10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

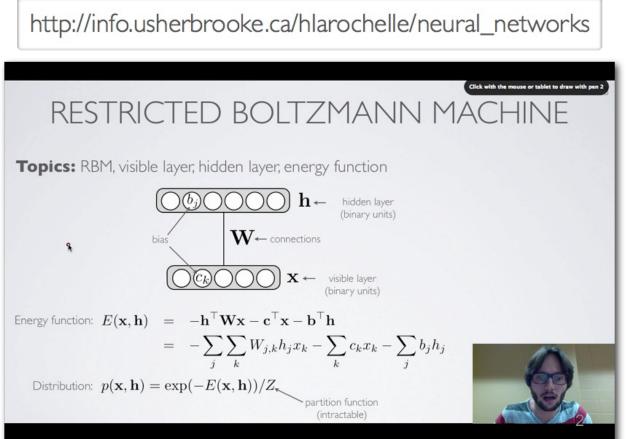
Restricted Boltzmann Machines

Neural Networks Online Course

• **Disclaimer**: Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks:

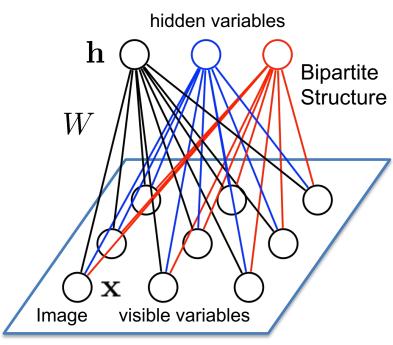
Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.

• We will use his material for some of the other lectures.



Unsupervised Learning

- Unsupervised learning: we only use the inputs $\mathbf{x}^{(t)}$ for learning
 - automatically extract meaningful features for your data
 - leverage the availability of unlabeled data
 - > add a data-dependent regularizer to training $(-\log p(\mathbf{x}^{(t)}))$
- We will consider 3 models for unsupervised learning that will form the basic building blocks for deeper models:
 - Restricted Boltzmann Machines
 - Autoencoders
 - Sparse coding models



- Undirected bipartite graphical model
 - Stochastic binary visible variables:

 $\mathbf{x} \in \{\mathbf{0},\mathbf{1}\}^{\mathbf{D}}$

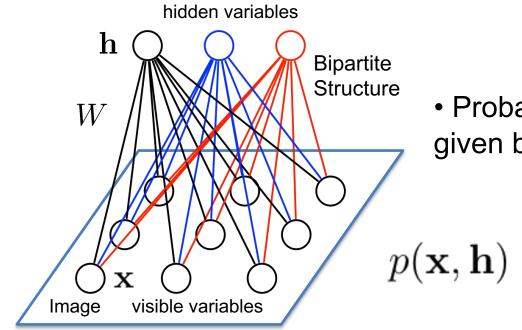
- Stochastic binary hidden variables: $\mathbf{h} \in \{0,1\}^F$

• The energy of the joint configuration:

$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h}$$

= $-\sum_{j} \sum_{k} W_{j,k} h_{j} x_{k} - \sum_{k} c_{k} x_{k} - \sum_{j} b_{j} h_{j}$

Markov random fields, Boltzmann machines, log-linear models.



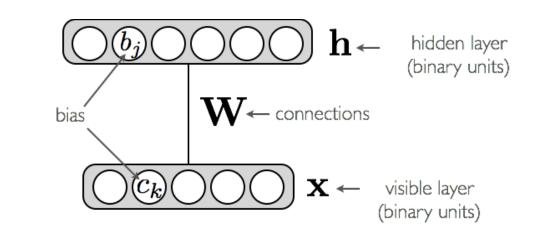
• Probability of the joint configuration is given by the Boltzmann distribution:

$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

Partition function (intractable)

$$Z = \sum_{\mathbf{x},\mathbf{h}} \exp\left(-E(\mathbf{x},\mathbf{h})\right)$$

Markov random fields, Boltzmann machines, log-linear models.



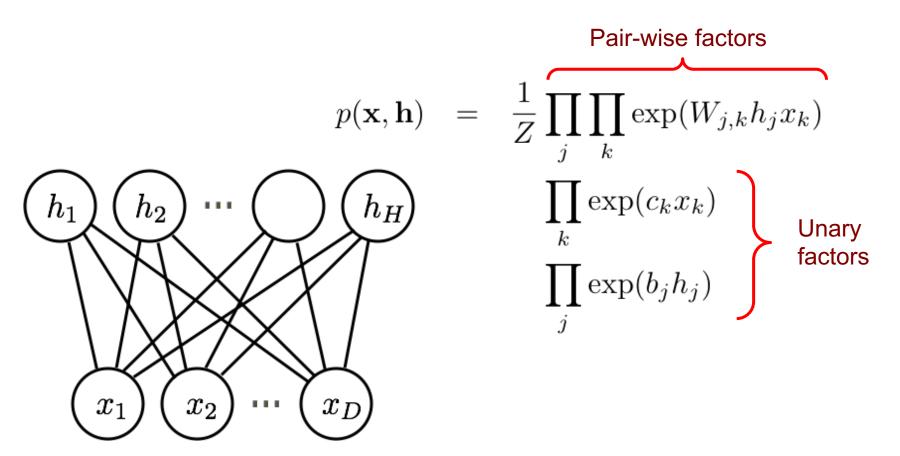
$$p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$

=
$$\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h})/Z$$

=
$$\exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x}) \exp(\mathbf{c}^{\top} \mathbf{x}) \exp(\mathbf{b}^{\top} \mathbf{h})/Z$$

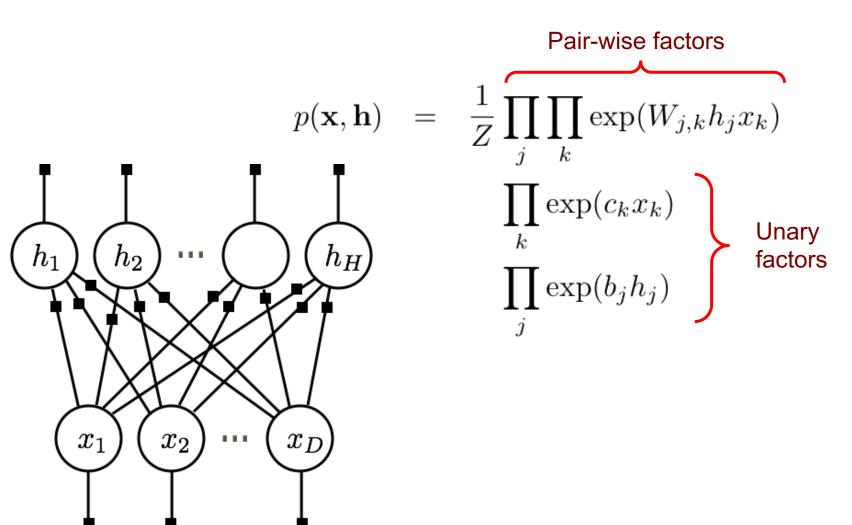
Factors

• The notation based on an energy function is simply an alternative to the representation as the product of factors

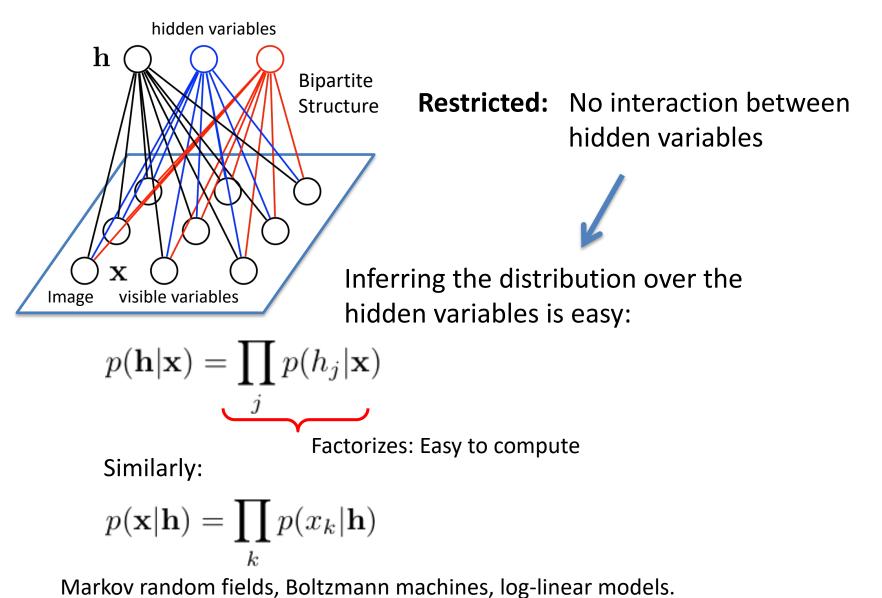


• The scalar visualization is more informative of the structure within the vectors.

Factor Graph View

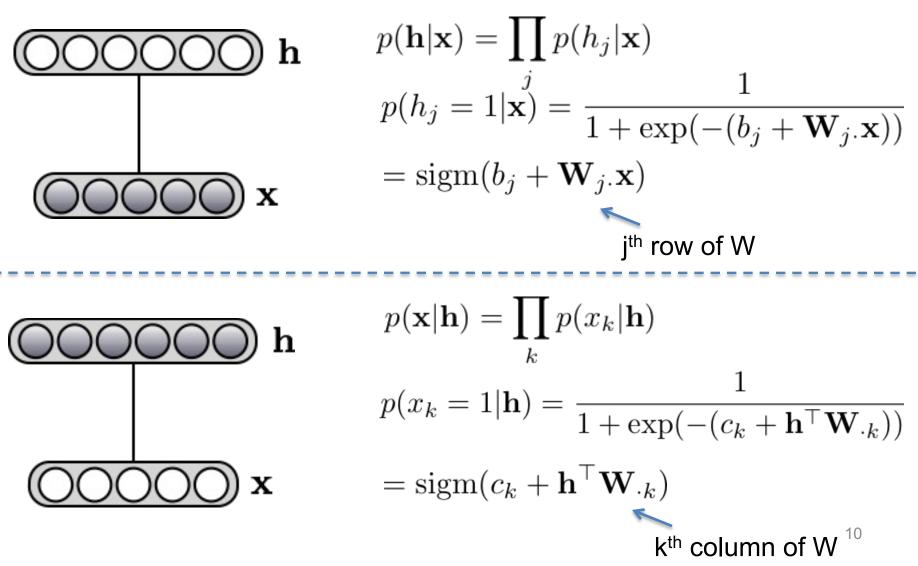


Inference



Inference

Conditional Distributions:



Local Markov Property

• In general, we have the following property:

$$p(z_i|z_1, \dots, z_V) = p(z_i|\operatorname{Ne}(z_i))$$

$$= \frac{p(z_i, \operatorname{Ne}(z_i))}{\sum_{z'_i} p(z'_i, \operatorname{Ne}(z_i))}$$

$$= \frac{\prod_{\substack{f \text{ involving } z_i \\ \text{and any } \operatorname{Ne}(z_i)}}{\sum_{z'_i} \prod_{\substack{f \text{ involving } z_i \\ \text{and any } \operatorname{Ne}(z_i)}} \Psi_f(z'_i, \operatorname{Ne}(z_i))}$$

➤ z_i is any variable in the Markov network (x_k or h_j in an RBM)
 ➤ Ne(z_i) are the neighbors of z_i in the Markov network

Free Energy

• What about computing marginal $p(\mathbf{x})$?

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^{H}} p(\mathbf{x}, \mathbf{h}) = \sum_{\mathbf{h} \in \{0,1\}^{H}} \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$
$$= \exp\left(\mathbf{c}^{\top}\mathbf{x} + \sum_{j=1}^{H} \log(1 + \exp(b_j + \mathbf{W}_j \cdot \mathbf{x}))\right)/Z$$
$$= \exp(-F(\mathbf{x}))/Z$$
$$(\otimes \otimes \otimes \otimes \otimes \otimes \otimes \mathbf{h})$$
Free Energy

Free Energy

• What about computing marginal $p(\mathbf{x})$?

$$p(\mathbf{x}) = \sum_{\mathbf{h} \in \{0,1\}^{H}} \exp(\mathbf{h}^{\top} \mathbf{W} \mathbf{x} + \mathbf{c}^{\top} \mathbf{x} + \mathbf{b}^{\top} \mathbf{h}) / Z$$

$$= \exp(\mathbf{c}^{\top} \mathbf{x}) \sum_{h_{1} \in \{0,1\}} \cdots \sum_{h_{H} \in \{0,1\}} \exp\left(\sum_{j} h_{j} \mathbf{W}_{j} \cdot \mathbf{x} + b_{j} h_{j}\right) / Z$$

$$= \exp(\mathbf{c}^{\top} \mathbf{x}) \left(\sum_{h_{1} \in \{0,1\}} \exp(h_{1} \mathbf{W}_{1} \cdot \mathbf{x} + b_{1} h_{1})\right) \cdots \left(\sum_{h_{H} \in \{0,1\}} \exp(h_{H} \mathbf{W}_{H} \cdot \mathbf{x} + b_{H} h_{H})\right) / Z$$

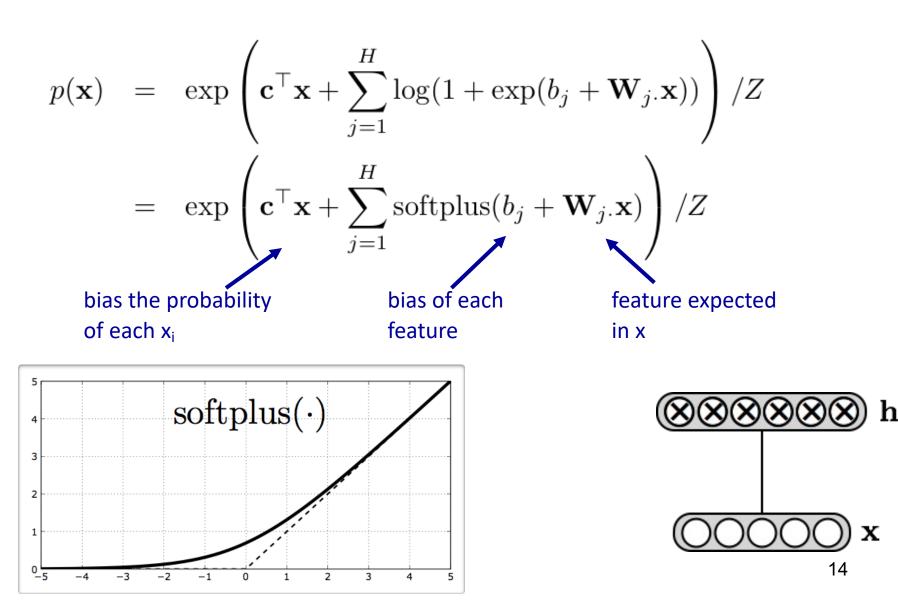
$$= \exp(\mathbf{c}^{\top} \mathbf{x}) (1 + \exp(b_{1} + \mathbf{W}_{1} \cdot \mathbf{x})) \cdots (1 + \exp(b_{H} + \mathbf{W}_{H} \cdot \mathbf{x})) / Z$$

$$= \exp(\mathbf{c}^{\top} \mathbf{x}) \exp(\log(1 + \exp(b_{1} + \mathbf{W}_{1} \cdot \mathbf{x}))) \cdots \exp(\log(1 + \exp(b_{H} + \mathbf{W}_{H} \cdot \mathbf{x}))) / Z$$

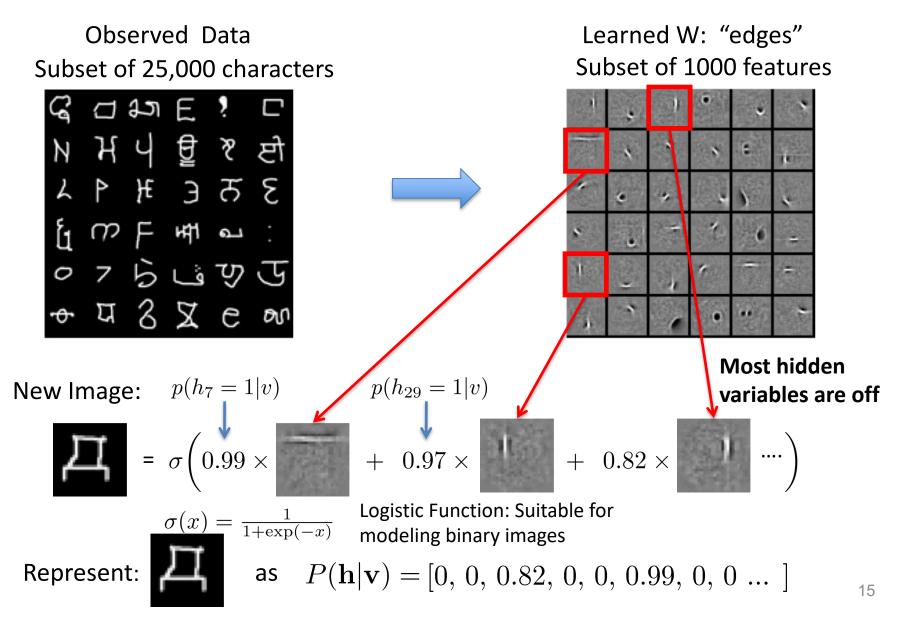
$$= \exp\left(\mathbf{c}^{\top} \mathbf{x} + \sum_{j=1}^{H} \log(1 + \exp(b_{j} + \mathbf{W}_{j} \cdot \mathbf{x}))\right) / Z$$

• Also known as Product of Experts model.

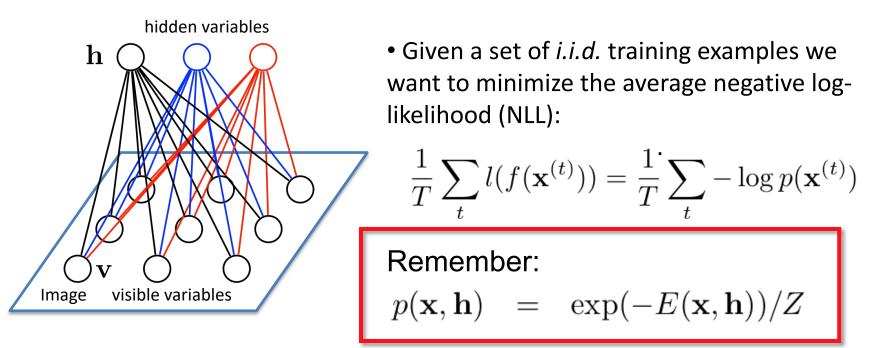
Free Energy



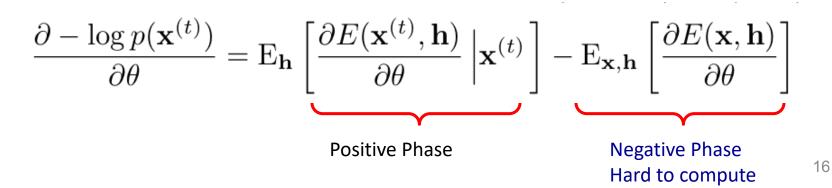
Learning Features



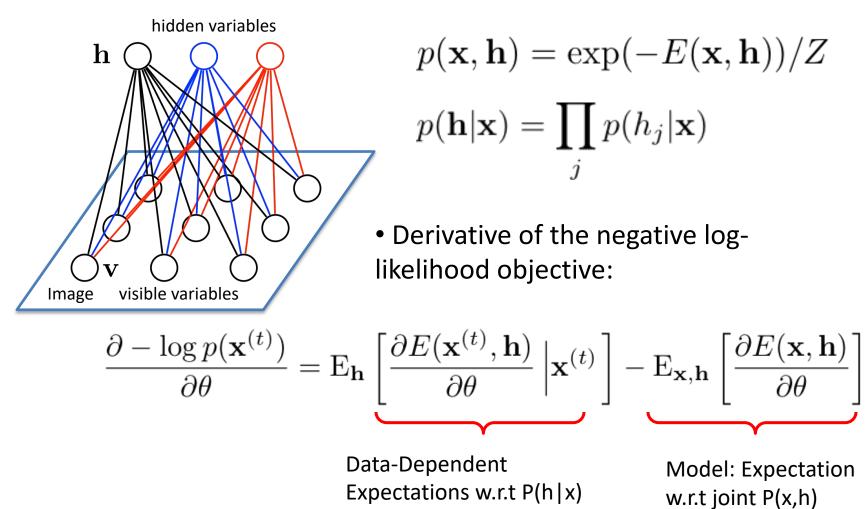
Model Learning



• Derivative of the negative log-likelihood objective:

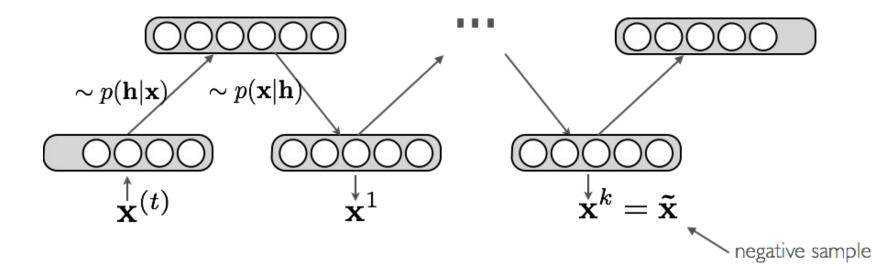


Model Learning



• Second term: intractable due to exponential number of configurations.

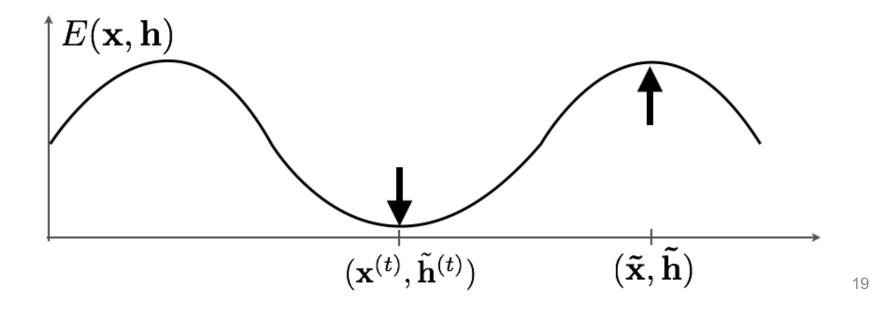
- Key idea behind Contrastive Divergence:
 - \succ Replace the expectation by a point estimate at $\widetilde{\mathbf{X}}$
 - \succ Obtain the point $\widetilde{\mathbf{x}}$ by Gibbs sampling
 - > Start sampling chain at $\mathbf{x}^{(t)}$



Hinton, Neural Computation, 2002

• Intuition:
$$\frac{\partial -\log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \Big| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$

$$\mathbf{E}_{\mathbf{h}}\left[\frac{\partial E(\mathbf{x}^{(t)},\mathbf{h})}{\partial\theta}\left|\mathbf{x}^{(t)}\right]\approx\frac{\partial E(\mathbf{x}^{(t)},\mathbf{h}^{(t)})}{\partial\theta}\qquad\mathbf{E}_{\mathbf{x},\mathbf{h}}\left[\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial\theta}\right]\approx\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial\theta}$$



• Intuition:
$$\frac{\partial - \log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \Big| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right]$$
$$\mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \Big| \mathbf{x}^{(t)} \right] \approx \frac{\partial E(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)})}{\partial \theta} \quad \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \approx \frac{\partial E(\tilde{\mathbf{x}}, \tilde{\mathbf{h}})}{\partial \theta}$$
$$\mathsf{Remember:} p(\mathbf{x}, \mathbf{h}) = \exp(-E(\mathbf{x}, \mathbf{h}))/Z$$
$$(\mathbf{x}^{(t)}, \tilde{\mathbf{h}}^{(t)}) \quad (\mathbf{\tilde{x}}, \mathbf{\tilde{h}})$$
20

• Let us look at derivative of $\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial \theta}$ for $\theta = W_{jk}$

$$\begin{aligned} \frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{jk}} &= \frac{\partial}{\partial W_{jk}} \left(-\sum_{jk} W_{jk} h_j x_k - \sum_k c_k x_k - \sum_j b_j h_j \right) \\ &= -\frac{\partial}{\partial W_{jk}} \sum_{jk} W_{jk} h_j x_k \\ &= -h_j x_k \end{aligned}$$
Remember:
$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^\top \mathbf{W} \mathbf{x} - \mathbf{c}^\top \mathbf{x} - \mathbf{b}^\top \mathbf{h}$$

• Hence:

$$\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) = -\mathbf{h} \, \mathbf{x}^{\top}$$

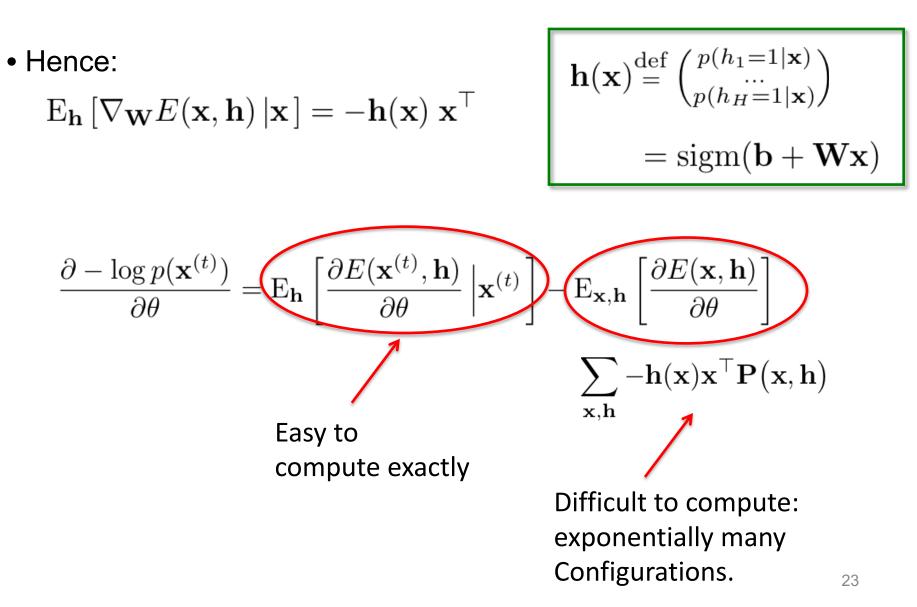
• Let us now derive $\mathbb{E}_{\mathbf{h}}\left[\frac{\partial E(\mathbf{x},\mathbf{h})}{\partial \theta} \middle| \mathbf{x}\right]$

$$\mathbb{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial W_{jk}} \middle| \mathbf{x} \right] = \mathbb{E}_{\mathbf{h}} \left[-h_j x_k \middle| \mathbf{x} \right] = \sum_{h_j \in \{0, 1\}} -h_j x_k p(h_j | \mathbf{x})$$
$$= -x_k p(h_j = 1 | \mathbf{x})$$

• Hence:

$$\mathrm{E}_{\mathbf{h}}\left[\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) \,| \mathbf{x}\right] = -\mathbf{h}(\mathbf{x}) \,\mathbf{x}^{\top}$$

$$\mathbf{h}(\mathbf{x}) \stackrel{\text{def}}{=} \begin{pmatrix} p(h_1 = 1 | \mathbf{x}) \\ \dots \\ p(h_H = 1 | \mathbf{x}) \end{pmatrix}$$
$$= \operatorname{sigm}(\mathbf{b} + \mathbf{W}\mathbf{x})$$



Approximate Learning

• An approximation to the gradient of the log-likelihood objective:

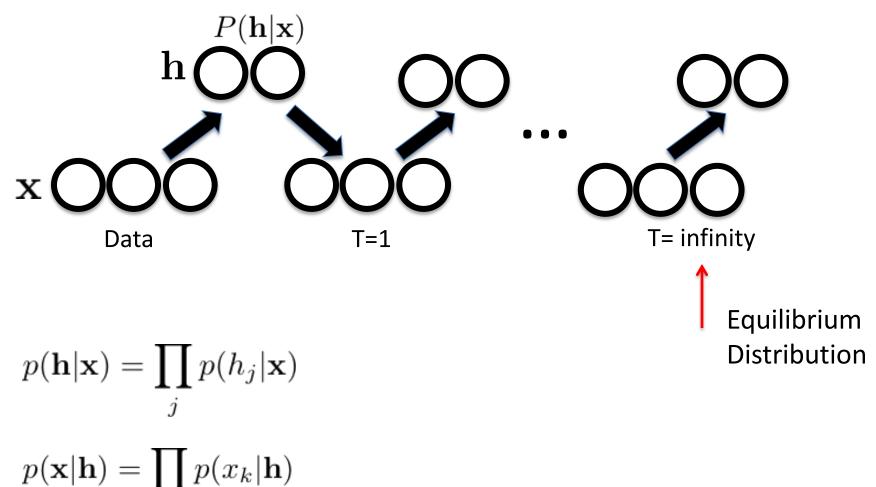
$$\frac{\partial - \log p(\mathbf{x}^{(t)})}{\partial \theta} = \mathbf{E}_{\mathbf{h}} \left[\frac{\partial E(\mathbf{x}^{(t)}, \mathbf{h})}{\partial \theta} \, \middle| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\frac{\partial E(\mathbf{x}, \mathbf{h})}{\partial \theta} \right] \\ \sum_{\mathbf{x}, \mathbf{h}} -\mathbf{h}(\mathbf{x}) \mathbf{x}^{\top} \mathbf{P}(\mathbf{x}, \mathbf{h})$$

- Replace the average over all possible input configurations by samples.
- Run MCMC chain (Gibbs sampling) starting from the observed examples.
 - Initialize x⁰ = x
 - Sample h⁰ from P(h | x⁰)
 - For t=1:T
 - Sample x^t from P(x | h^{t-1})
 - Sample h^t from P(h | x^t)

Approximate ML Learning for RBMs

Run Markov chain (alternating Gibbs Sampling):

k



Run Markov chain (alternating Gibbs Sampling):



• K is typically set to 1.

$$p(\mathbf{h}|\mathbf{x}) = \prod_{j} p(h_{j}|\mathbf{x})$$
$$p(\mathbf{x}|\mathbf{h}) = \prod_{k} p(x_{k}|\mathbf{h})$$

$$\mathbf{x}^{(t)}$$
 $\mathbf{\tilde{x}}$ $\theta = \mathbf{W}$

$$\mathbf{W} \iff \mathbf{W} - \alpha \left(\nabla_{\mathbf{W}} - \log p(\mathbf{x}^{(t)}) \right)$$

$$\iff \mathbf{W} - \alpha \left(\mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \, \left| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{x}, \mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}, \mathbf{h}) \right] \right)$$

$$\iff \mathbf{W} - \alpha \left(\mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\mathbf{x}^{(t)}, \mathbf{h}) \, \left| \mathbf{x}^{(t)} \right] - \mathbf{E}_{\mathbf{h}} \left[\nabla_{\mathbf{W}} E(\tilde{\mathbf{x}}, \mathbf{h}) \, \left| \tilde{\mathbf{x}} \right] \right)$$

$$\iff \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \, \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \, \tilde{\mathbf{x}}^{\top} \right)$$

Learning rate

CD-k Algorithm

- For each training example $\mathbf{x}^{(t)}$
 - > Generate a negative sample $\tilde{\mathbf{x}}$ using k steps of Gibbs sampling, starting at the data point $\mathbf{x}^{(t)}$
 - Update model parameters:

$$\begin{aligned} \mathbf{W} & \Leftarrow \mathbf{W} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) \ \mathbf{x}^{(t)^{\top}} - \mathbf{h}(\tilde{\mathbf{x}}) \ \tilde{\mathbf{x}}^{\top} \right) \\ \mathbf{b} & \Leftarrow \mathbf{b} + \alpha \left(\mathbf{h}(\mathbf{x}^{(t)}) - \mathbf{h}(\tilde{\mathbf{x}}) \right) \\ \mathbf{c} & \Leftarrow \mathbf{c} + \alpha \left(\mathbf{x}^{(t)} - \tilde{\mathbf{x}} \right) \end{aligned}$$

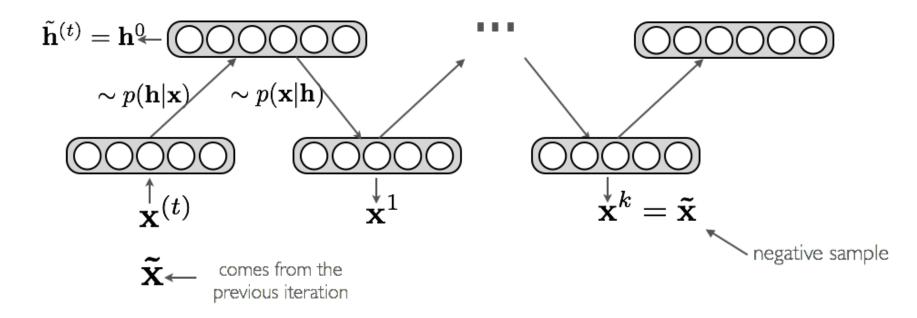
Go back to 1 until stopping criteria

CD-k Algorithm

- CD-k: contrastive divergence with k iterations of Gibbs sampling
- In general, the bigger k is, the less biased the estimate of the gradient will be
- In practice, k=1 works well for learning good features and for pre-training

Persistent CD: Stochastic ML Estimator

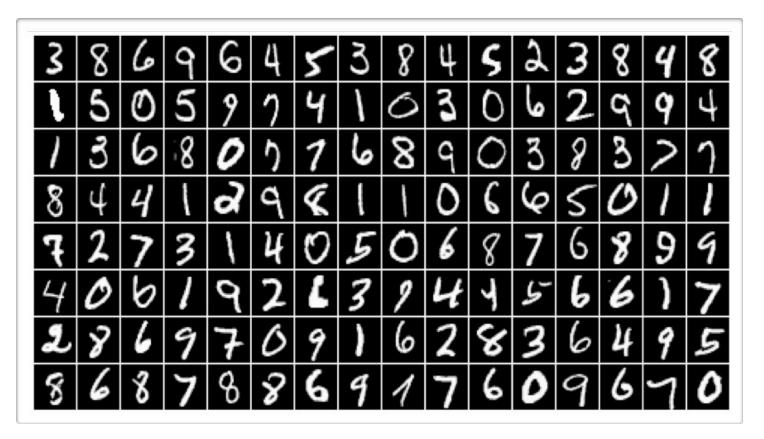
• Idea: instead of initializing the chain to $\mathbf{x}^{(t)}$, initialize the chain to the negative sample of the last iteration



Tieleman, ICML, 2008⁰

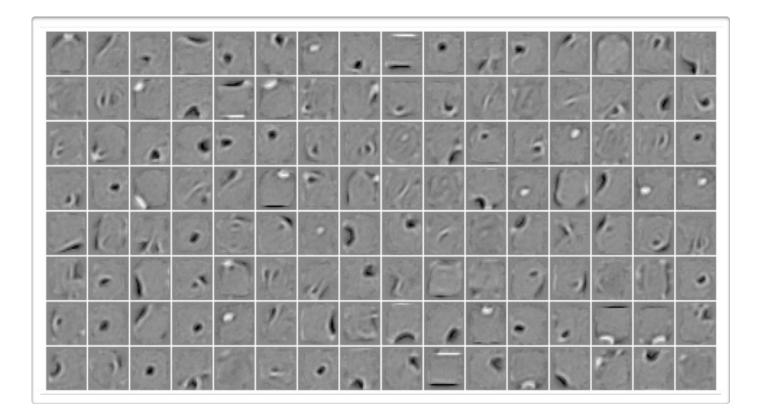
Example: MNIST

• MNIST dataset:



Learned Features

• MNIST dataset:



(Larochelle et al., JMLR 2009)

Tricks and Debugging

- Unfortunately, it is not easy to debug training RBMs (e.g. using gradient checks)
- We instead rely on approximate "tricks"
 - > we plot the average stochastic reconstruction $||\mathbf{x}^{(t)} \tilde{\mathbf{x}}||^2$ and see if it tends to decrease
 - for inputs that correspond to image, we visualize the connection coming into each hidden unit as if it was an image
 - gives an idea of the type of visual feature each hidden unit detects
 - we can also try to approximate the partition function Z and see whether the (approximated) NLL decreases

(Salakhutdinov, Murray, ICML 2008)

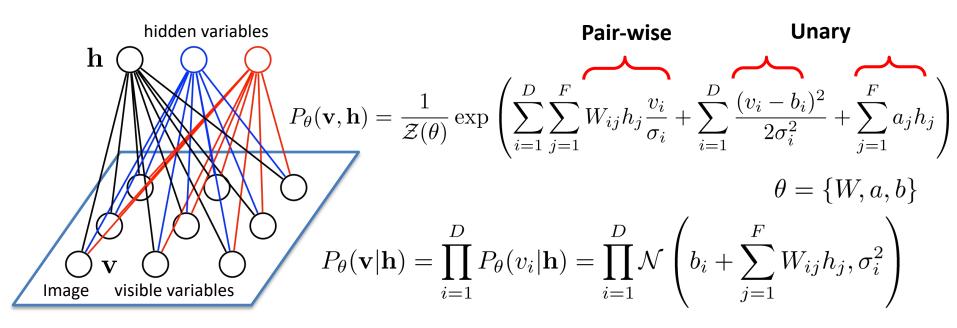
Gaussian Bernoulli RBMs

- Let x represent a real-valued (unbounded) input.
 - > add a quadratic term to the energy function

$$E(\mathbf{x}, \mathbf{h}) = -\mathbf{h}^{\top} \mathbf{W} \mathbf{x} - \mathbf{c}^{\top} \mathbf{x} - \mathbf{b}^{\top} \mathbf{h} + \frac{1}{2} \mathbf{x}^{\top} \mathbf{x}$$

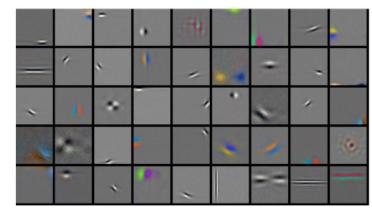
- > In this case $p(\mathbf{x}|\mathbf{h})$ becomes a Gaussian distribution with mean $\boldsymbol{\mu} = \mathbf{c} + \mathbf{W}^{\top}\mathbf{h}$ and identity covariance matrix
- recommend to normalize the training set by:
 - subtracting the mean of each input
 - dividing each input by the training set standard deviation
- should use a smaller learning rate than in the regular RBM

Gaussian Bernoulli RBMs



4 million unlabelled images

Learned features (out of 10,000)

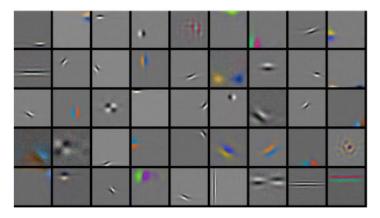


(Notation: vector x is replaced with v).

Gaussian Bernoulli RBMs

4 million unlabelled images

Learned features (out of 10,000)



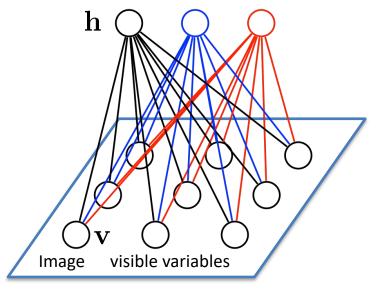
$$p(h_7 = 1|v) \qquad p(h_{29} = 1|v) \\ = 0.9 * 1 + 0.8 * 1 + 0.6 * 1 ...$$

New Image

٠

RBMs for Images

Gaussian-Bernoulli RBM:



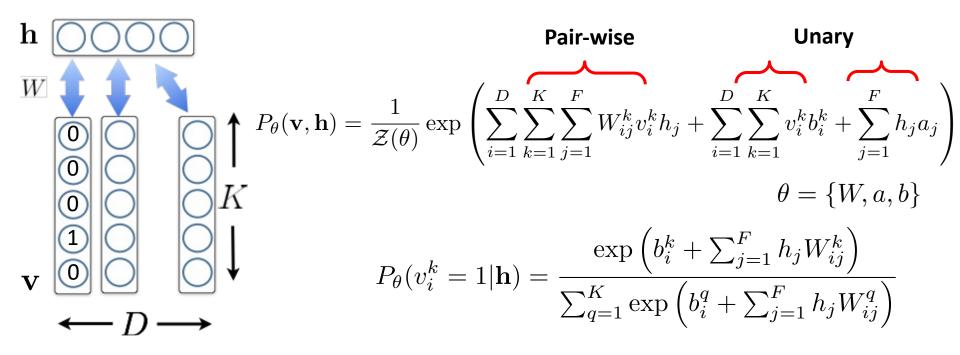
Interpretation: Mixture of exponential number of Gaussians

$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}|\mathbf{h}) P_{\theta}(\mathbf{h}),$$

where

$$P_{\theta}(\mathbf{h}) = \int_{\mathbf{v}} P_{\theta}(\mathbf{v}, \mathbf{h}) d\mathbf{v} \quad \text{is an implicit prior, and}$$
$$P(v_i = x | \mathbf{h}) = \frac{1}{\sqrt{2\pi}\sigma_i} \exp\left(-\frac{(x - b_i - \sigma_i \sum_j W_{ij}h_j)^2}{2\sigma_i^2}\right) \quad \text{Gaussian}$$

RBMs for Word Counts

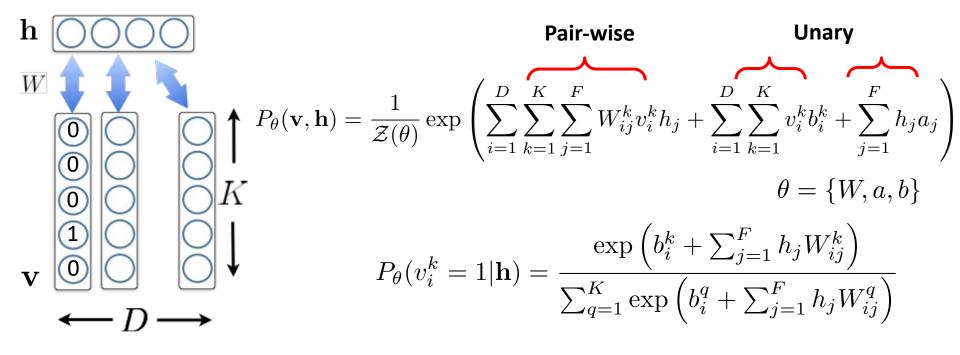


Replicated Softmax Model: undirected topic model:

- Stochastic 1-of-K visible variables.
- Stochastic binary hidden variables $\mathbf{h} \in \{0, 1\}^F$.
- Bipartite connections.

(Salakhutdinov & Hinton, NIPS 2010, Srivastava & Salakhutdinov, NIPS 2012)

RBMs for Word Counts



REUTERS Associated Press

Reuters dataset: 804,414 **unlabeled** newswire stories **Bag-of-Words**

y S

Learned features: ``topics''

russian russia moscow yeltsin soviet	clinton house president bill congress	computer system product software develop	trade country import world economy	
soviet	congress	develop	economy	

39

dow

stock

street

point

wall

RBMs for Word Counts

One-step reconstruction from the Replicated Softmax model.

Input	Reconstruction
chocolate, cake	cake, chocolate, sweets, dessert, cupcake, food, sugar, cream, birthday
nyc	nyc, newyork, brooklyn, queens, gothamist, manhattan, subway, streetart
dog	dog, puppy, perro, dogs, pet, filmshots, tongue, pets, nose, animal
flower, high, 花	flower, 花, high, japan, sakura, 日本, blossom, tokyo, lily, cherry
girl, rain, station, norway	norway, station, rain, girl, oslo, train, umbrella, wet, railway, weather
fun, life, children	children, fun, life, kids, child, playing, boys, kid, play, love
forest, blur	forest, blur, woods, motion, trees, movement, path, trail, green, focus
españa, agua, granada	españa, agua, spain, granada, water, andalucía, naturaleza, galicia, nieve

Collaborative Filtering

Fahrenheit 9/11

Canadian Bacon

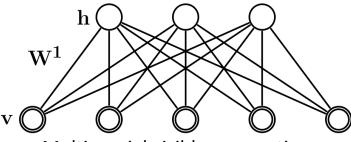
La Dolce Vita

Bowling for Columbine

The People vs. Larry Flynt

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ijk} W_{ij}^{k} v_{i}^{k} h_{j} + \sum_{ik} b_{i}^{k} v_{i}^{k} + \sum_{j} a_{j} h_{j}\right)$$

Binary hidden: user preferences



Multinomial visible: user ratings

Netflix dataset: 480,189 users 17,770 movies Over 100 million ratings

NETFLIX

The Texas Chainsaw Massacre Children of the Corn Child's Play The Return of Michael Myers

Learned features: ``genre''

Independence Day The Day After Tomorrow Con Air Men in Black II Men in Black

Friday the 13th

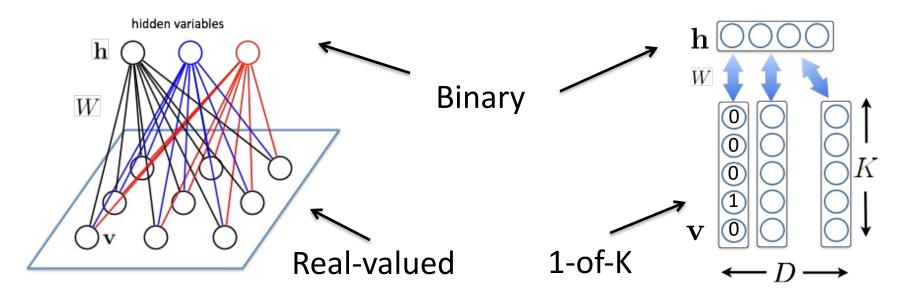
Scary Movie Naked Gun Hot Shots! American Pie Police Academy

State-of-the-art performance on the Netflix dataset.

(Salakhutdinov, Mnih, Hinton, ICML 2007)

Different Data Modalities

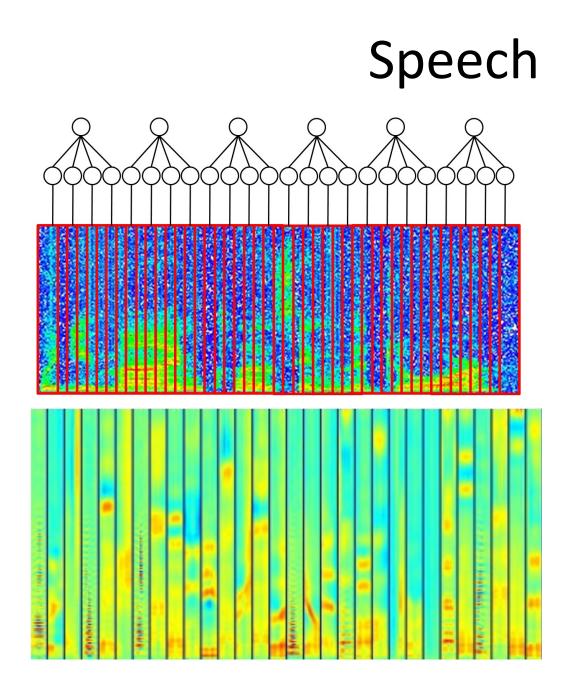
• Binary/Gaussian/Softmax RBMs: All have binary hidden variables but use them to model different kinds of data.



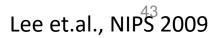
• It is easy to infer the states of the hidden variables:

$$P_{\theta}(\mathbf{h}|\mathbf{v}) = \prod_{j=1}^{F} P_{\theta}(h_j|\mathbf{v}) = \prod_{j=1}^{F} \frac{1}{1 + \exp(-a_j - \sum_{i=1}^{D} W_{ij}v_i)}$$

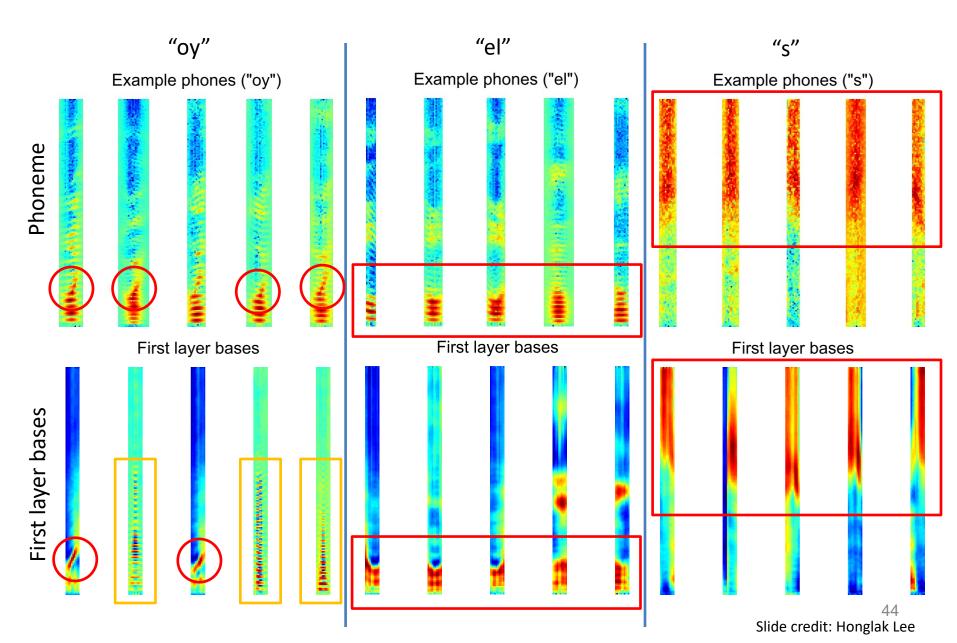
42



Learned first-layer bases



Comparison of bases to phonemes



Product of Experts

The joint distribution is given by:

$$P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \exp\left(\sum_{ij} W_{ij} v_i h_j + \sum_{i} b_i v_i + \sum_{j} a_j h_j\right)$$
Marginalizing over hidden variables:

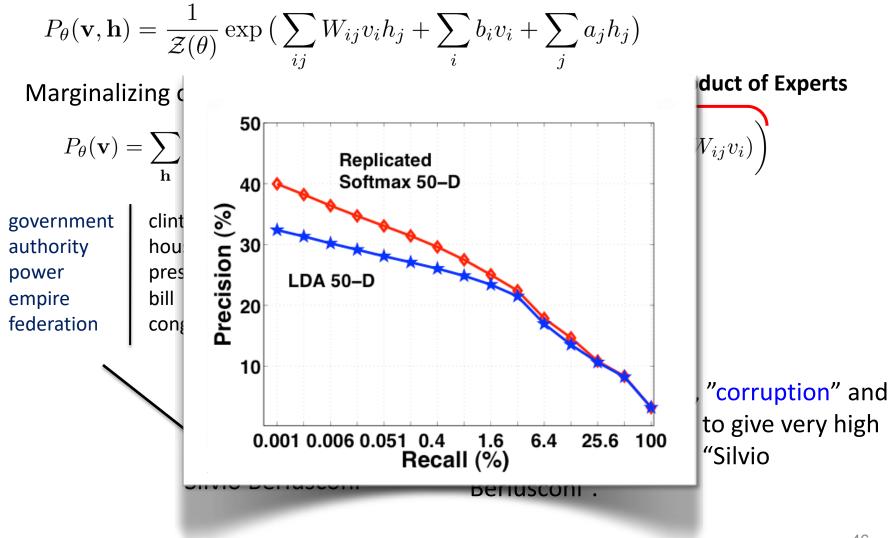
$$P_{\theta}(\mathbf{v}) = \sum_{\mathbf{h}} P_{\theta}(\mathbf{v}, \mathbf{h}) = \frac{1}{\mathcal{Z}(\theta)} \prod_{i} \exp(b_i v_i) \prod_{j} \left(1 + \exp(a_j + \sum_{i} W_{ij} v_i)\right)$$
government
authority
power
empire
federation

$$\begin{vmatrix} \text{clinton} \\ \text{house} \\ \text{president} \\ \text{bill} \\ \text{corrupt} \\ \text{fraud} \end{vmatrix} \begin{array}{c} \text{mafia} \\ \text{business} \\ \text{gang} \\ \text{mob} \\ \text{insider} \end{vmatrix} \begin{array}{c} \text{stock} \\ \text{wall} \\ \text{street} \\ \text{point} \\ \text{dow} \end{vmatrix} \dots$$

$$Topics "government", "corruption" and "mafia" can combine to give very high probability to a word "Silvio Berlusconi".$$

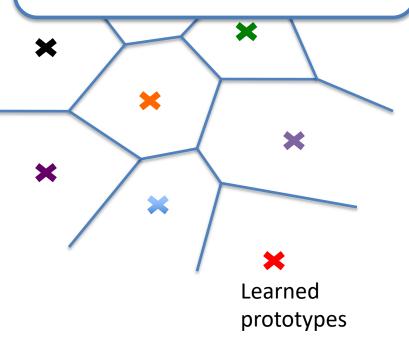
Product of Experts

The joint distribution is given by:

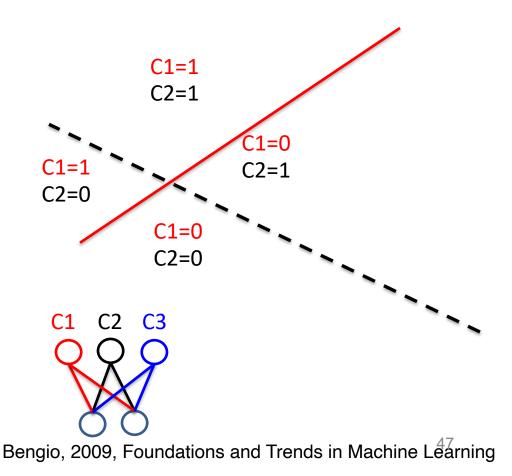


Local vs. Distributed Representations

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

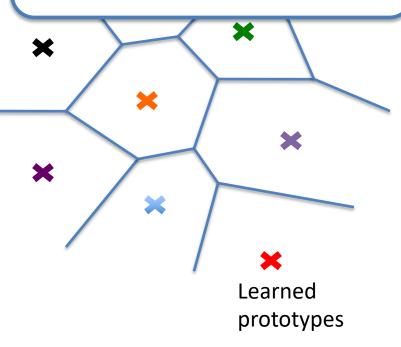


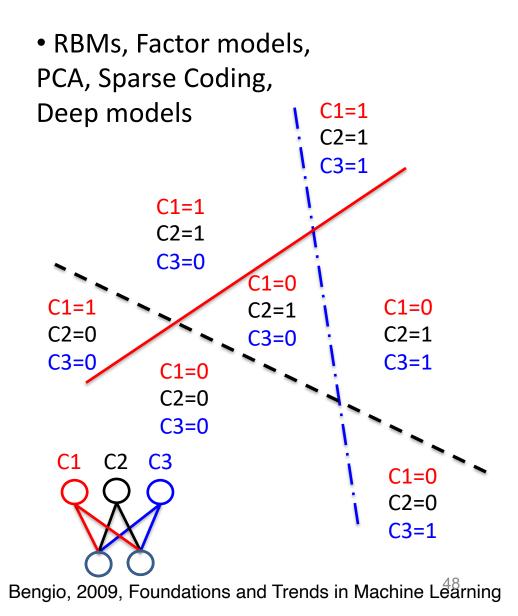
RBMs, Factor models,
PCA, Sparse Coding,
Deep models



Local vs. Distributed Representations

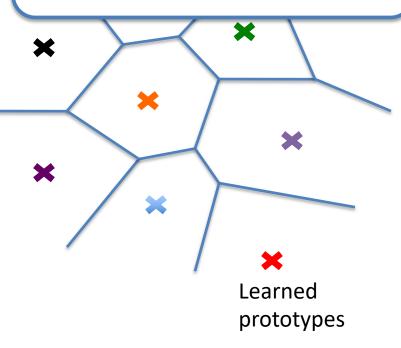
- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with
 # of parameters.





Local vs. Distributed Representations

- Clustering, Nearest
 Neighbors, RBF SVM, local
 density estimators
- Parameters for each region.
- # of regions is linear with # of parameters.

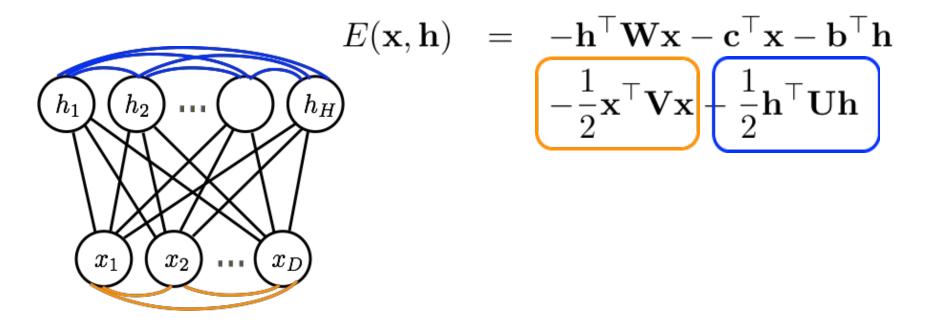


• RBMs, Factor models, PCA, Sparse Coding, **Deep models** C1=1 Each parameter affects many regions, not just local. # of regions grows (roughly) exponentially in # of parameters. U=U7=1 C2=0 C2=1 C3=0C3=1 C3=(C1=0C2=0C3=0 C2 **C**3 C1=0C2=0C3=1

Bengio, 2009, Foundations and Trends in Machine $L_{earning}^{49}$

Boltzmann Machines

 The original Boltzmann machine has lateral connections in each layer



when only one layer has lateral connection, the model is called a \triangleright semi-restricted Boltzmann machine 50