  

Learned 
prototypes

Local regions

C3=0

C1=1

C1=0

C3=0
C3=0

C2=1

C2=1C1=1
C2=0

C1=0
C2=0
C3=0

C1=1
C2=1
C3=1

C1=0
C2=1
C3=1

C1=0
C2=0
C3=1

• RBMs, Factor models, 
PCA, Sparse Coding, 
Deep models

• Parameters for each region.
• # of regions is linear with      
  # of parameters.

C2C1 C3

Bengio, 2009, Foundations and Trends in Machine Learning

Local vs. Distributed Representations 

15



• Clustering, Nearest 
Neighbors, RBF SVM, local 
density estimators  

Learned 
prototypes

Local regions

C3=0

C1=1

C1=0

C3=0
C3=0

C2=1

C2=1C1=1
C2=0

C1=0
C2=0
C3=0

C1=1
C2=1
C3=1

C1=0
C2=1
C3=1

C1=0
C2=0
C3=1

• RBMs, Factor models, 
PCA, Sparse Coding, 
Deep models

• Parameters for each region.
• # of regions is linear with      
  # of parameters.

• Each parameter affects many 
regions, not just local.
• # of regions grows (roughly) 
exponentially in # of parameters.

C2C1 C3

Bengio, 2009, Foundations and Trends in Machine Learning

Local vs. Distributed Representations 
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Inspiration from Visual Cortex
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Success Story: Speech Recognition
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• Deep Convolutional Nets for Vision (Supervised) 

1.2 million training images
1000 classes

Success Story: Image Recognition

19



Why Training is Hard
• First hypothesis: Hard optimization 
problem (underfitting)

Ø vanishing gradient problem
Ø saturated units block gradient 

propagation

•This is a well known problem in 
recurrent neural networks
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Why Training is Hard
• Second hypothesis: Overfitting

Ø we are exploring a space of complex functions
Ø deep nets usually have lots of parameters

• Might be in a high variance / low bias situation

21



Why Training is Hard
• First hypothesis (underfitting): better optimize

Ø Use better optimization tools (e.g. batch-normalization, second 
order methods, such as KFAC)

Ø Use GPUs, distributed computing. 

• Second hypothesis (overfitting): use better regularization

Ø Unsupervised pre-training
Ø Stochastic drop-out training

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 

22



Unsupervised Pre-training
• Initialize hidden layers using unsupervised learning

Ø Force network to represent latent structure of input distribution

Ø Encourage hidden layers to encode that structure

23



Unsupervised Pre-training
• Initialize hidden layers using unsupervised learning

Ø This is a harder task than supervised learning (classification)

Ø Hence we expect less overfitting

24



Autoencoders: Preview
• Feed-forward neural network trained to reproduce its input at the 
output layer

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Decoder

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Encoder

For binary units

25



Autoencoders: Preview
• Loss function for binary inputs

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2 l(f(x)) = �
P

k (xk log(bxk) + (1� xk) log(1� bxk))

1

Ø Cross-entropy error function

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(a(x))

= sigm(b+Wx)

•

bx = o(ba(x))
= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) = 1
2

P
k(bxk � xk)2 l(f(x)) = �

P
k (xk log(bxk) + (1� xk) log(1� bxk))

• rba(x(t))l(f(x
(t))) = bx(t) � x(t)

a(x(t)) (= b+Wx(t)

h(x(t)) (= sigm(a(x(t)))

ba(x(t)) (= c+W>h(x(t))

bx(t) (= sigm(ba(x(t)))

rba(x(t))l(f(x
(t))) (= bx(t) � x(t)

rcl(f(x
(t))) (= rba(x(t))l(f(x

(t)))

rh(x(t))l(f(x
(t))) (= W

⇣
rba(x(t))l(f(x

(t)))
⌘

ra(x(t))l(f(x
(t))) (=

⇣
rh(x(t))l(f(x

(t)))
⌘
� [. . . , h(x(t))j(1� h(x(t))j), . . . ]

rbl(f(x
(t))) (= ra(x(t))l(f(x

(t)))

rWl(f(x(t))) (=
⇣
ra(x(t))l(f(x

(t)))
⌘
x(t)> + h(x(t))

⇣
rba(x(t))l(f(x

(t)))
⌘>

• W⇤ = W>

1

• Loss function for real-valued inputs

Ø sum of squared differences
Ø we use a linear activation function at the output

Autoencoders

Hugo Larochelle

Département d’informatique

Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

October 16, 2012

Abstract

Math for my slides “Autoencoders”.

•

h(x) = g(b+Wx)

= sigm(b+Wx)

•

bx = o(c+W⇤h(x))

= sigm(c+W⇤h(x))

• f(x) ⌘ bx l(f(x)) =
P

k(bxk � xk)2

1
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Pre-training
• We will use a greedy, layer-wise procedure

Ø Train one layer at a time with unsupervised criterion
Ø Fix the parameters of previous hidden layers
Ø Previous layers can be viewed as feature extraction

27



Pre-training
• Unsupervsed Pre-training

Ø first layer: find hidden unit features that are more common in 
training inputs than in random inputs

Ø second layer: find combinations of hidden unit features that are 
more common than random hidden unit features

Ø third layer: find combinations of combinations of ...

• Pre-training initializes the parameters in a region such that the 
near local optima overfit less the data

28



Fine-tuning
• Once all layers are pre-trained

Ø add output layer
Ø train the whole network using 

supervised learning

• Supervised learning is performed as 
in a regular network

Ø forward propagation, 
backpropagation and update

• We call this last phase fine-tuning

Ø all parameters are ‘‘tuned’’ for the 
supervised task at hand

Ø representation is adjusted to be more 
discriminative 29



Why Training is Hard
• First hypothesis (underfitting): better optimize

Ø Use better optimization tools (e.g. batch-normalization, second 
order methods, such as KFAC)

Ø Use GPUs, distributed computing. 

• Second hypothesis (overfitting): use better regularization

Ø Unsupervised pre-training
Ø Stochastic drop-out training

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 

30



Dropout
• Key idea: Cripple neural network by removing hidden units 
stochastically

Ø each hidden unit is set to 0 with 
probability 0.5

Ø hidden units cannot co-adapt to 
other units

Ø hidden units must be more 
generally useful

• Could use a different dropout 
probability, but 0.5 usually works well 31



Dropout
• Use random binary masks m(k) 

Ø layer pre-activation for k>0

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Ø hidden layer activation (k=1 to L):

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2

Ø Output activation (k=L+1)

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)x (h(0) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2
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Backpropagation Algorithm 
• Perform forward propagation
• Compute output gradient (before activation):

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

• For k=L+1 to 1
- Compute gradients w.r.t. the hidden layer parameters: 

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

- Compute gradients w.r.t. the hidden layer below:

• h(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h(k)(x)j
@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�
�ra(k)(x)h

(k)(x)

•

@

W (k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@W (k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h(k�1)
j (x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b(k)i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a(k)(x)i

@b(k)i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
�ra(k�1)(x)h

(k)(x)

3

- Compute gradients w.r.t. the hidden layer below (before activation):

• h
(k)(x)j = g(a(k)(x)j)

@

a(k)(x)j
� log f(x)y

=
@ � log f(x)y
@h(k)(x)j

@h
(k)(x)j

@a(k)(x)j

=
@ � log f(x)y
@h(k)(x)j

g
0(a(k)(x)j)

ra(k)(x) � log f(x)y

=
�
rh(k)(x) � log f(x)y

�> ra(k)(x)h
(k)(x)

=
�
rh(k)(x) � log f(x)y

�
� [. . . , g0(a(k)(x)j), . . . ]

•

@

W
(k)
i,j

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@W
(k)
i,j

=
@ � log f(x)y
@a(k)(x)i

h
(k�1)
j

(x)

rW(k) � log f(x)y

=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

•

@

b
(k)
i

� log f(x)y

=
@ � log f(x)y
@a(k)(x)i

@a
(k)(x)i

@b
(k)
i

=
@ � log f(x)y
@a(k)(x)i

rb(k) � log f(x)y

= ra(k)(x) � log f(x)y

• ra(L+1)(x) � log f(x)y (= � (e(y)� f(x))

• rW(k) � log f(x)y (=
�
ra(k)(x) � log f(x)y

�
h(k�1)(x)>

• rb(k) � log f(x)y (= ra(k)(x) � log f(x)y

• rh(k�1)(x) � log f(x)y (= W(k)> �
ra(k)(x) � log f(x)y

�

• ra(k�1)(x) � log f(x)y (=
�
rh(k�1)(x) � log f(x)y

�
� [. . . , g0(a(k�1)(x)j), . . . ]

3

Includes the 
mask m(k−1) 
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Dropout at Test Time 
• At test time, we replace the masks by their expectation

Ø This is simply the constant vector 0.5 if dropout probability is 0.5
Ø For single hidden layer: equivalent to taking the geometric average 

of all neural networks, with all possible binary masks

• Can be combined with unsupervised pre-training

• Beats regular backpropagation on many datasets

• Ensemble: Can be viewed as a geometric average of exponential 
number of networks. 
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Why Training is Hard
• First hypothesis (underfitting): better optimize

Ø Use better optimization tools (e.g. batch-normalization, second 
order methods, such as KFAC)

Ø Use GPUs, distributed computing. 

• Second hypothesis (overfitting): use better regularization

Ø Unsupervised pre-training
Ø Stochastic drop-out training

• For many large-scale practical problems, you will need to use both: 
better optimization and better regularization! 
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Batch Normalization
• Normalizing the inputs will speed up training (Lecun et al. 1998)

Ø could normalization be useful at the level of the hidden layers?

• Batch normalization is an attempt to do that (Ioffe and Szegedy, 2014)
Ø each unit’s pre-activation is normalized 

(mean subtraction, stddev division)
Ø during training, mean and stddev is 

computed for each minibatch
Ø backpropagation takes into account the 

normalization
Ø at test time, the global mean / stddev is used

36

• p(y = c|x)

• o(a) = softmax(a) =
h

exp(a1)P
c exp(ac)

. . . exp(aC)P
c exp(ac)

i>

• f(x)

• h(1)(x) h(2)(x) W(1) W(2) W(3) b(1) b(2) b(3)

• a(k)(x) = b(k) +W(k)h(k�1)(x) (h(0)(x) = x)

• h(k)(x) = g(a(k)(x))

• h(L+1)(x) = o(a(L+1)(x)) = f(x)

2



Batch Normalization

Learned linear transformation to adapt to non-linear 
activation function (𝛾 and β are trained) 37



• Why normalize the pre-activation?

Ø can help keep the pre-activation in a non-saturating regime 
(though the linear transform                             could cancel this 
effect)

vector, and X be the set of these inputs over the training
data set. The normalization can then be written as a trans-
formation

x̂ = Norm(x,X )

which depends not only on the given training example x
but on all examples X – each of which depends on Θ if
x is generated by another layer. For backpropagation, we
would need to compute the Jacobians

∂Norm(x,X )

∂x
and

∂Norm(x,X )

∂X
;

ignoring the latter term would lead to the explosion de-
scribed above. Within this framework, whitening the layer
inputs is expensive, as it requires computing the covari-
ance matrix Cov[x] = Ex∈X [xxT ] − E[x]E[x]T and its
inverse square root, to produce the whitened activations
Cov[x]−1/2(x − E[x]), as well as the derivatives of these
transforms for backpropagation. This motivates us to seek
an alternative that performs input normalization in a way
that is differentiable and does not require the analysis of
the entire training set after every parameter update.
Some of the previous approaches (e.g.

(Lyu & Simoncelli, 2008)) use statistics computed
over a single training example, or, in the case of image
networks, over different feature maps at a given location.
However, this changes the representation ability of a
network by discarding the absolute scale of activations.
We want to a preserve the information in the network, by
normalizing the activations in a training example relative
to the statistics of the entire training data.

3 Normalization via Mini-Batch
Statistics

Since the full whitening of each layer’s inputs is costly
and not everywhere differentiable, we make two neces-
sary simplifications. The first is that instead of whitening
the features in layer inputs and outputs jointly, we will
normalize each scalar feature independently, by making it
have the mean of zero and the variance of 1. For a layer
with d-dimensional input x = (x(1) . . . x(d)), we will nor-
malize each dimension

x̂(k) =
x(k) − E[x(k)]√

Var[x(k)]

where the expectation and variance are computed over the
training data set. As shown in (LeCun et al., 1998b), such
normalization speeds up convergence, even when the fea-
tures are not decorrelated.
Note that simply normalizing each input of a layer may

change what the layer can represent. For instance, nor-
malizing the inputs of a sigmoid would constrain them to
the linear regime of the nonlinearity. To address this, we
make sure that the transformation inserted in the network
can represent the identity transform. To accomplish this,

we introduce, for each activation x(k), a pair of parameters
γ(k),β(k), which scale and shift the normalized value:

y(k) = γ(k)x̂(k) + β(k).

These parameters are learned along with the original
model parameters, and restore the representation power
of the network. Indeed, by setting γ(k) =

√
Var[x(k)] and

β(k) = E[x(k)], we could recover the original activations,
if that were the optimal thing to do.
In the batch setting where each training step is based on

the entire training set, we would use the whole set to nor-
malize activations. However, this is impractical when us-
ing stochastic optimization. Therefore, we make the sec-
ond simplification: since we use mini-batches in stochas-
tic gradient training, each mini-batch produces estimates
of the mean and variance of each activation. This way, the
statistics used for normalization can fully participate in
the gradient backpropagation. Note that the use of mini-
batches is enabled by computation of per-dimension vari-
ances rather than joint covariances; in the joint case, reg-
ularization would be required since the mini-batch size is
likely to be smaller than the number of activations being
whitened, resulting in singular covariance matrices.
Consider a mini-batch B of size m. Since the normal-

ization is applied to each activation independently, let us
focus on a particular activation x(k) and omit k for clarity.
We havem values of this activation in the mini-batch,

B = {x1...m}.

Let the normalized values be x̂1...m, and their linear trans-
formations be y1...m. We refer to the transform

BNγ,β : x1...m → y1...m

as the Batch Normalizing Transform. We present the BN
Transform in Algorithm 1. In the algorithm, ϵ is a constant
added to the mini-batch variance for numerical stability.

Input: Values of x over a mini-batch: B = {x1...m};
Parameters to be learned: γ, β

Output: {yi = BNγ,β(xi)}

µB ←
1

m

m∑

i=1

xi // mini-batch mean

σ2
B ←

1

m

m∑

i=1

(xi − µB)
2 // mini-batch variance

x̂i ←
xi − µB√
σ2
B
+ ϵ

// normalize

yi ← γx̂i + β ≡ BNγ,β(xi) // scale and shift

Algorithm 1: Batch Normalizing Transform, applied to
activation x over a mini-batch.

The BN transform can be added to a network to manip-
ulate any activation. In the notation y = BNγ,β(x), we

3

• Why use minibatches?

Ø since hidden units depend on parameters, can’t compute 
mean/stddev once and for all

Ø adds stochasticity to training, which might regularize

Batch Normalization
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• How to take into account the normalization in backdrop?

Ø derivative w.r.t. xi depends on the partial derivative of both: the 
mean and stddev

Ø must also update 𝛾 and β

• Why use the global mean and stddev at test time?

Ø removes the stochasticity of the mean and stddev

Ø requires a final phase where, from the first to the last hidden layer
• propagate all training data to that layer
• compute and store the global mean and stddev of each unit

Ø for early stopping, could use a running average

Batch Normalization
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Optimization Tricks
• SGD with momentum, batch-normalization, and dropout usually 
works very well

• Pick learning rate by running on a subset of the data
Ø Start with large learning rate & divide by 2 until loss does not diverge
Ø Decay learning rate by a factor of ~100 or more by the end of training 

• Use ReLU nonlinearity 

•  Initialize parameters so that each feature across layers has 
similar variance. Avoid units in saturation.

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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Improving Generalization
• Weight sharing (greatly reduce the number of parameters)

• Dropout

• Weight decay (L2, L1)

• Sparsity in the hidden units

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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Visualization
• Check gradients numerically by finite differences

• Visualize features (features need to be uncorrelated) and have 
high variance

• Good training: hidden units 
are sparse across samples 

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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Visualization
• Check gradients numerically by finite differences

• Visualize features (features need to be uncorrelated) and have 
high variance

•  Visualize parameters: learned features should exhibit structure 
and should be uncorrelated and are uncorrelated 

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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Visualization
• Check gradients numerically by finite differences

• Visualize features (features need to be uncorrelated) and have 
high variance

• Bad training: many hidden 
units ignore the input and/or
exhibit strong correlations

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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Visualization
• Check gradients numerically by finite differences

• Visualize features (features need to be uncorrelated) and have 
high variance

•  Visualize parameters: learned features should exhibit structure 
and should be uncorrelated and are uncorrelated 

•  Measure error on both training and validation set

•  Test on a small subset of the data and check the error → 0.

[From Marc'Aurelio Ranzato, CVPR tutorial] 
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When it does not work

[From Marc'Aurelio Ranzato, CVPR tutorial] 

• Training diverges:
Ø Learning rate may be too large → decrease learning rate
Ø BPROP is buggy → numerical gradient checking

• Parameters collapse / loss is minimized but accuracy is low
Ø Check loss function: Is it appropriate for the task you want to solve?
Ø Does it have degenerate solutions?

• Network is underperforming
Ø Compute flops and nr. params. →  if too small, make net larger
Ø Visualize hidden units/params → fix optimization 

• Network is too slow
Ø GPU,distrib. framework, make net smaller 
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