
10707
Deep Learning
Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

Convolutional Networks I

mailto:rsalakhu@cs.cmu.edu

Used Resources

• Some tutorial slides were borrowed from Rob Fergus’ CIFAR
tutorial on ConvNets:
https://sites.google.com/site/deeplearningsummerschool2016/speakers

• Disclaimer: Much of the material in this lecture was borrowed from
Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

• Some slides were borrowed from Marc'Aurelio Ranzato’s
CVPR 2014 tutorial on Convolutional Nets
https://sites.google.com/site/lsvrtutorialcvpr14/home/deeplearning

Computer Vision
• Design algorithms that can process visual data to
accomplish a given task:

Ø For example, object recognition: Given an input image, identify
which object it contains

Computer Vision
• Our goal is to design neural networks that are specifically
adapted for such problems

Ø Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

Ø Can exploit the 2D topology of pixels (or 3D for video data)
Ø Can build in invariance to certain variations: translation,

illumination, etc.

• Convolutional networks leverage these ideas

Ø Local connectivity
Ø Parameter sharing
Ø Convolution
Ø Pooling / subsampling hidden units

Local Connectivity
• Use a local connectivity of hidden units

Ø Each hidden unit is connected only to a
sub-region (patch) of the input image

Ø It is connected to all channels: 1 if
grayscale, 3 (R, G, B) if color image

• Why local connectivity?

Ø Fully connected layer has a lot of
parameters to fit, requires a lot of data

Ø Spatial correlation is local

Local Connectivity
• Units are connected to all channels:

Ø 1 channel if grayscale image,
Ø 3 channels (R, G, B) if color image

Local Connectivity
• Example: 200x200 image, 40K hidden units, ~2B parameters!

Ø Spatial correlation is local
Ø Too many parameters, will require a

lot of training data!

Local Connectivity
• Example: 200x200 image, 40K hidden units, filter size 10x10,
4M parameters!

Ø This parameterization is good
when input image is registered

Computer Vision
• Our goal is to design neural networks that are specifically
adapted for such problems

Ø Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

Ø Can exploit the 2D topology of pixels (or 3D for video data)
Ø Can build in invariance to certain variations: translation,

illumination, etc.

• Convolutional networks leverage these ideas

Ø Local connectivity
Ø Parameter sharing
Ø Convolution
Ø Pooling / subsampling hidden units

Parameter Sharing
• Share matrix of parameters across some units

Ø Units that are organized into the ‘feature map” share parameters

Ø Hidden units within a feature map cover different positions in the
image

Wij is the matrix connecting
the ith input channel with the
jth feature map

same color
=

same matrix of
connection

Parameter Sharing
• Why parameter sharing?

Ø Reduces even more the number of parameters

Ø Will extract the same features at every position (features are
‘‘equivariant’’)

Wij is the matrix connecting
the ith input channel with the
jth feature map

same color
=

same matrix of
connection

Parameter Sharing
• Share matrix of parameters across certain units

Ø Convolutions with certain kernels

Computer Vision
• Our goal is to design neural networks that are specifically
adapted for such problems

Ø Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

Ø Can exploit the 2D topology of pixels (or 3D for video data)
Ø Can build in invariance to certain variations: translation,

illumination, etc.

• Convolutional networks leverage these ideas

Ø Local connectivity
Ø Parameter sharing
Ø Convolution
Ø Pooling / subsampling hidden units

Parameter Sharing
• Each feature map forms a 2D grid of features

Ø can be computed with a discrete convolution () of a kernel
matrix kij which is the hidden weights matrix Wij with its rows and
columns flipped

- xi is the ith channel of input
- kij is the convolution kernel
- gj is a learned scaling factor
- gj is the hidden layer

Jarret et al. 2009
can add bias

Discrete Convolution

• Example:

Discrete Convolution

• Example:
with rows and columns flipped

Discrete Convolution

• Example: 1 x 0 + 0.5 x 80 + 0.25 x 20 + 0 x 40 = 45

Discrete Convolution

• Example: 1 x 80 + 0.5 x 40 + 0.25 x 40 + 0 x 0 = 110

Discrete Convolution

• Example: 1 x 20 + 0.5 x 40 + 0.25 x 0 + 0 x 0 = 40

Discrete Convolution

• Example: 1 x 40 + 0.5 x 0 + 0.25 x 0 + 0 x 40 = 40

Discrete Convolution
• Pre-activations from channel xi into feature map yj can be
computed by:

Ø getting the convolution kernel where kij =Wij from the
connection matrix Wij

Ø applying the convolution xi * kij

~

• This is equivalent to computing the discrete correlation of xi
with Wij

Example
• Illustration:

Example
• With a non-linearity, we get a detector of a feature at any
position in the image:

Example
• Can use ‘‘zero padding’’ to allow going over the borders (*)

Example

Multiple Feature Maps
• Example: 200x200 image, 100 filters,
filter size 10x10, 10K parameters

Computer Vision
• Our goal is to design neural networks that are specifically
adapted for such problems

Ø Must deal with very high-dimensional inputs: 150 x 150 pixels =
22500 inputs, or 3 x 22500 if RGB pixels

Ø Can exploit the 2D topology of pixels (or 3D for video data)
Ø Can build in invariance to certain variations: translation,

illumination, etc.

• Convolutional networks leverage these ideas

Ø Local connectivity
Ø Parameter sharing
Ø Convolution
Ø Pooling / subsampling hidden units

Pooling
• Pool hidden units in same neighborhood

Ø pooling is performed in non-overlapping neighborhoods
(subsampling)

- xi is the ith channel of input
- xi,j,k is value of the ith feature

map at position j,k
- p is vertical index in local

neighborhood
- q is horizontal index in local

neighborhood
- yijk is pooled / subsampled

layer

Jarret et al. 2009

Pooling
• Pool hidden units in same neighborhood

Ø an alternative to ‘‘max’’ pooling is ‘‘average’’ pooling

- xi is the ith channel of input
- xi,j,k is value of the ith feature

map at position j,k
- p is vertical index in local

neighborhood
- q is horizontal index in local

neighborhood
- yijk is pooled / subsampled

layer
- m is the neighborhood

height/widthJarret et al. 2009

Example: Pooling
• Illustration of pooling/subsampling operation

• Why pooling?

Ø Introduces invariance to local translations
Ø Reduces the number of hidden units in hidden layer

Example: Pooling

Ø can we make the detection robust
to the exact location of the eye?

Example: Pooling

Ø By “pooling” (e.g., taking max) filter
responses at different locations we
gain robustness to the exact spatial
location of features.

Translation Invariance
• Illustration of local translation invariance

Ø both images result in the same feature map after
pooling/subsampling

Convolutional Network
• Convolutional neural network alternates between the
convolutional and pooling layers

From Yann LeCun’s slides

• For classification: Output layer is a regular, fully connected layer
with softmax non-linearity

Ø Output provides an estimate of the conditional probability of each
class

• The network is trained by stochastic gradient descent

Ø Backpropagation is used similarly as in a fully connected network
Ø We have seen how to pass gradients through element-wise

activation function
Ø We also need to pass gradients through the convolution operation

and the pooling operation

Convolutional Network

• Let be the loss function

Gradient of Convolutional Layer

Ø For max pooling operation , the
gradient for xijk is

where p’, q’ = argmax xi,j+p,k+q

Ø In other words, only the ‘‘winning’’ units in layer x get the gradient
from the pooled layer

Ø For the average operation , the
gradient for xijk is

where upsample inverts subsampling

Convolutional Network
• Convolutional neural network alternates between the
convolutional and pooling layers

• Need to introduce other operations that can improve object
recognition.

Rectification
• Rectification layer: yijk = |xijk|

Ø introduces invariance to the sign of the
unit in the previous layer

Ø for instance, loss of information of
whether an edge is black-to-white or
white-to-black

Local Contrast Normalization
• Perform local contrast normalization

Ø reduces unit’s activation if neighbors are also active
Ø creates competition between feature maps
Ø scales activations at each layer better for learning

Local average

Local stdev

where c is a small constant to prevent division by 0

Local Contrast Normalization
• Perform local contrast normalization

Feature Maps
Feature Maps after

Contrast Normalization

Ø Local mean=0, Local std. = 1, “Local” is 7x7 Gaussian

Convolutional Network
• These operations are inserted after the convolutions and before
the pooling

Jarret et al. 2009

K. Kavukcuoglu

Remember Batch Normalization

Learned linear transformation to adapt to non-linear
activation function (𝛾 and β are trained)

