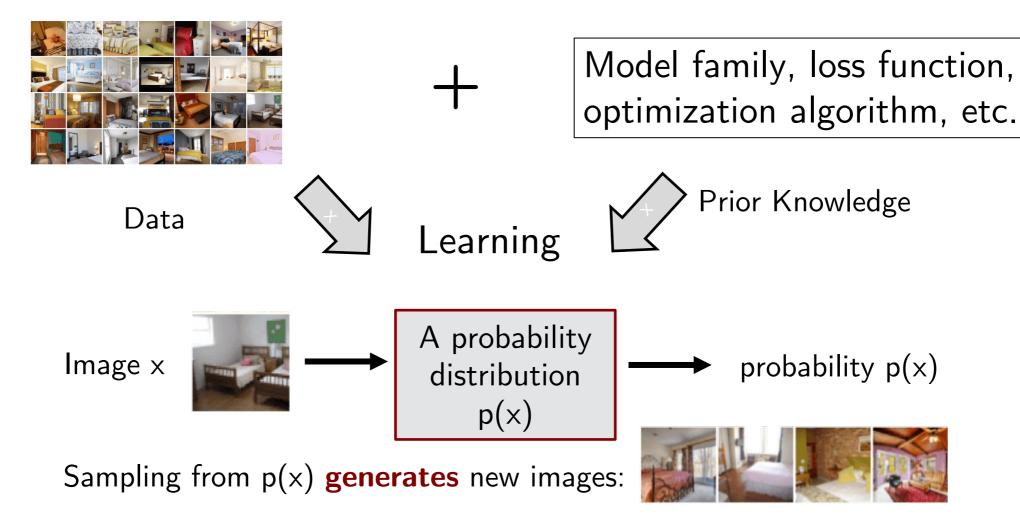
10707: Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Generative Adversarial Networks

Statistical Generative Models



Fully Observed Models

▶ Density Estimation by Autoregression

$$p(x_{1}, \ldots, x_{d}) = \prod_{i=1}^{d} p(x_{i}|x_{i-1}, \ldots, x_{1}) \approx \prod_{i=1}^{d} p(x_{i}|g(x_{i-1}, \ldots, x_{1}))$$

$$\emptyset \rightarrow h_{1} = g(\emptyset, h_{0}) \rightarrow p(x_{1})$$
Each conditional can be a deep neural network
$$x_{1} \rightarrow h_{2} = g(x_{1}, h_{1}) \rightarrow p(x_{2}|x_{1})$$

$$x_{2} \rightarrow h_{3} = g(x_{3}, h_{2}) \rightarrow p(x_{3}|x_{2}, x_{1})$$

$$\vdots$$

$$\vdots$$

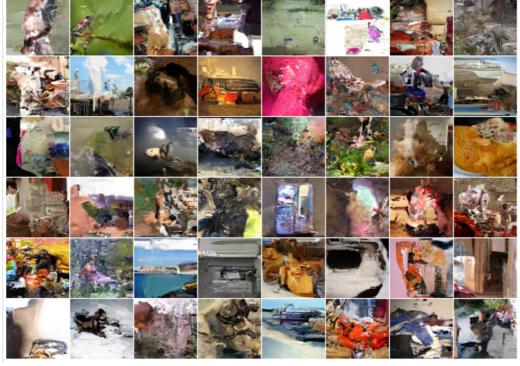
$$x_{d-1} \rightarrow h_{d} = g(x_{d-1}, h_{d-1}) \rightarrow p(x_{d}|x_{d}, \ldots, x_{1})$$

► Ordering of variables is crucial

NADE (Uria 2013), MADE (Germain 2017), MAF (Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)

Fully Observed Models

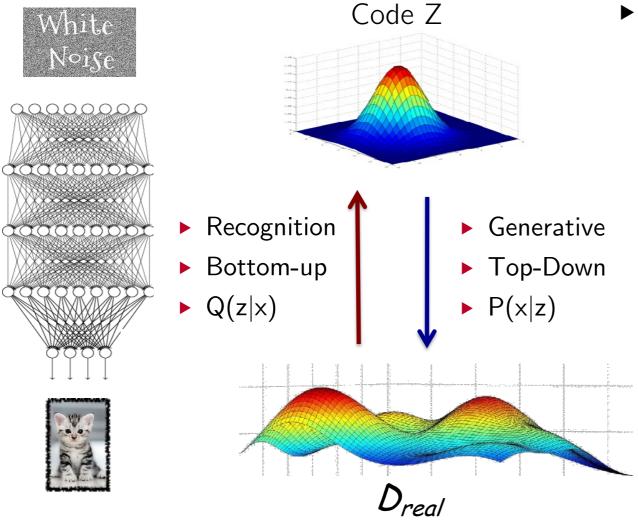
▶ Density Estimation by Autoregression



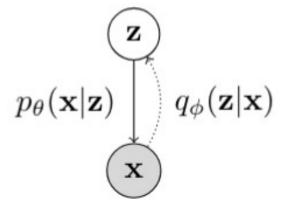
PixelCNN (van den Oord, et al, 2016)

NADE (Uria 2013), MADE (Germain 2017), MAF (Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)

Deep Directed Generative Models



► Latent Variable Models

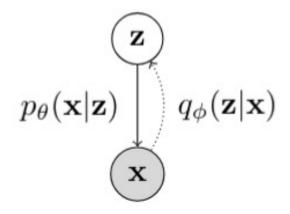


$$\log p_{\theta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

 Conditional distributions are parameterized by deep neural networks

Directed Deep Generative Models

► Directed Latent Variable Models with Inference Network



► Maximum log-likelihood objective

$$\max_{\theta} \sum_{\mathbf{x} \in \mathcal{D}} \log p_{\theta}(\mathbf{x})$$

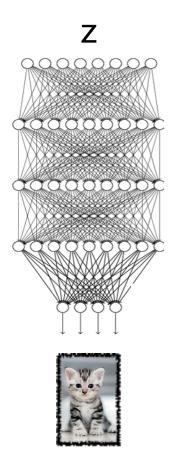
► Marginal log-likelihood is intractable:

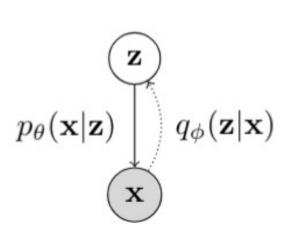
$$\log p_{\theta}(\mathbf{x}) = \log \int p_{\theta}(\mathbf{x}, \mathbf{z}) d\mathbf{z}$$

▶ Key idea: Approximate true posterior p(z|x) with a simple, tractable distribution q(z|x) (inference/recognition network).

Variational Autoencoders (VAEs)

► Single stochastic (Gaussian) layer, followed by many deterministic layers





$$p(\mathbf{z}) = \mathcal{N}(0, I)$$

$$p_{\theta}(\mathbf{x}|\mathbf{z}) = \mathcal{N}(\mu(\mathbf{z}, \theta), \Sigma(\mathbf{z}, \theta))$$

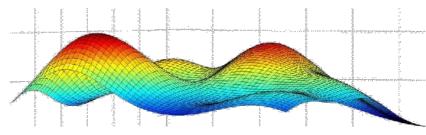
Deep neural network parameterized by θ . (Can use different noise models)

$$q_{\phi}(\mathbf{z}|\mathbf{x}) = \mathcal{N}(\mu(\mathbf{x}, \phi), \Sigma(\mathbf{x}, \phi))$$

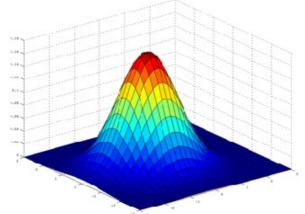
Deep neural network parameterized by ϕ .

Generative Adversarial Networks (GAN)

- ► Implicit generative model for an unknown target density p(x)
- ► Converts sample from a known noise density $p_Z(z)$ to the target p(x)



Unknown target density p(x) of data over domain \mathcal{X} , e.g. $\mathbb{R}^{32\times32}$



Noise density $p_z(z)$ over space \mathcal{Z}

Distribution of generated samples should follow target density p(x)

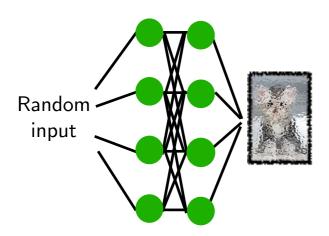
Goodfellow et al, 2014

GAN Formulation

► GAN consists of two components

Generator

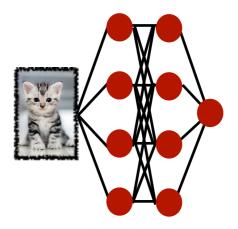
$$G: \mathcal{Z} \to \mathcal{X}$$



Goal: Produce samples indistinguishable from true data

Discriminator

 $D: \mathcal{X} \to \mathbb{R}$



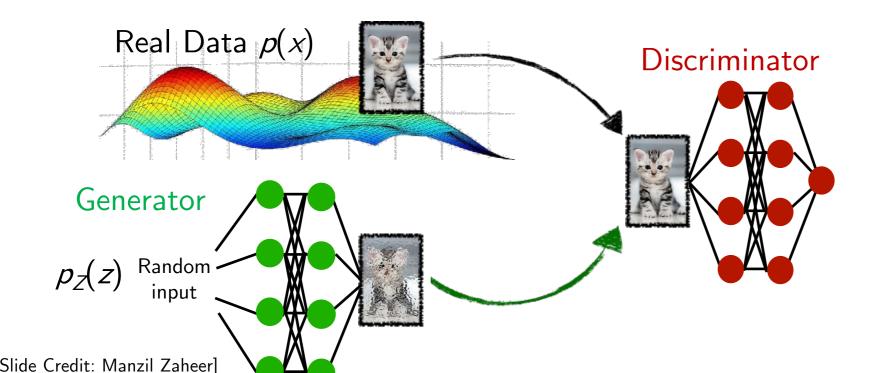
Goal: Distinguish true and generated data apart

Goodfellow et al, 2014

GAN Formulation: Discriminator

Discriminator's objective: Tell real and generated data apart like a classifier

$$\max_{D} \mathbb{E}_{x \sim p} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{Z}} \left[\log \left(1 - D(G(z)) \right) \right]$$



D outputs:

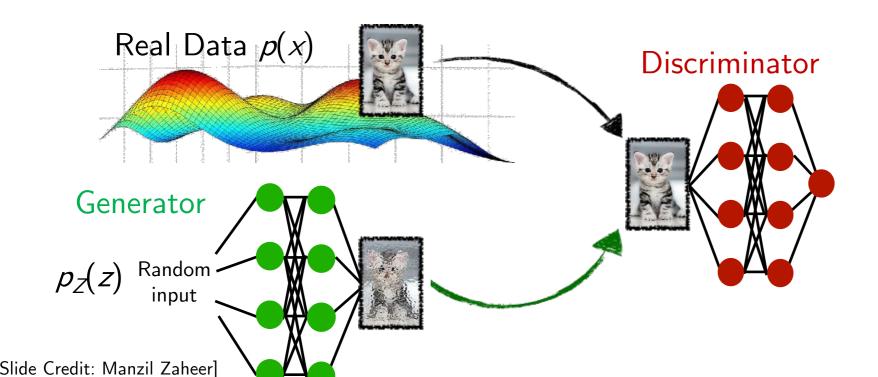
$$D(x) = 1$$
 real

$$D(x) = 0$$
 generated

GAN Formulation: Generator

► Generator's objective: Fool the best discriminator

$$\min_{G} \max_{D} \mathbb{E}_{x \sim p} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{Z}} \left[\log \left(1 - D(G(z)) \right) \right]$$



D outputs:

$$D(x) = 1$$
 real

$$D(x) = 0$$
 generated

GAN Formulation: Optimization

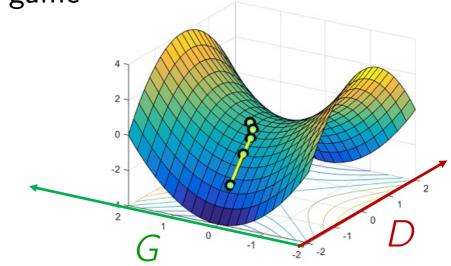
► Overall GAN optimization

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{x \sim p} \left[\log D(x) \right] + \mathbb{E}_{z \sim p_{Z}} \left[\log \left(1 - D(G(z)) \right) \right]$$

► The generator-discriminator are iteratively updated using SGD to find "equilibrium" of a "min-max objective" like a game

$$G \leftarrow G - \eta_G \nabla_G V(G, D)$$

$$D \leftarrow D - \eta_D \nabla_D V(G, D)$$



Slide Credit: Manzil Zaheer]

Distributional perspective - Discriminator

$$\min_{G} \max_{D} V(G, D) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log D(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [\log (1 - D(G(\mathbf{z})))]$$

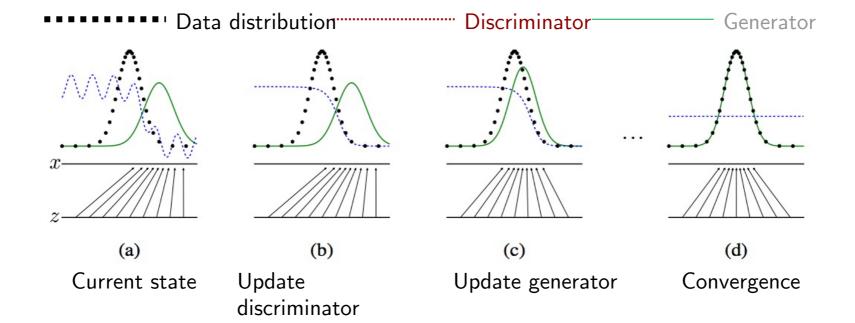
- ▶ For a fixed generator, discriminator is maximizing negative cross entropy
- ► Optimal discriminator is given by:

$$D_G^*(oldsymbol{x}) = rac{p_{data}(oldsymbol{x})}{p_{data}(oldsymbol{x}) + p_g(oldsymbol{x})}$$

A minimax learning objective

▶ During learning, generator and discriminator are updated alternatively

$$\min_{\theta} \max_{\phi} V(G_{\theta}, D_{\phi}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log D_{\phi}(\mathbf{x})] + \mathbb{E}_{\mathbf{z} \sim p(\mathbf{z})} [\log(1 - D_{\phi}(G_{\theta}(\mathbf{z})))]$$



Evaluation

- ► Likelihoods may not be defined or tractable
- ► Directed model permits ancestral sampling
 - ► For labelled datasets, metrics such as inception scores quantify sample diversity and quality using pretrained classifiers

Mode Collapse

▶ In practice, GANs suffer from mode collapse

Arjovsky et al., 2017

Wasserstein GAN

▶ WGAN optimization

$$\min_{G} \max_{D} W(G, D) = \mathbb{E}_{x \sim p} [D(x)] - \mathbb{E}_{z \sim p_Z} [D(G(z))]$$

- ▶ Difference in expected output on real vs. generated images
 - ▶ Generator attempts to drive objective ≈ 0
- ► More stable optimization

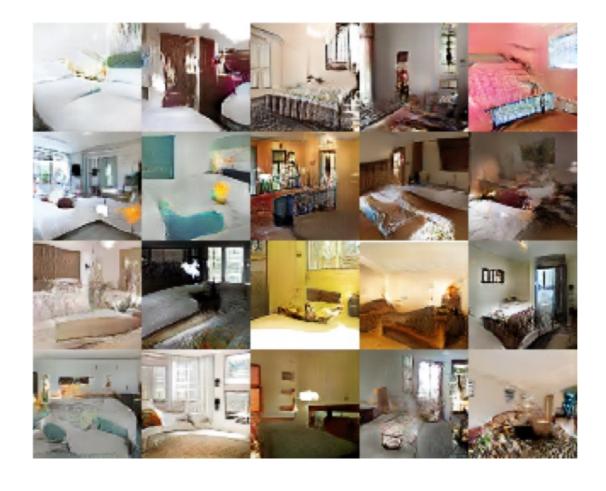
Compare to training DBMs
$$\frac{\partial \log P_{\theta}(\mathbf{v})}{\partial W^1} = \mathbb{E}_{P_{data}}[\mathbf{vh^1}^{\top}] - \mathbb{E}_{P_{\theta}}[\mathbf{vh^1}^{\top}]$$

D outputs:

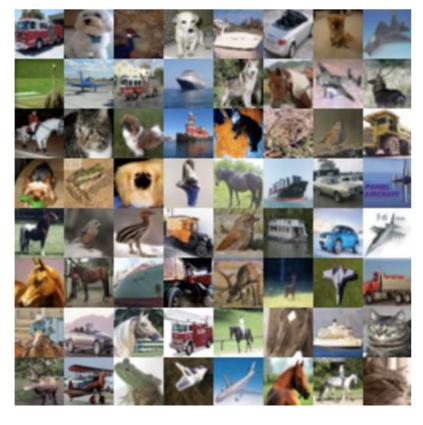
$$D(x) = 1$$
 real

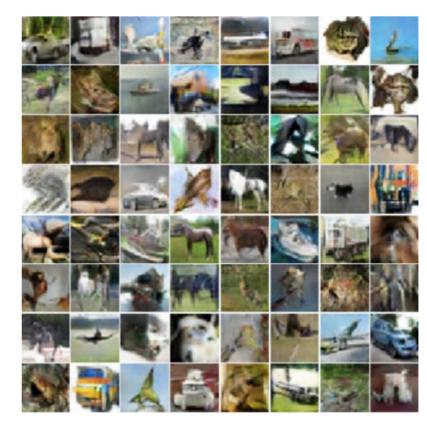
$$D(x) = 0$$
 generated

LSUN Bedroom: Samples



CIFAR Dataset





Training

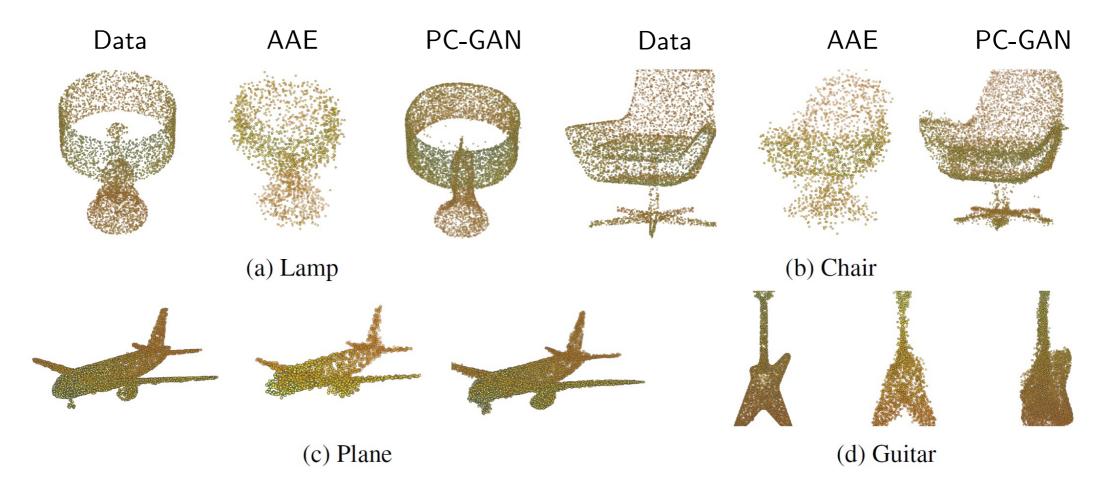
Samples

21

ImageNet: Cherry-Picked Samples

Open Question: How can we quantitatively evaluate these models!

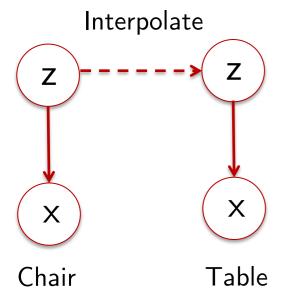
Modelling Point Cloud Data

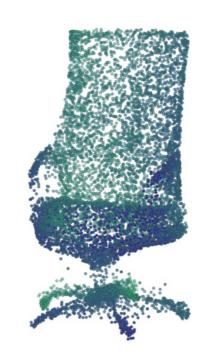


Zaheer et al. Point Cloud GAN 2018

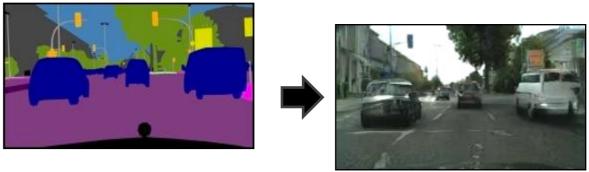
Carnegie Mellon University

Interpolation in Latent Space





Cycle GAN



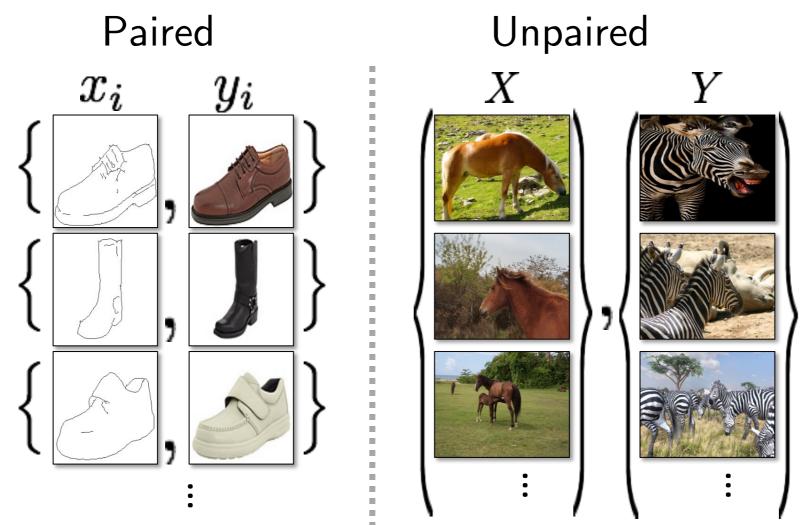
Label photo: per-pixel labeling

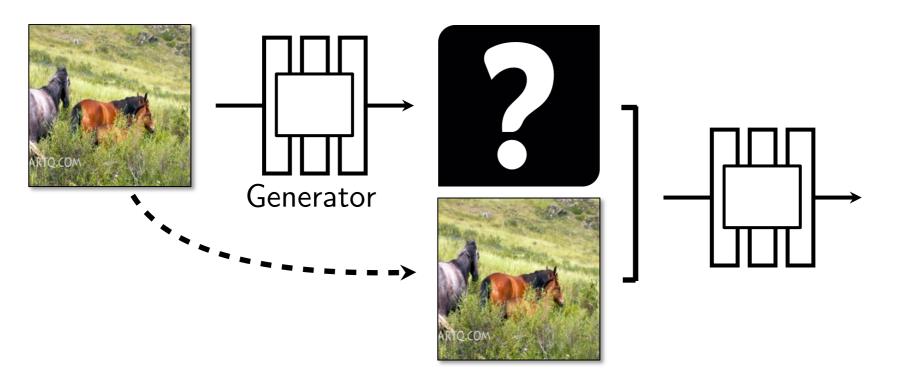
Horse zebra: how to get zebras?

- Expensive to collect pairs.
- Impossible in many scenarios.

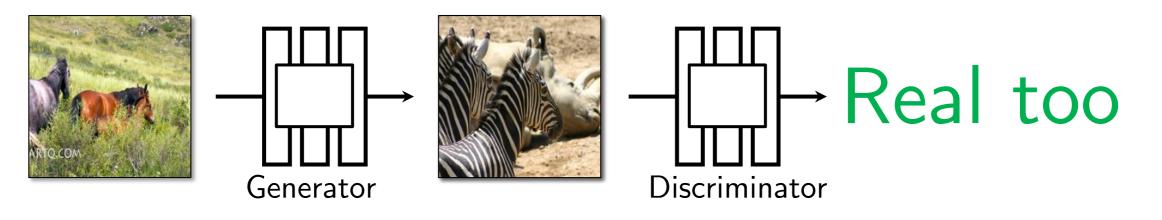
25

Cycle GAN

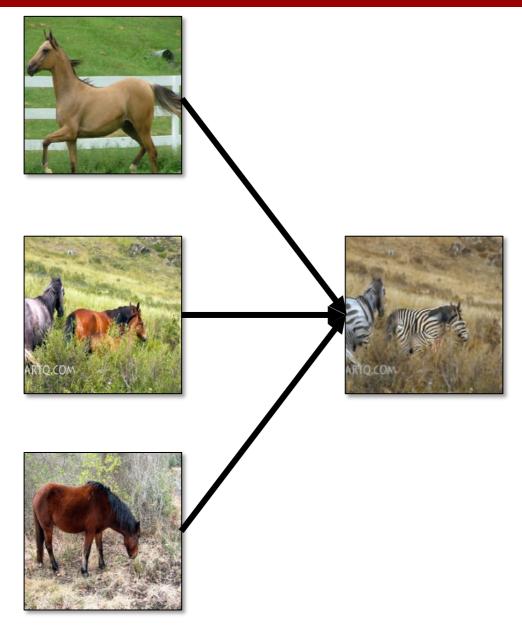




No input-output pairs!



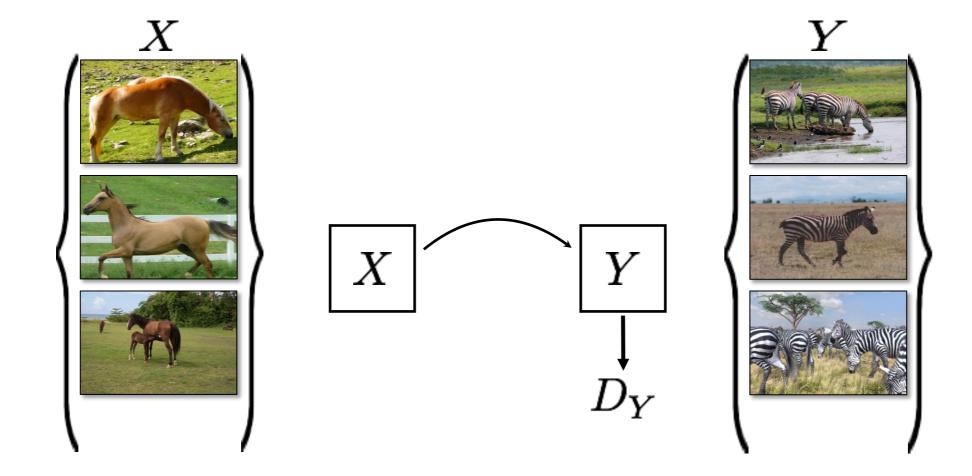
GANs doesn't force output to correspond to input



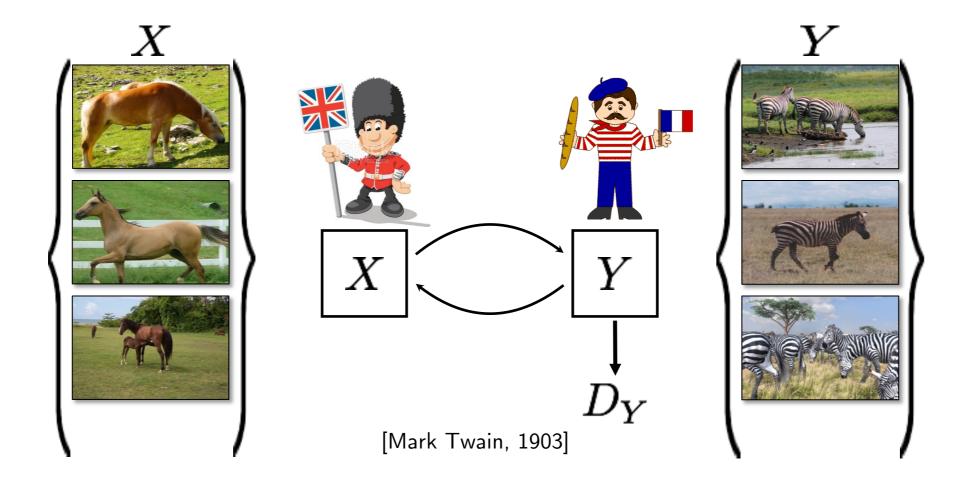
mode collapse

Slide credit: Jun-Yan Zhu

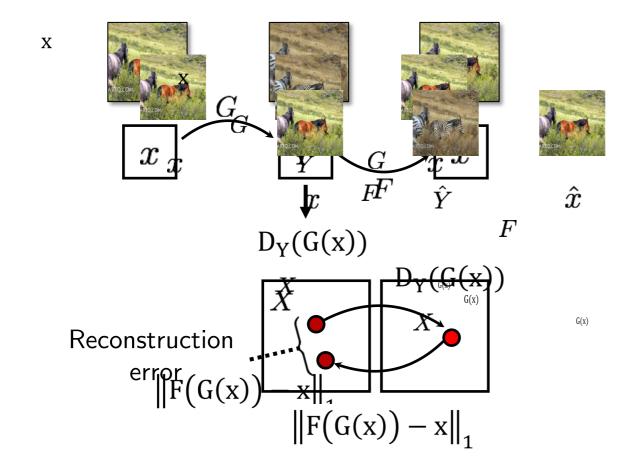
Cycle Consistent Adversarial Networks



Cycle Consistent Adversarial Networks

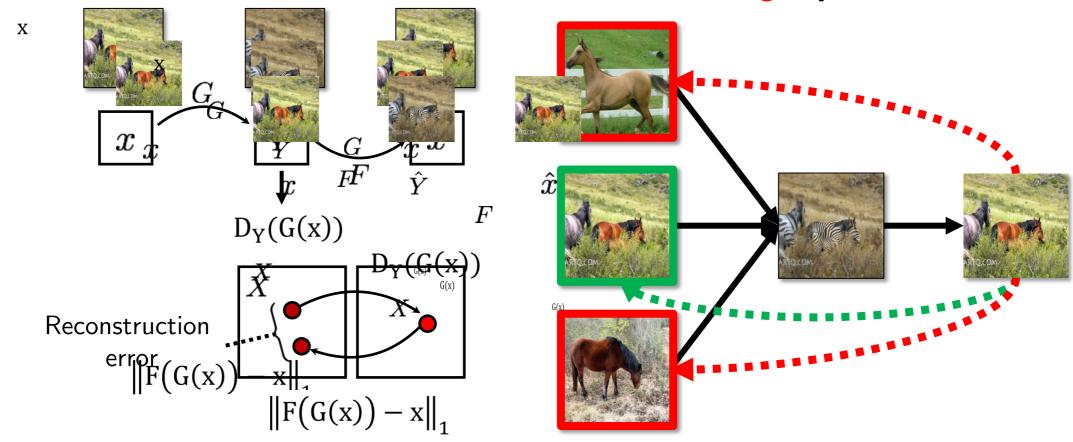


Cycle Consistency Loss

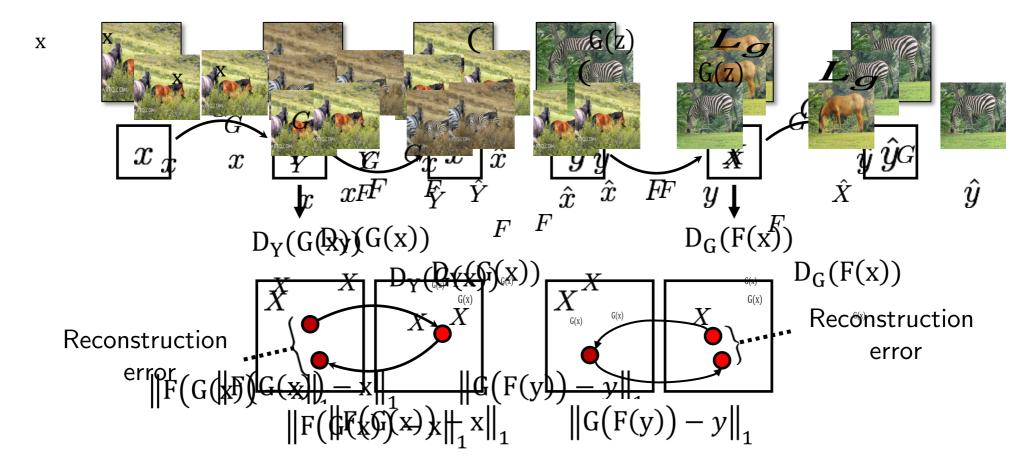


Cycle Consistency Loss

Small cycle loss Large cycle loss



Cycle Consistency Loss

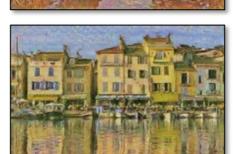


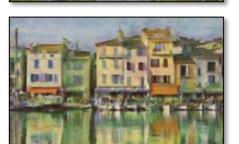
Collection Style Transfer

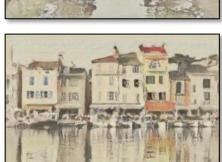
Ukiyo-e Cezanne

Van Gogh Monet

36 Carnegie Mellon University
UKIYO-E Van Gogh Cezanne Monet Input







Conditional Generation

► Conditional generative model P(zebra images| horse images)

▶ Style Transfer

Input Image

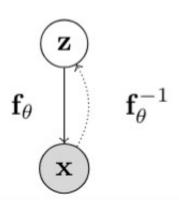
Monet

Van Gogh

Zhou el al., Cycle GAN 2017

Normalizing Flows

► Directed Latent Variable Invertible models



► The mapping between x and z is deterministic and invertible:

$$\mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z})$$
 $\mathbf{z} = \mathbf{f}_{\theta}^{-1}(\mathbf{x})$

► Use change-of-variables to relate densities between z and x

$$p_X(\mathbf{x}; \theta) = p_Z(\mathbf{z}) \left| \det \frac{\partial \mathbf{f}_{\theta}^{-1}(\mathbf{x})}{\partial X} \right|_{X=\mathbf{x}}$$

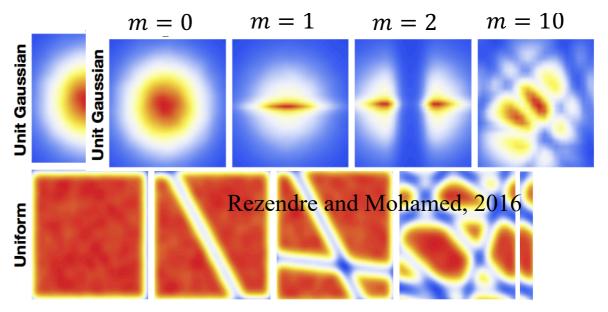
Normalizing Flows

▶ Invertible transformations can be composed:

$$\mathbf{z}^{M} \triangleq \mathbf{f}_{\theta}^{M} \circ \mathbf{f}_{\theta}^{M} \cdot \circ \cdot \mathbf{f}_{\theta}^{1} \cdot (\mathbf{z}^{0}) p_{X}(\mathbf{x}; \boldsymbol{\theta}) p_{X}(\mathbf{x}; \boldsymbol{\theta}) \circ (\mathbf{z}^{0}) p_{Z} \mathbf{q}^{M} \circ \mathbf{p}^{M} \circ \mathbf{q}^{M} \circ \mathbf{f}_{\theta}^{M} \circ \mathbf{f}_{\theta}^{$$

▶ Planar Flows

$$f(\mathbf{z}) = \mathbf{z} + \mathbf{u}g(\mathbf{w}^{\top}\mathbf{z} + b)$$



Rezendre and Mohamed, 2016, Grover and Ermon DGM Tutorial

Normalizing Flows

► Maximum log-likelihood objective

$$\max_{\theta} \sup_{\theta} \sup_{\theta} \sup_{\theta} |\mathcal{D}(\mathcal{D})| \underbrace{\mathcal{D}}_{\mathbf{x} \in \mathcal{D}} = \sum_{\mathbf{x} \in \mathcal{D}} \log |\mathcal{D}(\mathbf{z})| \log |\mathcal{D}(\mathbf{z})| \log |\mathcal{D}(\mathbf{z})| + \sum_{\mathbf{x} \in \mathcal{D}} \log |\mathcal{D}(\mathbf{z})| + \sum_{\mathbf{x$$

- ► Exact log-likelihood evaluation via inverse transformations
- ► Sampling from the model

$$\mathbf{z} \ \mathbf{z} \sim p_Z(\mathbf{z}), \quad \mathbf{x} = \mathbf{f}_{\theta}(\mathbf{z})$$

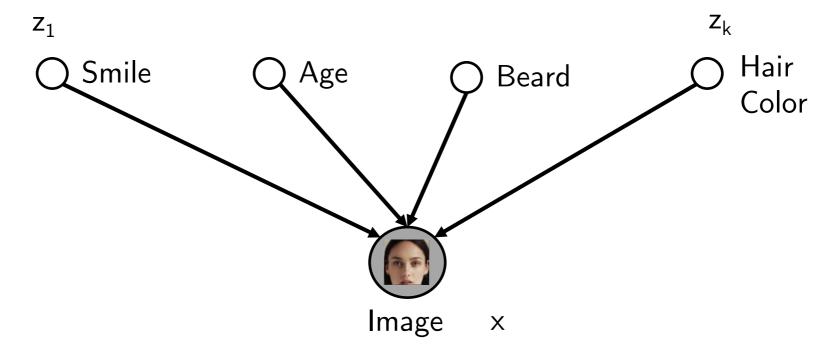
► Inference over the latent representations:

$$\mathbf{z} = \mathbf{f}_{\theta} \mathbf{f}_{\theta} \mathbf{x} \mathbf{x}$$

Example: GLOW

► Generative Flow with Invertible 1x1 Convolutions https://blog.openai.com/glow/

Latent factors of variation



Flow Models

- ► Simple prior that allows for sampling and tractable likelihood evaluation e.g., isotropic Gaussian
- ► Invertible transformations with tractable evaluation:
 - ▶ Likelihood evaluation requires efficient evaluation of inverse
 - Sampling requires efficient evaluation of inverse
- ► Tractable evaluation of determinants of Jacobian for large models
 - ► Computing determinants for a large matrix is prohibitive
 - ▶ Key idea: Determinant of triangular matrices is the product of the diagonal entries, i.e., an operation