10707

 Deep Learning

 Deep Learning
 Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Restricted Boltzmann Machines

Neural Networks Online Course

- Disclaimer: Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks:
- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.
- We will use his material for some of the other lectures.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Unsupervised Learning

- Unsupervised learning: we only use the inputs $\mathbf{X}^{(t)}$ for learning
> automatically extract meaningful features for your data
> leverage the availability of unlabeled data
$>$ add a data-dependent regularizer to training $\left(-\log p\left(\mathbf{x}^{(t)}\right)\right.$
- We will consider 3 models for unsupervised learning that will form the basic building blocks for deeper models:
> Restricted Boltzmann Machines
> Autoencoders
> Sparse coding models

Restricted Boltzmann Machines

- Undirected bipartite graphical model
- Stochastic binary visible variables:

$$
\mathrm{x} \in\{\mathbf{0}, \mathbf{1}\}^{\mathrm{D}}
$$

- Stochastic binary hidden variables:

$$
\mathbf{h} \in\{0,1\}^{F}
$$

- The energy of the joint configuration:

$$
\begin{aligned}
E(\mathbf{x}, \mathbf{h}) & =-\mathbf{h}^{\top} \mathbf{W} \mathbf{x}-\mathbf{c}^{\top} \mathbf{x}-\mathbf{b}^{\top} \mathbf{h} \\
& =-\sum_{j} \sum_{k} W_{j, k} h_{j} x_{k}-\sum_{k} c_{k} x_{k}-\sum_{j} b_{j} h_{j}
\end{aligned}
$$

Markov random fields, Boltzmann machines, log-linear models.

Restricted Boltzmann Machines

Markov random fields, Boltzmann machines, log-linear models.

Restricted Boltzmann Machines

Factors

- The notation based on an energy function is simply an alternative to the representation as the product of factors

Restricted Boltzmann Machines

$$
p(\mathbf{x}, \mathbf{h})=\frac{1}{Z} \overbrace{\prod_{j} \prod_{k} \exp \left(W_{j, k} h_{j} x_{k}\right)}^{\text {Pair-wise factors }}
$$

- The scalar visualization is more informative of the structure within the vectors.

Factor Graph View

Inference

hidden variables

Bipartite
Structure

Restricted: No interaction between hidden variables

1

Inferring the distribution over the hidden variables is easy:

$$
p(\mathbf{h} \mid \mathbf{x})=\prod p\left(h_{j} \mid \mathbf{x}\right)
$$

Factorizes: Easy to compute
Similarly:

$$
p(\mathbf{x} \mid \mathbf{h})=\prod_{k} p\left(x_{k} \mid \mathbf{h}\right)
$$

Markov random fields, Boltzmann machines, log-linear models.

Inference

- Conditional Distributions:

$$
\begin{aligned}
& p(\mathbf{h} \mid \mathbf{x})=\prod_{j} p\left(h_{j} \mid \mathbf{x}\right) \\
& p\left(h_{j}=1 \mid \mathbf{x}\right)=\frac{1}{1+\exp \left(-\left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right)\right)} \\
& =\operatorname{sigm}\left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right) \\
& p(\mathbf{x} \mid \mathbf{h})=\prod_{k} p\left(x_{k} \mid \mathbf{h}\right) \\
& p\left(x_{k}=1 \mid \mathbf{h}\right)=\frac{1}{1+\operatorname{exh} \text { row of } \mathbf{W}} \\
& =\operatorname{sigm}\left(c_{k}+\mathbf{h}^{\top} \mathbf{W}_{\cdot k}\right) \\
& \underbrace{}_{\mathbf{k}^{\text {th }}} \text { column of } \mathbf{W}^{10}
\end{aligned}
$$

Local Markov Property

- In general, we have the following property:

$$
\begin{aligned}
p\left(z_{i} \mid z_{1}, \ldots, z_{V}\right) & =p\left(z_{i} \mid \operatorname{Ne}\left(z_{i}\right)\right) \\
& =\frac{p\left(z_{i}, \operatorname{Ne}\left(z_{i}\right)\right)}{\sum_{z_{i}^{\prime}} p\left(z_{i}^{\prime}, \operatorname{Ne}\left(z_{i}\right)\right)} \\
& =\frac{\prod_{f \text { involving } z_{i}}^{\text {and any } \operatorname{Ne}\left(z_{i}\right)} \Psi_{f}\left(z_{i}, \operatorname{Ne}\left(z_{i}\right)\right)}{\sum_{z_{i}^{\prime}} \prod_{\substack{f \text { involving } z_{i} \\
\text { and any Ne }\left(z_{i}\right)}} \Psi_{f}\left(z_{i}^{\prime}, \operatorname{Ne}\left(z_{i}\right)\right)}
\end{aligned}
$$

$>z_{i}$ is any variable in the Markov network (x_{k} or h_{j} in an RBM)
$>\mathrm{Ne}\left(z_{i}\right)$ are the neighbors of z_{i} in the Markov network

Free Energy

- What about computing marginal $p(\mathbf{x})$?

$$
\begin{aligned}
p(\mathbf{x})= & \sum_{\mathbf{h} \in\{0,1\}^{H}} p(\mathbf{x}, \mathbf{h})=\sum_{\mathbf{h} \in\{0,1\}^{H}} \exp (-E(\mathbf{x}, \mathbf{h})) / Z \\
= & \exp \left(\mathbf{c}^{\top} \mathbf{x}+\sum_{j=1}^{H} \log \left(1+\exp \left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right)\right)\right) / Z \\
= & \exp (-F(\mathbf{x})) / Z \\
& \quad \text { Free Energy } \\
& \quad \text { (Q囚Q囚Q} \mathbf{h} \\
&
\end{aligned}
$$

Free Energy

- What about computing marginal $p(\mathbf{x})$?

$$
\begin{aligned}
p(\mathbf{x}) & =\sum_{\mathbf{h} \in\{0,1\}\}^{H}} \exp \left(\mathbf{h}^{\top} \mathbf{W} \mathbf{x}+\mathbf{c}^{\top} \mathbf{x}+\mathbf{b}^{\top} \mathbf{h}\right) / Z \\
& =\exp \left(\mathbf{c}^{\top} \mathbf{x}\right) \sum_{h_{1} \in\{0,1\}} \cdots \sum_{h_{H} \in\{0,1\}} \exp \left(\sum_{j} h_{j} \mathbf{W}_{j \cdot \mathbf{x}}+b_{j} h_{j}\right) / Z \\
& =\exp \left(\mathbf{c}^{\top} \mathbf{x}\right)\left(\sum_{h_{1} \in\{0,1\}} \exp \left(h_{1} \mathbf{W}_{1} \cdot \mathbf{x}+b_{1} h_{1}\right)\right) \cdots\left(\sum_{h_{H} \in\{0,1\}} \exp \left(h_{H} \mathbf{W}_{H} \cdot \mathbf{x}+b_{H} h_{H}\right)\right) / Z \\
& =\exp \left(\mathbf{c}^{\top} \mathbf{x}\right)\left(1+\exp \left(b_{1}+\mathbf{W}_{1 \cdot \mathbf{x})}\right) \ldots\left(1+\exp \left(b_{H}+\mathbf{W}_{H} \cdot \mathbf{x}\right)\right) / Z\right. \\
& =\exp \left(\mathbf{c}^{\top} \mathbf{x}\right) \exp \left(\log \left(1+\exp \left(b_{1}+\mathbf{W}_{1} \cdot \mathbf{x}\right)\right)\right) \ldots \exp \left(\operatorname { l o g } \left(1+\exp \left(b_{H}+\mathbf{W}_{H \cdot \mathbf{x}))) / Z}^{H}\right.\right.\right. \\
& =\exp \left(\mathbf{c}^{\top} \mathbf{x}+\sum_{j=1}^{H} \log \left(1+\exp \left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right)\right)\right) / Z \\
& \text { - Also known as Product of Experts model. }
\end{aligned}
$$

Free Energy

$$
\begin{aligned}
& p(\mathbf{x})=\exp \left(\mathbf{c}^{\top} \mathbf{x}+\sum_{j=1}^{H} \log \left(1+\exp \left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right)\right)\right) / Z \\
&=\exp \left(\mathbf{c}^{\top} \mathbf{x}+\sum_{j=1}^{H} \operatorname{softplus}\left(b_{j}+\mathbf{W}_{j} \cdot \mathbf{x}\right)\right) / Z \\
& \begin{array}{l}
\text { bias the probability } \\
\text { of each } \mathrm{x}_{\mathrm{i}}
\end{array} \begin{array}{l}
\text { bias of each } \\
\text { feature }
\end{array} \\
& \text { feature expected }
\end{aligned}
$$

Learning Features

Observed Data
Subset of 25,000 characters

New Image: $\quad p\left(h_{7}=1 \mid v\right)$

Learned W: "edges"
Subset of 1000 features

Logistic Function: Suitable for
modeling binary images
as $P(\mathbf{h} \mid \mathbf{v})=[0,0,0.82,0,0,0.99,0,0 \ldots]$

Model Learning

- Given a set of i.i.d. training examples we want to minimize the average negative loglikelihood (NLL):

$$
\frac{1}{T} \sum_{t} l\left(f\left(\mathbf{x}^{(t)}\right)\right)=\frac{1}{T} \sum_{t}-\log p\left(\mathbf{x}^{(t)}\right)
$$

Remember:

$$
p(\mathbf{x}, \mathbf{h})=\exp (-E(\mathbf{x}, \mathbf{h})) / Z
$$

- Derivative of the negative log-likelihood objective:

$$
\frac{\partial-\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta}=\mathrm{E}_{\mathbf{h}}[\underbrace{\left.\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right]}_{\begin{array}{c}
\text { Positive Phase }
\end{array}}-\underbrace{\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right]}_{\begin{array}{c}
\text { Negative Phase } \\
\text { Hard to compute }
\end{array}}
$$

Model Learning

hidden variables

$$
\begin{aligned}
& p(\mathbf{x}, \mathbf{h})=\exp (-E(\mathbf{x}, \mathbf{h})) / Z \\
& p(\mathbf{h} \mid \mathbf{x})=\prod_{j} p\left(h_{j} \mid \mathbf{x}\right)
\end{aligned}
$$

- Derivative of the negative loglikelihood objective:

$$
\frac{\partial-\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta}=\mathrm{E}_{\mathbf{h}} \underbrace{\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right]}_{\substack{\text { Data-Dependent } \\ \text { Expectations w.r.t } \mathrm{P}(\mathrm{~h} \mid \mathrm{x})}}-\underbrace{\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right]}_{\substack{\text { Model: Expectation } \\ \text { w.r.t joint } \mathrm{P}(\mathrm{x}, \mathrm{~h})}}
$$

- Second term: intractable due to exponential number of configurations.

Contrastive Divergence

- Key idea behind Contrastive Divergence:
> Replace the expectation by a point estimate at $\tilde{\mathbf{X}}$
> Obtain the point $\tilde{\mathbf{X}}$ by Gibbs sampling
> Start sampling chain at $\mathbf{X}^{(t)}$

Hinton, Neural Computation, 2002

Contrastive Divergence

- Intuition: $\frac{\partial-\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta}=\mathrm{E}_{\mathbf{h}}\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right]-\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right]$
$\mathrm{E}_{\mathbf{h}}\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right] \approx \frac{\partial E\left(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)}\right)}{\partial \theta} \quad \mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$

Contrastive Divergence

- Intuition: $\frac{\partial-\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta}=\mathrm{E}_{\mathbf{h}}\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right]-\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right]$
$\mathrm{E}_{\mathbf{h}}\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right] \approx \frac{\partial E\left(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)}\right)}{\partial \theta} \quad \mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$
Remember:
$p(\mathbf{x}, \mathbf{h})=\exp (-E(\mathbf{x}, \mathbf{h})) / Z$
$p(\mathbf{x}, \mathbf{h})$

Deriving Learning Rule

- Let us look at derivative of $\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}$ for $\theta=W_{j k}$

$$
\begin{aligned}
\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{j k}} & =\frac{\partial}{\partial W_{j k}}\left(-\sum_{j k} W_{j k} h_{j} x_{k}-\sum_{k} c_{k} x_{k}-\sum_{j} b_{j} h_{j}\right) \\
& =-\frac{\partial}{\partial W_{j k}} \sum_{j k} W_{j k} h_{j} x_{k} \\
& =-h_{j} x_{k} \quad \begin{array}{l}
\text { Remember: } \\
E(\mathbf{x}, \mathbf{h})=-\mathbf{h}^{\top} \mathbf{W} \mathbf{x}-\mathbf{c}^{\top} \mathbf{x}-\mathbf{b}^{\top} \mathbf{h}
\end{array}
\end{aligned}
$$

- Hence:

$$
\nabla_{\mathbf{w}} E(\mathbf{x}, \mathbf{h})=-\mathbf{h} \mathbf{x}^{\top}
$$

Deriving Learning Rule

- Let us now derive $\mathbb{E}_{\mathbf{h}}\left[\left.\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right\rvert\, \mathbf{x}\right]$

$$
\begin{aligned}
\mathbb{E}_{\mathbf{h}}\left[\left.\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{j k}} \right\rvert\, \mathbf{x}\right] & =\mathbb{E}_{\mathbf{h}}\left[-h_{j} x_{k} \mid \mathbf{x}\right]=\sum_{h_{j} \in\{0,1\}}-h_{j} x_{k} p\left(h_{j} \mid \mathbf{x}\right) \\
& =-x_{k} p\left(h_{j}=1 \mid \mathbf{x}\right)
\end{aligned}
$$

- Hence:

$$
\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) \mid \mathbf{x}\right]=-\mathbf{h}(\mathbf{x}) \mathbf{x}^{\top}
$$

$$
\begin{aligned}
\mathbf{h}(\mathbf{x}) & \stackrel{\operatorname{def}}{=}\binom{p\left(h_{1}=1 \mid \mathbf{x}\right)}{p\left(h_{H} \cdots \mid \mathbf{x}\right)} \\
& =\operatorname{sigm}(\mathbf{b}+\mathbf{W} \mathbf{x})
\end{aligned}
$$

Deriving Learning Rule

- Hence:

$$
\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{w}} E(\mathbf{x}, \mathbf{h}) \mid \mathbf{x}\right]=-\mathbf{h}(\mathbf{x}) \mathbf{x}^{\top}
$$

$$
\begin{aligned}
\mathbf{h}(\mathbf{x}) & \stackrel{\operatorname{def}}{=}\binom{p\left(h_{1}=1 \mid \mathbf{x}\right)}{p\left(h_{H}=1 \mid \mathbf{x}\right)} \\
& =\operatorname{sigm}(\mathbf{b}+\mathbf{W} \mathbf{x})
\end{aligned}
$$

Difficult to compute:
exponentially many
Configurations.

Approximate Learning

- An approximation to the gradient of the log-likelihood objective:

$$
\frac{\partial-\log p\left(\mathbf{x}^{(t)}\right)}{\partial \theta}=\mathrm{E}_{\mathbf{h}}\left[\left.\frac{\partial E\left(\mathbf{x}^{(t)}, \mathbf{h}\right)}{\partial \theta} \right\rvert\, \mathbf{x}^{(t)}\right]-\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta}\right]
$$

- Replace the average over all possible input configurations by samples.
- Run MCMC chain (Gibbs sampling) starting from the observed examples.
- Initialize $x^{0}=x$
- Sample h^{0} from $P\left(h \mid x^{0}\right)$
- For $\mathrm{t}=1: \mathrm{T}$
- Sample x^{t} from $P\left(x \mid h^{t-1}\right)$
- Sample h^{t} from $P\left(h \mid x^{t}\right)$

Approximate ML Learning for RBMs

Run Markov chain (alternating Gibbs Sampling):

Contrastive Divergence

Run Markov chain (alternating Gibbs Sampling):

- K is typically set to 1 .

$$
\begin{aligned}
& p(\mathbf{h} \mid \mathbf{x})=\prod_{j} p\left(h_{j} \mid \mathbf{x}\right) \\
& p(\mathbf{x} \mid \mathbf{h})=\prod_{k} p\left(x_{k} \mid \mathbf{h}\right)
\end{aligned}
$$

Deriving Learning Rule

$$
\begin{gathered}
\mathbf{x}^{(t)} \tilde{\mathbf{x}} \quad \theta=\mathbf{W} \\
\mathbf{W} \Longleftarrow \mathbf{W}-\alpha\left(\nabla_{\mathbf{W}}-\log p\left(\mathbf{x}^{(t)}\right)\right) \\
\Longleftarrow \mathbf{W}-\alpha\left(\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}} E\left(\mathbf{x}^{(t)}, \mathbf{h}\right) \mid \mathbf{x}^{(t)}\right]-\mathrm{E}_{\mathbf{x}, \mathbf{h}}\left[\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h})\right]\right) \\
\Longleftarrow \mathbf{W}-\alpha\left(\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}} E\left(\mathbf{x}^{(t)}, \mathbf{h}\right) \mid \mathbf{x}^{(t)}\right]-\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \mid \tilde{\mathbf{x}}\right]\right) \\
\Longleftarrow \mathbf{W}+\alpha\left(\mathbf{h}\left(\mathbf{x}^{(t)}\right) \mathbf{x}^{(t)^{\top}}-\mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top}\right) \\
\Longleftarrow \\
\text { Learning rate }
\end{gathered}
$$

CD-k Algorithm

- For each training example $\mathbf{x}^{(t)}$
> Generate a negative sample $\tilde{\mathbf{x}}$ using k steps of Gibbs sampling, starting at the data point $\mathbf{x}^{(t)}$
> Update model parameters:

$$
\begin{aligned}
\mathbf{W} & \Longleftarrow \mathbf{W}+\alpha\left(\mathbf{h}\left(\mathbf{x}^{(t)}\right) \mathbf{x}^{(t)^{\top}}-\mathbf{h}(\tilde{\mathbf{x}}) \tilde{\mathbf{x}}^{\top}\right) \\
\mathbf{b} & \Longleftarrow \mathbf{b}+\alpha\left(\mathbf{h}\left(\mathbf{x}^{(t)}\right)-\mathbf{h}(\tilde{\mathbf{x}})\right) \\
\mathbf{c} & \Longleftarrow \mathbf{c}+\alpha\left(\mathbf{x}^{(t)}-\tilde{\mathbf{x}}\right)
\end{aligned}
$$

> Go back to 1 until stopping criteria

CD-k Algorithm

- CD-k: contrastive divergence with k iterations of Gibbs sampling
- In general, the bigger k is, the less biased the estimate of the gradient will be
- In practice, k=1 works well for learning good features and for pre-training

Persistent CD: Stochastic ML Estimator

- Idea: instead of initializing the chain to $\mathbf{X}^{(t)}$, initialize the chain to the negative sample of the last iteration

Tieleman, ICML, 2008°

Example: MNIST

- MNIST dataset:

| 3 | 8 | 6 | 9 | 6 | 4 | 5 | 3 | 8 | 4 | 5 | 2 | 3 | 8 | 4 | 8 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | 5 | 0 | 5 | 9 | 7 | 4 | 1 | 0 | 3 | 0 | 6 | 2 | 9 | 9 | 4 |
| 1 | 3 | 6 | 8 | 0 | 7 | 7 | 6 | 8 | 9 | 0 | 3 | 8 | 3 | 7 | 7 |
| 8 | 4 | 4 | 1 | 2 | 9 | 8 | 1 | 1 | 0 | 6 | 6 | 5 | 0 | 1 | 1 |
| 7 | 2 | 7 | 3 | 1 | 4 | 0 | 5 | 0 | 6 | 8 | 7 | 6 | 8 | 9 | 9 |
| 4 | 0 | 6 | 1 | 9 | 2 | 6 | 3 | 1 | 4 | 4 | 5 | 6 | 6 | 1 | 7 |
| 2 | 8 | 6 | 9 | 7 | 0 | 9 | 1 | 6 | 2 | 8 | 3 | 6 | 4 | 9 | 5 |
| 8 | 6 | 8 | 7 | 8 | 8 | 6 | 9 | 1 | 7 | 6 | 0 | 9 | 6 | 1 | 0 |

Learned Features

- MNIST dataset:

	7			$=$.		*	I				-	1	-					7
	(1)	,		A			,	.			1	\bigcirc					-	,	-
	4		.	c	-		-	c		,					.	-		,	-
\cdots	-	,		.	V		-	-			,		a.			(P	-	-
-			A	,			-		$)$		*	,				X	1	,	m
	-	1		\checkmark	t		I'			c	7				8	,			-
,	.	,		.	0		,				-					,			${ }^{2}$
,			-	at			$=$	-			-			c				-	

(Larochelle et al., JMLR 2̌009)

Tricks and Debugging

- Unfortunately, it is not easy to debug training RBMs (e.g. using gradient checks)
- We instead rely on approximate "tricks"
$>$ we plot the average stochastic reconstruction $\left\|\mathbf{x}^{(t)}-\tilde{\mathbf{x}}\right\|^{2}$ and see if it tends to decrease
> for inputs that correspond to image, we visualize the connection coming into each hidden unit as if it was an image
$>$ gives an idea of the type of visual feature each hidden unit detects
> we can also try to approximate the partition function Z and see whether the (approximated) NLL decreases
(Salakhutdinov, Murray, ICML 2008)

Gaussian Bernoulli RBMs

- Let x represent a real-valued (unbounded) input.
> add a quadratic term to the energy function

$$
E(\mathbf{x}, \mathbf{h})=-\mathbf{h}^{\top} \mathbf{W} \mathbf{x}-\mathbf{c}^{\top} \mathbf{x}-\mathbf{b}^{\top} \mathbf{h}+\frac{1}{2} \mathbf{x}^{\top} \mathbf{x}
$$

> In this case $p(\mathbf{x} \mid \mathbf{h})$ becomes a Gaussian distribution with mean $\boldsymbol{\mu}=\mathbf{c}+\mathbf{W}^{\top} \mathbf{h}$ and identity covariance matrix
$>$ recommend to normalize the training set by:

- subtracting the mean of each input
- dividing each input by the training set standard deviation
> should use a smaller learning rate than in the regular RBM

Gaussian Bernoulli RBMs

$$
P_{\text {Image }}^{\mathbf{V}} P_{\text {visible variables }}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp (\sum_{i=1}^{D} \sum_{j=1}^{F} W_{i j} h_{j} \frac{v_{i}}{\sigma_{i}}+\sum_{i=1}^{D} \frac{\left(v_{i}-b_{i}\right)^{2}}{2 \sigma_{i}^{2}}+\overbrace{\sum_{j=1}^{F} a_{j}}^{\text {Pair-wise }}
$$

Learned features (out of 10,000)
4 million unlabelled images

(Notation: vector x is replaced with v).

Gaussian Bernoulli RBMs

Learned features (out of 10,000)
4 million unlabelled images

		,					
		1			-		
	*				,		
\%				-			
$\stackrel{ }{ }$		-			-		

RBMs for Images

Gaussian-Bernoulli RBM:

Interpretation: Mixture of exponential number of Gaussians

$$
P_{\theta}(\mathbf{v})=\sum_{\mathbf{h}} P_{\theta}(\mathbf{v} \mid \mathbf{h}) P_{\theta}(\mathbf{h})
$$

where

$$
\begin{aligned}
P_{\theta}(\mathbf{h}) & =\int_{\mathbf{v}} P_{\theta}(\mathbf{v}, \mathbf{h}) d \mathbf{v} \quad \text { is an implicit prior, and } \\
P\left(v_{i}=x \mid \mathbf{h}\right) & =\frac{1}{\sqrt{2 \pi} \sigma_{i}} \exp \left(-\frac{\left(x-b_{i}-\sigma_{i} \sum_{j} W_{i j} h_{j}\right)^{2}}{2 \sigma_{i}^{2}}\right) \quad \text { Gaussian }
\end{aligned}
$$

RBMs for Word Counts

$$
\begin{aligned}
& \mathbf{h} \bigcirc \bigcirc \bigcirc \\
& \text { Pair-wise } \\
& \theta=\{W, a, b\} \\
& P_{\theta}\left(v_{i}^{k}=1 \mid \mathbf{h}\right)=\frac{\exp \left(b_{i}^{k}+\sum_{j=1}^{F} h_{j} W_{i j}^{k}\right)}{\sum_{q=1}^{K} \exp \left(b_{i}^{q}+\sum_{j=1}^{F} h_{j} W_{i j}^{q}\right)}
\end{aligned}
$$

Replicated Softmax Model: undirected topic model:

- Stochastic 1-of-K visible variables.
- Stochastic binary hidden variables $\mathbf{h} \in\{0,1\}^{F}$.
- Bipartite connections.
(Salakhutdinov \& Hinton, NIPS 2010, Srivastava \& Salakhutdinov, NIPS 2012)

RBMs for Word Counts

$$
\begin{aligned}
& \mathbf{h} \bigcirc \bigcirc \bigcirc \\
& \text { Pair-wise } \\
& \theta=\{W, a, b\} \\
& P_{\theta}\left(v_{i}^{k}=1 \mid \mathbf{h}\right)=\frac{\exp \left(b_{i}^{k}+\sum_{j=1}^{F} h_{j} W_{i j}^{k}\right)}{\sum_{q=1}^{K} \exp \left(b_{i}^{q}+\sum_{j=1}^{F} h_{j} W_{i j}^{q}\right)}
\end{aligned}
$$

REUTERS: :

1P Associated Press
Reuters dataset:
804,414 unlabeled
newswire stories
Bag-of-Words

Learned features: "topics"
russian
russia
moscow
yeltsin
soviet
clinton
house
president
bill
congress

computer	trade
system	country
product	import
software	world
develop	economy

stock wall street point dow

RBMs for Word Counts

One－step reconstruction from the Replicated Softmax model．

Input	Reconstruction
chocolate，cake	cake，chocolate，sweets，dessert，cupcake，food，sugar，cream，birthday
nyc	nyc，newyork，brooklyn，queens，gothamist，manhattan，subway，streetart
dog	dog，puppy，perro，dogs，pet，filmshots，tongue，pets，nose，animal
flower，high，花	flower，花，high，japan，sakura，日本，blossom，tokyo，lily，cherry
girl，rain，station，norway	norway，station，rain，girl，oslo，train，umbrella，wet，railway，weather
fun，life，children	children，fun，life，kids，child，playing，boys，kid，play，love
forest，blur	forest，blur，woods，motion，trees，movement，path，trail，green，focus
españa，agua，granada	españa，agua，spain，granada，water，andalucía，naturaleza，galicia，nieve

Collaborative Filtering

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j k} W_{i j}^{k} v_{i}^{k} h_{j}+\sum_{i k} b_{i}^{k} v_{i}^{k}+\sum_{j} a_{j} h_{j}\right)
$$

Binary hidden: user preferences

Multinomial visible: user ratings
Netflix dataset:
480,189 users
17,770 movies
Over 100 million ratings
DETFIOX

Learned features: "'genre"
Fahrenheit 9/11
Bowling for Columbine
The People vs. Larry Flynt
Canadian Bacon
La Dolce Vita

Friday the 13th
The Texas Chainsaw Massacre
Children of the Corn
Child's Play
The Return of Michael Myers

Independence Day
The Day After Tomorrow
Con Air
Men in Black II
Men in Black

Scary Movie
Naked Gun
Hot Shots!
American Pie
Police Academy

State-of-the-art performance on the Netflix dataset.
(Salakhutdinov, Mnih, Hinton, ICML 2 2007)

Different Data Modalities

- Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.

- It is easy to infer the states of the hidden variables:

$$
P_{\theta}(\mathbf{h} \mid \mathbf{v})=\prod_{j=1}^{F} P_{\theta}\left(h_{j} \mid \mathbf{v}\right)=\prod_{j=1}^{F} \frac{1}{1+\exp \left(-a_{j}-\sum_{i=1}^{D} W_{i j} v_{i}\right)}
$$

Speech

Learned first-layer bases

Lee et.al., NIPS'3 2009

Comparison of bases to phonemes

Product of Experts

The joint distribution is given by:

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j} W_{i j} v_{i} h_{j}+\sum_{i} b_{i} v_{i}+\sum_{j} a_{j} h_{j}\right)
$$

Marginalizing over hidden variables:

Product of Experts

$$
P_{\theta}(\mathbf{v})=\sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp \left(b_{i} v_{i}\right) \prod_{j}\left(1+\exp \left(a_{j}+\sum_{i} W_{i j} v_{i}\right)\right)
$$

government	clinton	bribery	mafia	stock
authority	house	corruption	business	wall
power	president	dishonesty	gang	street
empire	bill	corrupt	mob	point
federation	congress	fraud	insider	dow

Topics "government", "corruption" and "mafia" can combine to give very high probability to a word "Silvio Berlusconi".

Product of Experts

The joint distribution is given by:

$$
P_{\theta}(\mathbf{v}, \mathbf{h})=\frac{1}{\mathcal{Z}(\theta)} \exp \left(\sum_{i j} W_{i j} v_{i} h_{j}+\sum_{i} b_{i} v_{i}+\sum_{j} a_{j} h_{j}\right)
$$

$$
\begin{aligned}
& \text { Marginalizing } \\
& \qquad P_{\theta}(\mathbf{v})=\sum_{\mathbf{h}}
\end{aligned}
$$

duct of Experts
$\overbrace{\left.V_{i j} v_{i}\right)}$
"corruption" and to give very high "Silvio

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding, Deep models

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding, Deep models !

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding,

- Each parameter affects many regions, not just local.
- \# of regions grows (roughly)
exponentially in \# of parameters.

Boltzmann Machines

- The original Boltzmann machine has lateral connections in each layer

> when only one layer has lateral connection, the model is called a semi-restricted Boltzmann machine

