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Natural Language Processing

» Natural language processing is concerned with tasks involving
language data

> we will focus on text data NLP

« Much like for computer vision, we can design neural networks
specifically adapted to the processing of text data

> main issue: text data is inherently high dimensional



Natural Language Processing

» Typical preprocessing steps of text data

> Form vocabulary of words that maps words to a unique ID
Different criteria can be used to select which words are part of the

vocabulary
>  Pick most frequent words and ignore uninformative words from a
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user-defined short list (ex.: “the ”, “a”, etc.)

> All words not in the vocabulary will be mapped to a special “out-

of-vocabulary’

- Typical vocabulary sizes will vary between 100,000 and 1,000,000



Vocabulary

« Example: ey
“the"
“the " ‘and” 1
"cat” i ?oci i 5
“and” ) 0(.)v " 2
“the” 1
“dog” 3
“play” 5
B 4

« We will note word IDs with the symbol w

> we can think of w as a categorical feature for the original word

> we will sometimes refer to w as a word, for simplicity



One-Hot Encoding

* From its word ID, we get a basic representation of a word
through the one-hot encoding of the ID

> the one-hot vector of an ID is a vector filled with Os, except for a 1
at the position associated with the ID
>  For vocabulary size D=10, the one-hot vector of word ID w=4 is:
e(w)=[0001000000]

> A one-hot encoding makes no assumption about word similarity

This is a natural representation to start with, though a poor one



One-Hot Encoding

» The major problem with the one-hot representation is that it is
very high-dimensional

> the dimensionality of e(w) is the size of the vocabulary

> atypical vocabulary size is =100,000

> awindow of 10 words would correspond to an input vector of at
least 1,000,000 units!

* This has 2 consequences:

> vulnerability to overfitting (millions of inputs means millions of
parameters to train)

> computationally expensive



Continuous Representation of Words

« Each word w is associated with a real-valued vector C(w)

“the” | 0.6762, -0.9607, 0.3626, -0.2410, 0.6636 |
| 0.6859, -0.9266, 0.3777, -0.2140, 0.6711 |

" have " [ 0.1656, -0.1530, 0.0310, -0.3321, -0.1342 |

Scat 0.5896, 0.9137, 0.0452, 0.7603, -0.6541

0.5965, 0.9143, 0.0899, 0.7702, -0.6392

1

2

3
"be” | 4 [ 0.1760, -0.1340, 0.0702, -0.2981, -0.1111 |

D

“dog " 6

i

NCAY -0.0069, 0.7995, 0.6433, 0.2898, 0.6359



Continuous Representation of Words

« We would like the distance ||C(w)-C(w’)|| to reflect meaningful
similarities between words

MONDAY
TUESDAY
WEDNESDAY
MAY, WOULD, COULD, SHOULD, T*::%ngf(w
MIGHT, MUST, CAN, CANNOT, . e 8
COULDN'T, WON'T, WILL Crgw
'T?é R
o A XA IS JANUARY
ONE, TWO, THREE, " o e 6. FEBRUARY
FOUR, FIVE, SIX, - vy e MARCH
SEVEN, EIGHT, NINE, . (il L APRIL
TEN, ELEVEN, *__ x| miLLioN b Bl JUNE
TWELVE, THIRTEEN, BILLION JULY
FOURTEEN, FIFTEEN, X X . AUGUST
SIXTEEN, P XX g X g SEPTEMBER
SEVENTEEN, x X OCTOBER
EIGHTEEN NOVEMBER
=] zERO | DECEMBER

(from Blitzer et al. 2004)




Continuous Representation of Words

« Learn a continuous representation of words

> we could then use these representations as input to a neural
network
* We learn these representations by gradient descent

> we don’t only update the neural network parameters
> we also update each representation C(w) in the input x with a

gradient step:
C(w) <= C(w) — aV )l

where | is the loss function optimized by the neural network



Continuous Representation of Words

 Let C be a matrix whose rows are the representations C(w)

> obtaining C(w) corresponds to the multiplication e(w)™ C
> view differently, we are projecting e(w) onto the columns of C
> this is a continuous transformation, through which we can

propagate gradients

* In practice, we implement C(w) with a lookup table, not with a
multiplication



Language Modeling

p(W1, JWT)

language modeling is the task of learning a language model that
assigns high probabilities to well formed sentences

plays a crucial role in speech recognition and machine translation

<

systems

“a person smart”

“une personne intelligente”

“a smart person’”

11



Language Modeling

T

p(Wy, ... . wr) =1 P(We | Weegn-1)5 = sWi=1)
t—=1

> the tth word was generated based only on the n—1 previous words

» we will refer to w,_y,_4), ... ,w,_; as the context



Neural Language Model

 Model the conditional
distributions with a neural

network:

> learn word
representations to
allow transfer to n-
grams not observed in
training corpus

Table
look—up
inC

Bengio, Ducharme,Vincent and
Jauvin, 2003 index for w;_,11

i-th output = P(w; = i | context)
softmax
[ X 00
AN
: \
most| computation here \
\
\
\
1
tanh !
I
0 ) ,
!
/
’
’
’

_[Cws)  Clu)\ -7

.. 0) (oo ---0)

.
‘e
-------------------------------------------

shared parameters

across words

index for w;_»

index for w;,_;
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Neural Language Model

« Can potentially generalize to contexts not seen in training set

> Example: P(“eating ”| “the ”, “cat ”, “is ”)

7 1

> Imagine 4-gram [“the ", “cat”, “is ", " eating " ] is not in training

7 (1 3

corpus, but [“the ", “dog 7, “is ", “eating "] is

> If the word representations of “ cat ” and “ dog ” are similar, then

the neural network will be able to generalize to the case of “ cat ”



Neural Language Model

» We know how to propagate gradients in such a network

i-th output = P(w, = i| context)

softmax
(eoo - [ X )
va(X)l // ,/ .
V4 7 most computatlon here
> let’s note the submatrix
connecting w;_;and the hidden ' | wh
layer as W,

» The gradient wrt C(w) for any w is " Clwa)  Clw)\__ -7

.........................................

shared parameters

n— 1 across words

— —I— index for w index for w index for w
VC(’LU)Z - E 1(wt—z:w) W’L va(x)l dex f t—n+1 dex fi 2 dex f o
1=1



Performance Evaluation

* In language modeling, a common evaluation metric is the
perplexity

> itis simply the exponential of the average negative log-
likelihood

« Evaluation on Brown Corpus

> n-gram model (Kneser-Ney smoothing): 321
> neural network language model: 276

> neural network + n-gram: 252



How About Generating Sentences!

Output

A man skiing down the snow
covered mountain with a dark
sky in the background.




How About Generating Sentences!

Input Output

A man skiing down the snow
covered mountain with a dark
sky in the background.

We want to model:

p(wy, wa, ..., wy) =

p(w1)p(wz|wr )p(ws|wi, w2)...p(wn w1, wa, ..., Wp—1)



Caption Generation with NLM

- a wooden table and chairs
a car is parked in arranged in a room .

the middle of nowhere .

a ferry boat on a marina
with a group of people .

of friends on the street .




Caption Generation with NLM

the two birds are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .

(can't count) (hallucination) (contradiction)



Caption Generation with NLM

o v
e eetut Y e 0 1T

the two bird§ are trying a giraffe is standing next a parked car while
to be seen in the water . to a fence in a field . driving down the road .
(can't count) (hallucination) (contradiction)

a woman and a bottle of wine
in a garden . (gender)

the handlebars are trying
to ride a bike rack .
(nonsensical)




Hierarchical Output Layer

« Example: [“the ", “dog 7, “and ”, “the ”, “cat”]

the p(" cat " | context) =
“dog " I 5
and
the ; "
\ R - " ..........



Hierarchical Output Layer

« Example: [“the ", “dog 7, “and ”, “the ”, “cat”]

=N
‘the " p(" cat " | context) = p(branch left at 1| context)
: x p(branch right at 2| context)
dog ’ ‘ V x p(branch right at 5| context)
“and”
i the "
;JI ————————

“dog" "“the" “and" “cat" “he” "have" “be” “oov "
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Hierarchical Output Layer

« Example: [“the ", “dog 7, “and ”, “the ”, “cat”]

1] the "
1] dog "
i and "

i the "

=

%

© 0O

p(" cat " | context) = (1-p(branch right at 1
x p(branch right at 2
V x p(branch right at 5

-
-
-
-
-
- "
-
-

context))
context)
context)

" dogll " the " " and” " ca't“ " he " " have " " be " " OOVII

24



Hierarchical Output Layer

« Example: [“the ", “dog 7, “and ”, “the ”, “cat”]

1 .
" the " p(" cat " | context) = (1 - sigm(b; + Vi.. h(x)))
: x sigm(b2 + Va. h(x))
dog _} ‘ V x sigm(bs + Vs.. h(x)
“and "
it the "
) N LT
¥
“dog" "“the" “and" “cat" “he” "“have" “be” “oov'’

25



Hierarchical Output Layer

» How to define the word hierarchy?

> can use a randomly generated tree
> can use existing linguistic resources, such as WordNet

> can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model Mnih and
Hinton, 2008

They report a speedup of 100x, without performance
decrease



Encoding Sentences via Recurrent
Neural Network

Sentence
Representation

1-of-K encoding of words

Recurrent Neural Network



Recurrent Neural Network

* Replace

Input at time h h h
Step t 11— 2> 3

| 1 1]
hy = Cb(Uht—l + Wx¢ + b) H

/0 =
X1 X5 X3

Nonlinearity  Hidden State at
previous time
step

» Can be viewed as a deep neural network with tied weights.






> h-t




- h-t

0 (Waixs + Whilhy_1 + Weiei—1 + by)
o) (Wwat + thht—l + chct—l + bf) 9




- h-t

0 (Waixs + Whilhy_1 + Weiei—1 + by)
o) (Wwat + thht—l + chct—l + bf) 9
fici 1 + 1; tanh (chxt + Whehe_1 + bc) 9



- h-t

o (Waeixs + Whihy 1 + Weicp—1 + by),

o (Wepxs + Whihy 1 +Weper 1+ by),
fici_1 + i tanh (Weexy + Wichi 1 +be),
0 (Weoxs + Wrohi 1 + Weoer +by),

o; tanh(c;).



Bidirectional RNNs

Bidirectional RNNs (Schuster and Paliwal, 1997)

FORWARD
STATES

B —

-

BACKWARI
STATES

t-1

L t+1

* Heavily used in language modeling.
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Sequence to Sequence Learning

Learned
Representation

Output Sequence

Encoder

Decoder

Input Sequence

RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)



Sequence to Sequence Models

» Natural language processing is concerned with tasks involving
language data

one to one one to many many to one many to many many to many

Andrej Karpathy. The Unreasonable

Effectiveness of Recurrent Neural Networks 9



Skip-Thought Model

| got back home <eos>

yo——30—30—30

got back home

[ <eos>

1
...... This was strange <eos>

30

<eos> This was strange

* Given a tuple (s;_1, S, S;+1) of contiguous sentences:
— the sentence s; is encoded using LSTM.
— the sentence s; attempts to reconstruct the previous
sentence and next sentence s, 1.

* The input is the sentence triplet:
— | got back home.
— | could see the cat on the steps.
— This was strange.



Skip-Thought Model

Generate Previous Sentence

A A A

U3 (% U1
Encoder
Wo Wo
Wl Wl /
— ——
I I I on Us Vg
(%] (%) U3 W3 Wy

Sentence Generate Forward Sentence



Learning Objective

* We are given a tuple (s;_1, s;, s;4-1) of contiguous sentences.

* Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

representation of

encoder \
logP(w},{|lwSy, hy) + ) logP(w)_;|wst, h;)
(\ J t J
Y Y
Forward sentence Previous sentence
I got back home <eos>
3030300

""" <eos> got back home

O »O »O »O >0 »0O »O 29, >

I
...... This was strange <eos>

| could see the cat on the steps } }

<eos> This was strange




Book 11K corpus

# of books | # of sentences | # of words | # of unique words

11,038 | 74,004,228 | 984,846,357 | 1,316,420

* Query sentence along with its nearest neighbor from 500K sentences
using cosine similarity:

— He ran his hand inside his coat, double-checking that the unopened
letter was still there.

— He slipped his hand between his coat and his shirt, where the folded
copies lay in a brown envelope.



Semantic Relatedness

 SemkEval 2014 Task 1: semantic relatedness SICK dataset:
Given two sentences, produce a score of how semantically
related these sentences are based on human generated
scores (1 to 5).

* The dataset comes with a predefined split of 4500 training
pairs, 500 development pairs and 4927 testing pairs.

* Using skip-thought vectors for each sentence, we simply train
a linear regression to predict semantic relatedness.

— For pair of sentences, we compute component-wise
features between pairs (e.g. |u-v]).



Semantic Relatedness

Method T p MSE

SemEval " llinois-LH [18] 0.7993 0.7538 0.3692

2014 sub- < UNAL-NLP [19] 0.8070 0.7489 0.3550

missions Meaning Factory [20] 0.8268 0.7721 0.3224
_ ECNU [21] 0.8414 = =

~ Mean vectors [22] 0.7577 0.6738 0.4557

Results DT-RNN [23] 0.7923 0.7319 0.3822

reported SDT-RNN [23] 0.7900 0.7304 0.3848

by Tai et. al.< LSTM [22] 0.8528 0.7911 0.2831

Bidirectional LSTM [22] 0.8567 0.7966 0.2736

. Dependency Tree-LSTM [22] 0.8676 0.8083 0.2532

" uni-skip 0.8477 0.7780 0.2872

P bi-skip 0.8405 0.7696  0.2995

Ours combine-skip 0.8584 0.7916 0.2687

. combine-skip+COCO 0.8655 0.7995 0.2561

* Our models outperform all previous systems from the SemEval
2014 competition. This is remarkable, given the simplicity of our
approach and the lack of feature engineering.



Semantic Relatedness

Sentence 1 Sentence 2 GT  pred
A little girl is looking at a woman in costume A young girl is looking at a woman in costume 4.7 4.5
A little girl is looking at a woman in costume The little girl is looking at a man in costume 3.8 4.0
A little girl is looking at a woman in costume A little girl in costume looks like a woman 2.9 35
A sea turtle 1s hunting for fish A sea turtle is hunting for food 4.5 4.5
A sea turtle is not hunting for fish A sea turtle is hunting for fish 34 3.8
A man is driving a car The car is being driven by a man > 4.9
There is no man driving the car A man is driving a car 3.6 3
A large duck is flying over a rocky stream A duck, which is large, is flying over a rocky stream 4.8 4.9
A large duck is flying over a rocky stream A large stream is full of rocks, ducks and flies 2.7 3l
A person is performing acrobatics on a motorcycle A person is performing tricks on a motorcycle 4.3 44
A person is performing tricks on a motorcycle The performer is tricking a person on a motorcycle 2.6 44
Someone is pouring ingredients into a pot Someone is adding ingredients to a pot 4.4 4.0
Nobody is pouring ingredients into a pot Someone is pouring ingredients into a pot S e 4.2
Someone is pouring ingredients into a pot A man is removing vegetables from a pot 24 3.6

* Example predictions from the SICK test set. GT is the ground
truth relatedness, scored between 1 and 5.

* The last few results: slight changes in sentences result in large
changes in relatedness that we are unable to score correctly.



Paraphrase Detection

* Microsoft Research Paraphrase Corpus: For two sentences one
must predict whether or not they are paraphrases.

Method Acc F1
Recursive [ feats [24] 73.2
Auto- RAE+DP [24] 72.6
encoders | RAE+feats [24] 74.2
_ RAE+DP+feats [24] 76.8 83.6
Best " FHS [25] 75.0 82.7
published ) PE 26] 76.1 827
results WDDP [27] 75.6 83.0
_ MTMETRICS [28] 774 84.1
(" uni-skip 73.0 81.9
Ours bi-skip 712 81.2
4 combine-skip 73.0 820
_ combine-skip + feats 75.8 83.0

The training set
contains 4076 sentence
pairs (2753 are positive)

The test set contains
1725 pairs (1147 are
positive).



Classification Benchmarks

e 5 datasets: movie review sentiment (MR), customer product
reviews (CR), subjectivity/objectivity classification (SUBIJ), opinion
polarity (MPQA) and question-type classification (TREC).

Method MR CR SUBJ MPQA TREC
Bag-of- NB-SVM [41] 794  81.8 93.2 86.3
words MNB [41] 79.0 80.0 93.6 86.3
cBoW [6] 772  79.9 91.3 86.4 87.3
Super- ~  GrConv [6] 76.3  81.3 89.5 84.5 88.4
iced RNN [6] 772 823 93.7 90.1 90.2
vised < BRNN [6] 823 826 942 90.3 91.0
CNN [4] 81.5 85.0 93.4 89.6 93.6
\- AdaSent [6] 83.1 86.3 95.5 93.3 92.4
Paragraph-vector [7] 74.8  78.1 90.5 74.2 91.8
(" uni-skip 75.5 793 92.1 86.9 91.4
bi-skip 739 719 92.5 83.3 89.4
Ours < combine-skip 76.5  80.1 93.6 87.1 92.2
combine-skip + NB 804  81.3 93.6 87.5




Midterm Review

 Polynomial curve fitting — generalization, overfitting

» Loss functions for regression
E[L] = / / (t — y(x)) *p(x, t)dxdt.
« Generalization / Overfitting

« Statistical Decision Theory



Midterm Review

 Bernoulli, Multinomial random variables (mean, variances)

« Multivariate Gaussian distribution (form, mean, covariance)

 Maximum likelihood estimation for these distributions.

e Linear basis function models / maximum likelihood and least
squares:

lnp(t|X, w, 8) = Zln/\/ oW B(xn), B) W ((I)T(I)>_1(I)Tt
ML =

MIQ

N
g )2+%lnﬁ—gln(2w).



Midterm Review

. Ridge
» Reqgularized least squares: regression

N ~1
% Z{tn —who(x,)} + %WTW W = ()\I + ‘I>T<I>> d't.
n=1

* Bias-variance decomposition.

High variance

Ju—
T

(=)

Low bias

« Gradient Descend, SGD, Parameter Update Rules



Neural Networks

» How neural networks predict f(x) given an input x:
- Forward propagation

- Types of units f(x)
- Capacity of neural networks (AND, OR, XOR)

» How to train neural nets:
- Loss function

- Backpropagation with gradient descent

» More recent techniques:
- Dropout

- Batch normalization X
- Unsupervised Pre-training



Neural Networks

SGD Training, cross entropy loss, ReLU activations
Classification with neural networks
Regularization, Dropout, Batchnorm

Forward Propagation and Backprop (computing
derivatives)



Conv Nets

« Convolutional networks leverage these ideas

Local connectivity
Parameter sharing
Convolution

Pooling / subsampling hidden units

vV V V VY V

Understanding Receptive Fields

* Local contrast normalization, rectification



Graphical Models

 Directed and Undirected Graphs

Definition
Factorization Properties

Markov Blanket / Conditional Independence Properties

vV V VYV VY

Gaussian Examples / Chain Graphs



RBMs

» Restricted Boltzmann Machines

Probably distribution, energy definition
Factorization Properties, Conditional probabilities
Maximum likelihood estimation (positive and negative phases)

Gradients estimation / derivation

vV V VYV VY V

Contrastive Divergence (CD) learning, Gibbs sampling



Deep Belief Networks / Autoencoders

 DBNSs, definition

Probably distribution, energy definition
Factorization Properties, Conditional probabilities
Greedy pretraining algorithm

Gradients estimation / derivation

Variational bound derivation

vV V V VY VY V

Autoencoders (variations, denoising, contrastive learning)



Language Modelling

* Neural Language Models
« RNNs, LSTMs definitions
« Sequence to Sequence



