10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Sequence Model / Transfor

New Architectures

Bytenet, Kalchbrenner, et al, 2016

Transformer

• Example of Machine Translation

Transformer

• An Encoder Block: same structure, different parameters

Note: The ffnn is independent for each word. Hence can be parallelized

First we create three vectors by multiplying input embedding x_i (1x512) with three matrices (64x512):

 $q_i = x_i W^Q$ $K_i = x_i W^{K}$ $V_i = x_i W^V$

Embedding dimensions are chosen by the modeler.

Multiple Heads

- Expands the model's ability to focus on different positions.
- It gives the attention layer multiple "representation subspaces"

Multiple Heads

• Aggregate multiple Zs across different heads.

2) Multiply with a weight matrix W^o that was trained jointly with the model

3) The result would be the Z matrix that captures information from all the attention heads. We can send this forward to the FFNN

> Z $\quad =$

The output is a 2x64 matrix

Multi-Head Self Attention

Multi-Head Self Attention

Transformer Block

• Sometimes one would normalize each layer so that each feature (column) have the same mean and standard deviation.

Full Model: Machine Translation

•The encoder-decoder attention is just like self attention, except it uses K, V from the top of encoder output, and its own Q

Encoder vs Decoder

• Encoders (e.g. BERT) learn representations of input (by predicting masked input) – bi-directional • Decoders (e.g. GPT-3) are autoregressive decoders: uni-directional

Decoder-based Only: GPT

- Predict the next token in a sequence
- Rely on masked self-attention
	- In decoder, the input is "incomplete" when calculating self-attention
	- The solution is to set future unknown values with "-inf".

Decoder-based Only: GPT

• Masked Self-Attention (to compute more efficiently)

Autoregressive Models

Density Estimation by Autoregression

$$
p(x_1, ..., x_d) = \prod_{i=1}^d p(x_i | x_{i-1}, ..., x_1) \approx \prod_{i=1}^d p(x_i | g(x_{i-1}, ..., x_1))
$$

\n
$$
\overline{\text{[0]}} \rightarrow \overline{\text{[h_1 = g(\emptyset, h_0)]}} \rightarrow \overline{\text{[b_2]}} \quad p(x_1)
$$

\n
$$
\overline{\text{[E_1]}} \rightarrow \overline{\text{[h_2]}} \quad p(x_1)
$$

\n
$$
\overline{\text{[E_2]}} \rightarrow \overline{\text{[h_3]}} \quad p(x_2 | x_1)
$$

\n
$$
\overline{\text{[E_3]}} \rightarrow \overline{\text{[h_3]}} \quad p(x_2 | x_1)
$$

\n
$$
\overline{\text{[E_4]}} \rightarrow \overline{\text{[h_4]}} \quad p(x_3 | x_2, x_1)
$$

\n
$$
\overline{\text{[E_5]}} \rightarrow \overline{\text{[h_d]}} \quad p(x_d | x_d, ..., x_1)
$$

NADE (Uria 2013), MADE (Germain 2017), MAF (Papamakarios 2017), PixelCNN (van den Oord, et al, 2016)

Pre-Trained Large Language Models (LLMs)

(by Sep 2019)

BERT Model

(a) Sentence Pair Classification Tasks: MNLI, QQP, QNLI, STS-B, MRPC, RTE, SWAG

Single Sentence

(d) Single Sentence Tagging Tasks: **CoNLL-2003 NER**

- CLS token is used to provide classification decisions
- Sentence pair tasks (entailment): feed both sentences into BERT
- BERT can also do tagging by predicting tags at each word piece

GPT/GPT2

- Train a single unidirectional transformer LM on long contexts
- GPT2: trained on 40GB of text collected from upvoted links from reddit
- 1.5B parameters by far the largest of these models trained as of March 2019
- Because it's a language model, we can generate from it

T5

• Frame many problems as sequence-to-sequence ones:

T5

• Pre-training: similar denoising scheme to BERT

Raffel et al. (2019)

T5

- Colossal Cleaned Common Crawl: 750 GB of text
- We still haven't hit the limit of bigger data being useful for pre- training: we see stronger MT results from the biggest data

Scaling Laws

- Each model is a different-sized LM (GPT-style)
- With more compute, larger models get further down the loss "frontier"
- Building a bigger model (increasing compute) will decrease test loss!

1 petaflop/s-day is equivalent to 8 V100 GPUs at full efficiency of a day

Scaling Laws

• The scaling laws suggest how to set model size, dataset size, and training time for big datasets

Figure 1 Language modeling performance improves smoothly as we increase the model size, datasetset size, and amount of compute² used for training. For optimal performance all three factors must be scaled up in tandem. Empirical performance has a power-law relationship with each individual factor when not bottlenecked by the other two.

GPT3

• GPT-2 but even larger: 1.3B -> 175B parameter models

• Trained on 570GB of Common Crawl

•175B parameter model's parameters alone take >400GB to store (4 bytes per param). Trained in parallel on a "high bandwidth cluster provided by Microsoft"

Pre-training Cost

• Trained on Microsoft Azure, estimated to cost ~\$5-10M (1000x BERT-large)

Total Compute Used During Training

•petaflop/s-day is equivalent to 8 V100 GPUs at full efficiency of a day

GPT3

• The standard way of training models like GPT

Fine-tuning

The model is trained via repeated gradient updates using a large corpus of example tasks.

GPT3: Few-Shot Learning

Few-shot

In addition to the task description, the model sees a few examples of the task. No gradient updates are performed.

GPT3: Few-Shot Learning

• **Key observation:** few-shot learning only works with the very largest models!

PALM: Google's LLM

Pathways Language Model (PaLM): Scaling to 540 Billion Parameters for Breakthrough Performance

Monday, April 4, 2022

Posted by Sharan Narang and Aakanksha Chowdhery, Software Engineers, Google Research

In recent years, large neural networks trained for language understanding and generation have achieved impressive results across a wide range of tasks. GPT-3 first showed that large language models (LLMs) can be used for few-shot learning and can achieve impressive results without largescale task-specific data collection or model parameter updating. More recent LLMs, such as GLaM, LaMDA, Gopher, and Megatron-Turing NLG, achieved state-of-the-art few-shot results on many tasks by scaling model size, using sparsely activated modules, and training on larger datasets from more diverse sources. Yet much work remains in understanding the capabilities that emerge with few-shot learning as we push the limits of model scale.

Last year Google Research announced our vision for Pathways, a single model that could generalize across domains and tasks while being highly efficient. An important milestone toward realizing this vision was to develop the new Pathways system to orchestrate distributed computation for accelerators. In "PaLM: Scaling Language Modeling with Pathways", we introduce the Pathways Language Model (PaLM), a 540-billion parameter, dense decoder-only Transformer model trained with the Pathways system, which enabled us to efficiently train a single model across

https://ai.googleblog.com/2022/04/pathways-language-model-palm-scaling-to.html

PALM: Google's LLM

- 540 billion parameter model created by Google (not publicly available)
- Trained on 780 billion tokens, 6144 TPU v4 chips using Pathways to work across multiple TPU Pods).
- PALM2 is out powers BARD

Chowdhery et al. (2022)

Chat GPT: with RLHF

Step1

Collect demonstration data. and train a supervised policy.

A prompt is sampled from our prompt dataset.

A labeler demonstrates the desired output behavior.

This data is used to fine-tune GPT-3 with supervised learning.

Some people went to the moon...

Step 2

Collect comparison data, and train a reward model.

A labeler ranks the outputs from best to worst.

This data is used to train our reward model.

Explain war...

 \bullet \bullet Moon is natural People went to satellite of... the moon...

Explain gravity...

 $\mathbf{0}$ > $\mathbf{0}$ > $\mathbf{0}$ = $\mathbf{0}$

Step 3

ig.opengenus.org

Optimize a policy against the reward model using reinforcement learning.

A new prompt is sampled from the dataset.

The policy generates an output.

为 Write a story about frogs

Once upon a time...

 r_{k}

The reward model calculates a reward for the output.

The reward is used to update the policy using PPO.

Cost

- GPT-3: estimated to be \$4.6M. This cost has a large carbon footprint
	- ‣Carbon footprint: equivalent to driving 700,000 km by car (source: Anthropocene magazine)
	- ‣(Counterpoints: GPT-3 isn't trained frequently, equivalent to 100 people traveling 7000 km for a conference, can use renewables)
	- BERT-Base pre-training: carbon emissions roughly on the same order as a single passenger on a flight from NY to San Francisco