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Why do we have this recitation

* Suppose we observed a dataset D = {xl, e ajN}

e Data is random.
 However the “distribution” they came from is not random.
* What can we say about generalization to the test set?

e The distributions we discuss today will be used in GAN, VAE’s, etc



Bernoulli Distribution

e Consider a single binary random variable x & {O, 1}.For example, x
can describe the outcome of flipping a coin:
Coin flipping: heads =1, tails = 0.

* The probability of x=1 will be denoted by the parameter ., so that:

ple=1p)=p 0<p<l.

* The probability distribution, known as Bernoulli distribution, can be
written as:

Bern(z|p) = po(1—p)'~*
Elz] = pu
var(z] = p(l—p)



Parameter Estimation

* Suppose we observed a dataset D = {xl, ey xN}

* We can construct the likelihood function, which is a function of p.

ptr (1 — p)t o

:jz
=

p(Dlp) = || p(@nlp) =

e Equivalently, we can maximize the log of the likelihood function:

N
Inp(Dlu) = Zlnp Tp|p) = Z{a}nln,u—i—(l—xn)ln(l—,u)}

n=1

* Note that the likelihood function depends on the N observations x_only

through the sum E Ty Sufficient
— utricien
Statistic



Parameter Estimation

e Suppose we observed a dataset D = {z1,...,xn}

N
Inp(Dlu) = Zlnp Tplp) = Z{a}nln,u—i—(l—xn)ln(l—,u)}

n=1

* Setting the derivative of the log-likelihood function w.r.t . to zero, we

obtain:
1 N
HML = Nng_l Tn = 77

where m is the number of heads.



Binomial Distribution

e \WWe can also work out the distribution of the number m of observations
of x=1 (e.g. the number of heads).

* The probability of observing m heads given N coin flips and a
parameter (. is given by:

p(m heads|N,u) =

Bin(m|N, ) = (Z) um(L— p)N-m

* The mean and variance can be easily derived as:

E[m| = Z mBin(m|N, u) = Nu

m=0

var[m] = Y (m — E[m])*Bin(m|N, u) = Nu(1 — p)

m=0



Example

e Histogram plot of the Binomial distribution as a function of m for N=10
and p. = 0.25.
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Multinomial Variables

e Consider a random variable that can take on one of K possible mutually
exclusive states (e.g. roll of a dice).

e We will use so-called 1-of-K encoding scheme.

e If a random variable can take on K=6 states, and a particular observation
of the variable corresponds to the state x,=1, then x will be presented as:

1-of-K coding scheme: x = (0,0,1,0,0, O)T

* If we denote the probability of x =1 by the parameter p. , then the
distribution over x is defined as:

K

K
pxlp) = | | " VEipe >0 and > =1
k=1 k=1




Multinomial Variables

* Multinomial distribution can be viewed as a generalization of Bernoulli
distribution to more than two outcomes.

p(x|p) = Hu

* |t is easy to see that the distribution is normalized:

and
Elx|p| = Zp (x|p)x = (1, .., pg)" = p



Beta Distribution

* We can define a distribution over p € [0, 1](e.g. it can be used a prior
over the parameter p of the Bernoulli distribution).

Beta(ula,b) = 552);(?) pa= (1 — )bt
Elul = a j— b
varly] = ab

(a+b)2(a+b+1)

where the gamma function is defined as:
o0
['(x) = / u*te v du.
0

and ensures that the Beta distribution is normalized.



Beta Distribution
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Dirichlet Distribution

* Consider a distribution over ., subject to constraints:

K
Vk:pr >0 and Y oy =1
H2 k=1

* The Dirichlet distribution is defined as:

Mlao) T
Dir(p|a) = . o1
73 (l’l’l ) F(al)r(aK)l];‘[l'UJk
K
M3 ao:zak
k=1

where a,,...,0 are the parameters of the
distribution, and I'(x) is the gamma function.

* The Dirichlet distribution is confined to a simplex as a consequence of
the constraints.



Dirichlet Distribution

* Plots of the Dirichlet distribution over three variables.

ap = 1071 ag = 10° ap = 10!



Gaussian Univariate Distribution

* In the case of a single variable x, the Gaussian distribution takes form:

N (|, o?) 1 1

N(z|p,0%) = WeXp {—ﬁ(x - M)Q}

A (27

which is governed by two parameters:

- W (mean)
- o2 (variance)

* The Gaussian distribution satisfies:
N (|, 02) > 0

/00 N (z|p,0?) dz =1

— OO



Multivariate Gaussian Distribution

e For a D-dimensional vector x, the Gaussian distribution takes form:

N(x|p,X) = (QW;D/Q |2‘11/2 exp {—%(X —p)tET (x - u)}

582‘ L
which is governed by two parameters:

- . is a D-dimensional mean vector.
— 2 isa D by D covariance matrix.

and |X| denotes the determinant of X.

T
> 1

* Note that the covariance matrix is a symmetric positive definite
matrix.



Central Limit Theorem

* The distribution of the sum of N i.i.d. random variables becomes
increasingly Gaussian as N grows.

e Consider N variables, each of which has a uniform distribution over the
interval [0,1].

e Let us look at the distribution over the mean:

r1+ X9+ .... + TN
N :

e As N increases, the distribution tends towards a Gaussian distribution.

3 ; 3




Moments of the Gaussian Distribution

* The expectation of x under the Gaussian distribution:

Bhd = (27

1 1 1 _

)D/2 21/2/6XP{§<XM)T2 1(XN)}XdX
1 1 1 re s

(27)D/2 21/2/65413{—5 > z}(z—|—u)dz

(G J
Y

The term in z in the factor (z+u )
will vanish by symmetry.

Elx| = p



Moments of the Gaussian Distribution

* The second order moments of the Gaussian distribution:

Exx'] = ppu' +3

* The covariance is given by:

cov|x| =K [(X — Elx|)(x IE[X])T} = X

Elx| =p

e Because the parameter matrix X governs the covariance of x under the
Gaussian distribution, it is called the covariance matrix.



Partitioned Gaussian Distribution

e Consider a D-dimensional Gaussian distribution: p(x) =N(x|p, %)

* Let us partition x into two disjoint subsets x_and x :
Xa K 23aa Eab
: (Xb> a (Hb) (Eba Ebb>

* In many situations, it will be more convenient to work with the precision
matrix (inverse of the covariance matrix):

_ Aaa Aoy
A=x"" A=
(Aba Abb)

* Note that A__is not given by the inverse of X .



Conditional Distribution

e It turns out that the conditional distribution is also a Gaussian

distribution:
p(Xa|Xb> — N(Xa|“a|b7 Za|b)

Covariance does not

P depend onx,.
Sap = Avy = Zaa — STy, S
Halp = 23a|b {Aaa“'a - Aab(Xb — Mb>}
= Mg~ A;;Aabb(b — )
= Mgt Eabzz;;l (X6 — tp)

\

Linear function
of X,



Marginal Distribution

e |t turns out that the marginal distribution is also a Gaussian distribution:

p(xa) = / P(%a, x5) dxs
— N(Xa‘“avzaa)

e For a marginal distribution, the mean and covariance are most simply
expressed in terms of partitioned covariance matrix.

Xa M Zaa Eab
() () (5 %)



Conditional and Marginal Distributions

Tp
—y p(zafos =0.7) A
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Maximum Likelihood Estimation

e Suppose we observed i.i.d data X = {x1,....,Xn}.

e We can construct the log-likelihood function, which is a function of
v and X:

ND N 1Y

Inp(Xp, £) =~ (2m) — =13 — = 3" (x — ) TS (x0 — o)

n=1

* Note that the likelihood function depends on the N data points only
though the following sums:

Sufficient Statistics

N N
g X, E ang



Maximum Likelihood Estimation

* To find a maximum likelihood estimate of the mean, we set the
derivative of the log-likelihood function to zero:

(9 N
@mpxmz =) ¥ =

n=1

and solve to obtain:

HvL = % an-

n=1
e Similarly, we can find the maximum likelihood estimate of X:

N
1
2ML = N Z(Xn — pair) (Xn — Hair) -

n=1



Maximum Likelihood Estimation

 Evaluating the expectation of the maximum likelihood estimates under

the true distribution, we obtain: Unbiased estimat
nplased estimate
y

Elpy] =

N —1
E[EML] = — 3 W

N Biased estimate

* Note that the maximum likelihood estimate of X is biased.

* We can correct the bias by defining a different estimator:

N
~ 1
=y 2 (Xn — ) (% — ) -

n=1



Mixture of Gaussians

e When modeling real-world data, Gaussian assumption may not be
appropriate.

* Consider the following example: Old Faithful Dataset

100 ; ; ; ; 100
80 | 20|
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1 2 3 4 5 6 1 2 3 4 5
Single Gaussian Mixture of two

Gaussians



Mixture of Gaussians

* We can combine simple models into a complex model by defining a
superposition of K Gaussian densities of the form:

K
p(x) =Y mN(x|py, Zi)

k=1 ‘ , p(z)y
1
Component
Mixing coefficient
K
Vk :m, >0 Z T = 1
k=1 K=3 X

* Note that each Gaussian component has its own mean p., and covariance

2, . The parameters t, are called mixing coefficients.

* More generally, mixture models can comprise linear combinations of
other distributions.



Mixture of Gaussians

e |llustration of a mixture of 3 Gaussians in a 2-dimensional space:

0.5

(a) Contours of constant density of each of the mixture components,
along with the mixing coefficients

K

(b) Contours of marginal probability density »(x) = > mN(x|s, i)
k=1

(c) A surface plot of the distribution p(x).



