10707
Deep Learning

Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

Deep Belief Networks

mailto:rsalakhu@cs.cmu.edu

Multilayer Neural Net

» Consider a network with L hidden layers.

- layer pre-activation for k>0
a(k)(x) — bk L W(k)h(k—l)(x)

- hidden layer activation

| - (2)
from 1 to L: w® g b

h(®) (x) = g(a® (x)) il
- output layer activation (k=L+1):

h(E+1) (x) = o(a D (x)) = f(x) (h(®(x) = x)

Learning Distributed Representations

» Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)

« Each layer learns “distributed representation”

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
> Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster

Inspiration from Visual Cortex

Categorical judgments,
decision making Simple visual forms
; edges, cormners

To spinal cord
——"160-220 ms

er muscle
0-260 ms

[picture from Simon Thorpe]

Success Story. Speech Recognition

Word error rate on Switchboard

100%a

10%

4%

2%

1%

According to Microsoft’s
speech group:

Using DL

1990

v

2000 2010

Success Story: Image Recognition

* Deep Convolutional Nets for Vision (Supervised)

S Ya
container ship _motor scooter

mite container ship motor scooter pard

black widow lifeboat go-kart jaguar
cockroach amphibian moped cheetah
tick fireboat b [snow leopard

P24 P
- o7
s\ L
s
X

30” | ’ “* I . starfish drilling platform ;:Ifc:r: Egyptian cat
1.2 million training images :

grilie _ musnroom cherry adagascar cat

1000 classes " orle proom | raph [T spler monkey

pickup jelly fungus elderberry titi

beach wagon gill fungus |ffordshire bullterrier indri

fire engine || dead-man's-fingers currant howler monkey

Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
> saturated units block gradient

propagation

*This is a well known problem in
recurrent neural networks

Why Training is Hard

« Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

« Might be in a high variance / low bias situation

~n
*

@ ¢

possible f

possible f

low variance/

high bias good trade-off

Why Training is Hard

« First hypothesis (underfitting): better optimize

> Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

« Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

> Stochastic drop-out training

« For many large-scale practical problems, you will need to use both:
better optimization and better regularization!

Unsupervised Pre-training

* Initialize hidden layers using unsupervised learning

> Force network to represent latent structure of input distribution
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Encourage hidden layers to encode that structure

Unsupervised Pre-training

* Initialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Hence we expect less overfitting

Pre-training

» We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

> Fix the parameters of previous hidden layers

> Previous layers viewed as feature extraction

Pre-training
» Unsupervsed Pre-training

> first layer: find hidden unit features that are more common in
training inputs than in random inputs

> second layer: find combinations of hidden unit features that are
more common than random hidden unit features

> third layer: find combinations of combinations of ...

 Pre-training initializes the parameters in a region such that the
near local optima overfit less the data

Fine-tuning

» Once all layers are pre-trained

> add output layer
> train the whole network using
supervised learning

« Supervised learning is performed as
In a regular network

> forward propagation,
backpropagation and update

« We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative

Stacking RBMs, Autoencoders

« Stacked Restricted Boltzmann Machines:

> Hinton, Teh and Osindero suggested this procedure with RBMs,:
A fast learning algorithm for deep belief nets.

> To recognize shapes, first learn to generate images. Hinton,
2006.

« Stacked autoencoders, sparse-coding models, etc.

> Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders)
> Ranzato, Poultney, Chopra and LeCun (stacked sparse coding

models)

* Lots of others started stacking models together.

Example

« Datasets generated with varying number of factors of variations

Variations on MNIST Tall or wide?

MNIST-rotation E.Eu
MNIST-random- E g‘ﬂ-lsh_.

background
Convex shape or not?
. b
r-
1y \

An Empirical Evaluation of Deep Architectures on Problems with Many Factors 16
of Variation, Larochelle, Erhan, Courville, Bergstra and Bengio, 2007

MNIST-image-
background

MNIST-
background-
rotation

Impact of Initialization

Network MNIST-small MNIST-rotation

Type Depth || classif. test error || classif. test error
Nenral netwanrk 1 4.14 % + 0.17 15.22 % +0.31
2 4.03 % + 0.17 10.63 % +0.27
Deep net 3 4.24 % +0.18 11.98 % +0.28
4 4.47 % +0.18 11.73 % +0.29
1 3.87 % +0.17 11.43% + 0.28
Deep net + 2 3.38 % < 0.16 0.88 % + 0.26
autoencoder 3 3.37 % + 0.16 9.22 % +0.25
4 3.39 % +0.16 9.20 % +0.25
T~ i 1 3.17 % + 0.15 10.47 % +0.27
Deep net + 2 274 % +0.14 0.54 % + 026
RBM 3 2.71 % +0.14 8.80 % +0.25
4 2.72 % +0.14 8.83 % +0.24

17

Test error

74— 1-layer denoising AE

Impact of Pretraining

==1-layer RBM

—e—1 layers w/o pre-training

Number of hidden units

AR R
10’ 10° 10°

Test error

= =2-layer DBN
—2-layer SDAE

[|=—e=—2la

1 i
10’

yers w/o pre-training

10°
Number of hidden units

Test error

- =3-layer DBN

7 | ——3-layer SDAE

—&—3 layers w/o pre-training

1 Lol ;
10 10°

10°

Number of hidden units

Acts as a regularizer: overfits less with large
capacity, underfits with small capacity

18

Performance on Different Datasets

Stacked Stacked Stacked
Autoencoders RBMS Denoising Autoencoders

SAA-3 DBN-3 SdA-3 (v

)
3.46+£0.16 | 3.11£0.15 | 2.80+0.14 (10%)
10.30+£0.27 | 10.30+0.27 | 10.29£0.27 (10%)
11.2840.28 | 6.7310.22 | 10.38+0.27 (40%)
23.00£0.37 | 16.31+0.32 | 16.68+0.33 (25%)
(25%)
(10%)
(25%)
(10%)

51.93+0.44 47.394+0.44 | 44.49+0.44 (25%
2.414+0.13 2.60£0.14 1.994+0.12 (10%
24.05+0.37 22.504+0.37 | 21.59+0.36 (25%
18.41+0.34 | 18.63+0.34 | 19.06+0.34 (10%

Extracting and Composing Robust Features with Denoising Autoencoders,
Vincent, Larochelle, Bengio and Manzagol, 2008.

Deep Autoencoder

* Pre-training can be used to initialize a deep autoencoder

| | i Decoder § =
Pre-training initializes the . ' ’
.. . . § y 4 T0p§ | i
optimization problem ina 21 mwm |

T Wf+ss

2000

region with better local optima | I 20 _ |
of the training objective | o

Each RBM used to initialize &= ———
parameters both in encoder :

and decoder (“unrolling”)

T
W, +eq

1000

W§+86
T

T WI+£5
[s0]
T W,+ey

[500]

%
Wi+es

1000
7Y

W, +e,

2000

Better optimization algorithms
can also help: Deep learning
via Hessian-free optimization.
Martens, 2010

Pretraining Unrolling

TW1+81

Fine—tuning

20

Deep Belief Network

Low-level features:
Edges

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)

Deep Belief Network

Internal representations capture
u higher-order statistical structure

Higher-level features:
‘ Combination of edges

|) Low-level features:
Edges

4,
X

/A A

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)

Deep Belief Network

Visible Layer VvV)

Deep Belief Network

» Deep Belief Networks:

> it is a generative model that mixes
undirected and directed connections
between variables

> top 2 layers’ distribution p(h(?), h(3))
is an RBM!

> other layers form a Bayesian network
with conditional distributions:

P(h§1) = 1|h®)) = sigm(bM) + W(Q)Th(2))

p(z; = 1/h(M) = sigm(b(®) 4 W(l)Th(l))

> This is not a feed-forward neural network o4

Deep Belief Network

Deep Belief Network > top 2 layers’ distribution p(h(?), h(3))
iIs an RBM

> RBM .

> other layers form a Bayesian
network with conditional
distributions:

> "B p(h{Y = 1In®) = sigm(b® + W) 'h®)
Network plz; = 1\h(1)) — sigm(b(o) + W(l)Th(D)

Deep Belief Network

 The joint distribution of a DBN is as follows

p(x,h() h) 1) = p(h® h®)) p(hM|h?)) p(x[hD)
where

p(h® h®)) = exp (h<2>TW<3>h<3> L b@ h®@ o b<3>Th<3>) /7
1
p(hD[h®) = [T, p(h{"[h®)

p(x/hM)) =T, p(a; D)

 As in a deep feed-forward network, training a DBN is hard

Layer-wise Pretraining

 This is where the RBM stacking procedure comes from:
> idea: improve prior on last layer by adding another hidden layer

p(h™, h®)) = p(h™W b)) 37y o) p(h®), h®))

Concavity

log(}_; wi a;) >), w;log(a;)

(where Y w; =1 and w; > 0)

log(wy a1 + ws as)

wy log(ay) + ws log(as):

-3 _ _ L . . 28

Variational Bound

- For any model p(x, h!)) with latent variables h(1) we can write:

log p(x)

|
)
og
[
=y
=
=
»
< |
= |
=l =
w| =
\/

1V
Q.
=~
&
o
aQ
7\
= =
= |
==
E|Z
N—

= > q(hW[x)logp(x,h)
h(1)

~ 3" 4(hDx) log g(h M |x)
h(1)

where ¢(h(D|x) is any approximation to p(h(l)]X)

Variational Bound

e This is called a variational bound

logp(x) > » q(h'V[x)logp(x,h")
h(1)

~ 3" 4(hDx) log (b x)
h(1)

> if ¢(hW|x) is equal to the true conditional p(h(!)|x), then we
have an equality — the bound is tight!
> the more ¢(h(V)|x) is different from p(h(M)|x)the less tight the

bound is.

Variational Bound

e This is called a variational bound

logp(x) > Y qhM|x)logp(x,h)
h(1)

~ 3" 4(hDx) log (b x)
h(1)

> In fact, difference between the left and right terms is the KL

divergence between ¢(h(!)|x) and p(h(!)|x):

hD|x
KL(qllp) = > ¢(h™Mx) log (nguixi)

Variational Bound

e This is called a variational bound

logp(x) > > q(h}x) (logp(x|h®) + log p(h™)))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

> for a single hidden layer DBN (i.e. an RBM), both the likelihood
p(x/h})) and the prior p(h(1)) depend on the parameters of the

first layer.

» we can now improve the model by building a better prior p(h(l))

Variational Bound

adding 2nd layer means
 This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

* When adding a second layer, we model p(h(l)) using a separate
set of parameters

> they are the parameters of the RBM involving h(Y)and h(2)

> p(h(l)) is now the marginalization of the second hidden layer

p(hV) =37 p(h), b))

Variational Bound

adding 2nd layer means
* This is called a variational bound untying the parameters

S\
logp(x) > Zq(h(l)\x) <logp(x\h(1)) + logp(h(l)))
h(1)

~ 3" 4(hDx) log g(h M |x)
h(1)

[L : traini)
> we can train the parameters ¢ dyErwise pretraining g
the bound. This is equivalent| improves variational

other terms are constant: |OW€F bou nd y
~>_a(hW[x)log p(h™)
h(1)

» this is like training an RBM on data generated from q(h(l) x)!
34

Variational Bound

adding 2nd layer means
 This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

» for q(h(l)]X) we use the posterior of the first layer RBM. This is

equivalent to a feed-forward (sigmoidal) layer, followed by sampling

> by initializing the weights of the second layer RBM as the transpose
of the first layer weights, the bound is initially tight!
> a 2-layer DBN with tied weights is equivalent to a 1-layer RBM

Layer-wise Pretraining

 This is where the RBM stacking procedure comes from:
> idea: improve prior on last layer by adding another hidden layer

p(h™, h®)) = p(h™W b)) 37y o) p(h®), h®))

Deep Belief Network

Approximate Generative
Inference) 4 Process
Q(h3h?) P(h* h®)
v
AN
Q(hZ|h!) P(h'|h?)
v
t 1
P(v|h?)
hl
Q(h*[v) |

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h.

DBN Layer-wise Training

* Learn an RBM with an input
layer v=x and a hidden layer h.

* Treat inferred values

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

* Learn and freeze 2" layer ' b2 Q)
RBM. '

————————————

* Treat inferred values

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

P = = == == == o= = =

* Learn and freeze 2" layer

A
o Q')

* Proceed to the next layer.

Q(h'|v)

* Treat inferred values

* Proc

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

f o ==

* Learn and freeze 2" layer
RBIV'rLayerwise pretraining
improves variational
_lower bound

Deep Belief Networks

 This process of adding layers can be repeated recursively

> we obtain the greedy layer-wise pre-training procedure for neural

networks

* We now see that this procedure corresponds to maximizing a
bound on the likelihood of the data in a DBN
> in theory, if our approximation q(h(l) |x) is very far from the true
posterior, the bound might be very loose
> this only means we might not be improving the true likelihood

> we might still be extracting better features!

* Fine-tuning is done by the Up-Down algorithm
> Afast learning algorithm for deep belief nets. Hinton, Teh,

Osindero, 2006.

Supervised Learning with DBNs

* |If we have access to label information, we can train the joint

e Discriminative fine-tuning:

generative model by maximizing the joint log-likelihood of data
and labels

log P(y, V)

* Use DBN to initialize a
multilayer neural network.

e Maximize the conditional
distribution:

log P(y|v)

Sampling from DBNs

* To sample from the DBN model:
P(v,h' h* h*)= P(v|h')P(h'|h?)P(h?, h?)

* Sample h? using alternating Gibbs sampling from RBM.

* Sample lower layers using sigmoid belief network.

Gibbs chain

Learned Features

1%t-layer features 2n4_]ayer features

Learning Part-based Representation

, Faces
Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Lee et.al., ICML 2009

Learning Part-based Representation

Elephants Chairs

Lee et.al., ICML 2009

Learning Part-based Representation

Groups of parts.

Class-specific object
parts

Trained from multiple
classes (cars, faces,

motorbikes, airplanes).
Lee et.al., ICML 2009

DBNSs for Classification

1 2000 | |
T iw 1
iiiiii I 500IRBM Softmax Output
,,, | [10]
] 500 | | LA
I W, I I | |
I 500 | rRBM
** I | I |
I 500 | I | I |

Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

DBNs for Regression

Predicting the orientation of a face patch

Training Data
-22.07 3299 -41.15 6638 2749

"R R TR
< "

Training Data: 1000 face patches of Test Data: 1000 face patches of

30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.

DBNs for Regression

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

™.l W T ®2
LIRS 89

Additional Unlabeled Training Data: 12000 face patches from
30 training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22
GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33

Deep Autoencoders

Decoder

,,,,,,,,,,,,,,,,,,,,,

Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining Unrolling Fine—tuning

Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

20 R

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.

Information Retrieval

European Community 2-D LSA space

Interbank Markets Monetary/Economic

4

s Disasters and
v Accidents

Leading

oy
Economic i
Indicators UL, Fge
‘ RSP G X
8 ol overnmen
S A ‘:’w
égfr?ilrj]?;ts/ -ag}" Borrowings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the
training set.

