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Why do we have this recitation

• Data is random. 

• Suppose we observed a dataset 

• What can we say about generalization to the test set?

• The distributions we discuss today will be used in GAN, VAE’s, etc

• However the “distribution” they came from is not random.



Bernoulli Distribution
• Consider a single binary random variable                          For example, x 

can describe the outcome of flipping a coin:                        

Coin flipping: heads = 1, tails = 0.                         

• The probability of x=1 will be denoted by the parameter µ, so that:

• The probability distribution, known as Bernoulli distribution,  can be 

written as:



Parameter Estimation 

• We can construct the likelihood function, which is a function of µ. 

• Suppose we observed a dataset 

• Equivalently, we can maximize the log of the likelihood function: 

• Note that the likelihood function depends on the N observations x
n
 only 

through the sum   
Sufficient 
Statistic



Parameter Estimation 
• Suppose we observed a dataset 

• Setting the derivative of the log-likelihood function w.r.t µ to zero, we 

obtain:

where m is the number of heads. 



Binomial Distribution 
• We can also work out the distribution of the number m of observations 

of x=1 (e.g. the number of heads). 

• The probability of observing m heads given N coin flips and a 

parameter µ is given by:  

• The mean and variance can be easily derived as: 



Example
• Histogram plot of the Binomial distribution as a function of m for N=10 

and µ = 0.25. 



Multinomial Variables
• Consider a random variable that can take on one of K possible mutually 

exclusive states (e.g. roll of a dice). 

• We will use so-called 1-of-K encoding scheme. 

•  If a random variable can take on K=6 states, and a particular observation 

of the variable corresponds to the state x
3
=1, then x will be presented as:  

1-of-K coding scheme:

• If we denote the probability of x
k
=1  by the parameter µk, then the 

distribution over x is defined as:



Multinomial Variables
• Multinomial distribution can be viewed as a generalization of Bernoulli 

distribution to more than two outcomes.

• It is easy to see that the distribution is normalized: 

and



Beta Distribution 
• We can define a distribution over                      (e.g. it can be used a prior 

over the parameter µ of the Bernoulli distribution). 

where the gamma function is defined as: 

and ensures that the Beta distribution is normalized.  



Beta Distribution 



Dirichlet Distribution 
• Consider a distribution over µk, subject to constraints: 

• The Dirichlet distribution is defined as:

where α1,…,αk are the parameters of the 

distribution, and Γ(x) is the gamma function.  

• The Dirichlet distribution is confined to a simplex as a consequence of 

the constraints. 



Dirichlet Distribution 
• Plots of the Dirichlet distribution over three variables. 



Gaussian Univariate Distribution 
• In the case of a single variable x, the Gaussian distribution takes form:

which is governed by two parameters:

-  µ (mean)

-  σ2 (variance)

• The Gaussian distribution satisfies:



Multivariate Gaussian Distribution 
• For a D-dimensional vector x, the Gaussian distribution takes form:

which is governed by two parameters:

and |Σ| denotes the determinant of Σ. 

-  µ is a D-dimensional mean vector. 

-  Σ is a D by D covariance matrix.  

• Note that the covariance matrix is a symmetric positive definite 

matrix.   



Central Limit Theorem 
• The distribution of the sum of N i.i.d. random variables becomes 

increasingly Gaussian as N grows. 

• Consider N variables, each of which has a uniform distribution over the 

interval [0,1]. 

• Let us look at the distribution over the mean: 

• As N increases, the distribution tends towards a Gaussian distribution.  



Moments of the Gaussian Distribution
• The expectation of x under the Gaussian distribution: 

The term in z in the factor (z+µ ) 

will vanish by symmetry. 



Moments of the Gaussian Distribution
• The second order moments of the Gaussian distribution: 

• The covariance is given by:

• Because the parameter matrix Σ governs the covariance of x under the 

Gaussian distribution, it is called the covariance matrix. 



Partitioned Gaussian Distribution
• Consider a D-dimensional Gaussian distribution:

• Let us partition x into two disjoint subsets x
a
 and x

b
:

• In many situations, it will be more convenient to work with the precision 

matrix (inverse of the covariance matrix): 

• Note that Λaa is not given by the inverse of Σaa.



Conditional Distribution
• It turns out that the conditional distribution is also a Gaussian 

distribution: 

Linear function 
of x

b
.

Covariance does not 
depend on x

b
. 



Marginal Distribution
• It turns out that the marginal distribution is also a Gaussian distribution: 

• For a marginal distribution, the mean and covariance are most simply 

expressed in terms of partitioned covariance matrix.  



Conditional and Marginal Distributions



Maximum Likelihood Estimation 
• Suppose we observed i.i.d data

• We can construct the log-likelihood function, which is a function of 

µ and Σ:

• Note that the likelihood function depends on the N data points only 

though the following sums: 

Sufficient Statistics



Maximum Likelihood Estimation 
• To find a maximum likelihood estimate of the mean, we set the 

derivative of the log-likelihood function to zero: 

and solve to obtain:

• Similarly, we can find the maximum likelihood estimate of Σ:



Maximum Likelihood Estimation 
• Evaluating the expectation of the maximum likelihood estimates under 

the true distribution, we obtain: 

• We can correct the bias by defining a different estimator: 

Unbiased estimate

Biased estimate

• Note that the maximum likelihood estimate of Σ is biased. 



Mixture of Gaussians
•  When modeling real-world data, Gaussian assumption may not be 

appropriate. 

Single Gaussian Mixture of two 
Gaussians

• Consider the following example: Old Faithful Dataset



Mixture of Gaussians
• We can combine simple models into a complex model by defining a 

superposition of K Gaussian densities of the form:  

Component

Mixing coefficient

K=3

• Note that each Gaussian component has its own mean µk and covariance 

Σk. The parameters πk are called mixing coefficients. 

• More generally, mixture models can comprise linear combinations of 

other distributions. 



Mixture of Gaussians
• Illustration of a mixture of 3 Gaussians in a 2-dimensional space: 

(a) Contours of constant density of each of the mixture components, 

along with the mixing coefficients

(b) Contours of marginal probability density  

(c) A surface plot of the distribution p(x). 


