10707
 Deep Learning
 Russ Salakhutdinov
 Machine Learning Department rsalakhu@cs.cmu.edu

Neural Networks II

Neural Networks Online Course

- Disclaimer: Much of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks: https://sites.google.com/site/deeplearningsummerschool2016/
- Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.
- We will use his
material for some of the other lectures.

http://info.usherbrooke.ca/hlarochelle/neural_networks

Initialization

- Initialize biases to 0
- For weights
- Can not initialize weights to 0 with tanh activation
> All gradients would be zero (saddle point)
- Can not initialize all weights to the same value
> All hidden units in a layer will always behave the same
> Need to break symmetry
- Sample $\mathbf{W}_{i, j}^{(k)}$ from $U[-b, b]$, where

$$
\begin{gathered}
b=\frac{\sqrt{6}}{\sqrt{H_{k}+H_{k-1}}} \\
\text { size of } \mathbf{h}^{(k)}(\mathbf{x})
\end{gathered}
$$

Sample around 0 and break symmetry

Model Selection

- Training Protocol:
- Train your model on the Training Set $\mathcal{D}^{\text {train }}$
- For model selection, use Validation Set $\mathcal{D}^{\text {valid }}$
> Hyper-parameter search: hidden layer size, learning rate, number of iterations/epochs, etc.
- Estimate generalization performance using the Test Set $\mathcal{D}^{\text {test }}$
- Remember: Generalization is the behavior of the model on unseen examples.

Early Stopping

- To select the number of epochs, stop training when validation set error increases (with some look ahead).

Tricks of the Trade:

- Normalizing your (real-valued) data:
$>$ for each dimension x_{i} subtract its training set mean
$>$ divide each dimension x_{i} by its training set standard deviation
> this can speed up training
- Decreasing the learning rate: As we get closer to the optimum, take smaller update steps:
i. \quad start with large learning rate (e.g. 0.1)
ii. maintain until validation error stops improving
iii. divide learning rate by 2 and go back to (ii)

Mini-batch, Momentum

- Make updates based on a mini-batch of examples (instead of a single example):
> the gradient is the average regularized loss for that mini-batch
> can give a more accurate estimate of the gradient
> can leverage matrix/matrix operations, which are more efficient
- Momentum: Can use an exponential average of previous gradients:

$$
\bar{\nabla}_{\boldsymbol{\theta}}^{(t)}=\nabla_{\boldsymbol{\theta}} l\left(\mathbf{f}\left(\mathbf{x}^{(t)}\right), y^{(t)}\right)+\beta \bar{\nabla}_{\boldsymbol{\theta}}^{(t-1)}
$$

> can get pass plateaus more quickly, by "gaining momentum"

Adapting Learning Rates

- Updates with adaptive learning rates ("one learning rate per parameter")
> Adagrad: learning rates are scaled by the square root of the cumulative sum of squared gradients

$$
\gamma^{(t)}=\gamma^{(t-1)}+\left(\nabla_{\theta} l\left(\mathbf{f}\left(\mathbf{x}^{(t)}\right), y^{(t)}\right)\right)^{2} \quad \bar{\nabla}_{\theta}^{(t)}=\frac{\nabla_{\theta} l\left(\mathbf{f}\left(\mathbf{x}^{(t)}\right), y^{(t)}\right)}{\sqrt{\gamma^{(t)}+\epsilon}}
$$

> RMSProp: instead of cumulative sum, use exponential moving average

$$
\gamma^{(t)}=\beta \gamma^{(t-1)}+(1-\beta)\left(\nabla_{\theta} l\left(\mathbf{f}\left(\mathbf{x}^{(t)}\right), y^{(t)}\right)\right)^{2}
$$

> Adam: essentially combines RMSProp with momentum

$$
\bar{\nabla}_{\theta}^{(t)}=\frac{\nabla_{\theta} l\left(\mathbf{f}\left(\mathbf{x}^{(t)}\right), y^{(t)}\right)}{\sqrt{\gamma^{(t)}+\epsilon}}
$$

Gradient Checking

- To debug your implementation of fprop/bprop, you can compare with a finite-difference approximation of the gradient:

$$
\frac{\partial f(x)}{\partial x} \approx \frac{f(x+\epsilon)-f(x-\epsilon)}{2 \epsilon}
$$

> $\quad f(x)$ would be the loss
> x would be a parameter
> $f(x+\epsilon)$ would be the loss if you add ϵ to the parameter
> $f(x-\epsilon)$ would be the loss if you subtract ϵ to the parameter

Debugging on Small Dataset

- If not, investigate the following situations:
> Are some of the units saturated, even before the first update?
- scale down the initialization of your parameters for these units
- properly normalize the inputs
> Is the training error bouncing up and down?
- decrease the learning rate
- This does not mean that you have computed gradients correctly:
> You could still overfit with some of the gradients being wrong

Feedforward Neural Networks

- How neural networks predict $f(x)$ given an input x :
- Forward propagation
- Types of units
- Capacity of neural networks
- How to train neural nets:
- Loss function
- Backpropagation with gradient descent
- More recent techniques:
- Dropout
- Batch normalization
- Unsupervised Pre-training

Feedforward Neural Networks

- How neural networks predict $f(x)$ given an input x :
- Forward propagation
- Types of units
- Capacity of neural networks
- How to train neural nets:
- Loss function
- Backpropagation with gradient descent
- More recent techniques:
- Dropout
- Batch normalization
- Unsupervised Pre-training

Learning Distributed Representations

- Deep learning is research on learning models with multilayer representations
> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann machine)
- Each layer learns "distributed representation"
> Units in a layer are not mutually exclusive
- each unit is a separate feature of the input
- two units can be "active" at the same time
> Units do not correspond to a partitioning (clustering) of the inputs
- in clustering, an input can only belong to a single cluster

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding, Deep models

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding, Deep models !

Bengio, 2009, Foundations and Trends in Machine Leârning

Local vs. Distributed Representations

- Clustering, Nearest Neighbors, RBF SVM, local density estimators
- Parameters for each region.
- \# of regions is linear with \# of parameters.

- RBMs, Factor models, PCA, Sparse Coding,

- Each parameter affects many regions, not just local.
- \# of regions grows (roughly)
exponentially in \# of parameters.

Bengio, 2009, Foundations and Trends in Machine Leârning

Inspiration from Visual Cortex

Success Story: Speech Recognition

Success Story: Image Recognition

- Deep Convolutional Nets for Vision (Supervised)

1.2 million training images

1000 classes

Why Training is Hard

- First hypothesis: Hard optimization problem (underfitting)
> vanishing gradient problem
> saturated units block gradient propagation
-This is a well known problem in recurrent neural networks

Why Training is Hard

- Second hypothesis: Overfitting
> we are exploring a space of complex functions
> deep nets usually have lots of parameters
- Might be in a high variance / low bias situation

Why Training is Hard

- First hypothesis (underfitting): better optimize
> Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
> Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
> Unsupervised pre-training
Stochastic drop-out training
- For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Unsupervised Pre-training

- Initialize hidden layers using unsupervised learning
> Force network to represent latent structure of input distribution

> Encourage hidden layers to encode that structure

Unsupervised Pre-training

- Initialize hidden layers using unsupervised learning
> This is a harder task than supervised learning (classification)

> Hence we expect less overfitting

Autoencoders: Preview

- Feed-forward neural network trained to reproduce its input at the output layer

Decoder

Autoencoders: Preview

- Loss function for binary inputs

$$
\begin{aligned}
& l(f(\mathbf{x}))=-\sum_{k}\left(x_{k} \log \left(\widehat{x}_{k}\right)+\left(1-x_{k}\right) \log \left(1-\widehat{x}_{k}\right)\right) \\
& >\quad \text { Cross-entropy error function } \quad f(\mathbf{x}) \equiv \widehat{\mathbf{x}}
\end{aligned}
$$

- Loss function for real-valued inputs

$$
l(f(\mathbf{x}))=\frac{1}{2} \sum_{k}\left(\widehat{x}_{k}-x_{k}\right)^{2}
$$

> sum of squared differences
> we use a linear activation function at the output

Pre-training

- We will use a greedy, layer-wise procedure
> Train one layer at a time with unsupervised criterion
> Fix the parameters of previous hidden layers
> Previous layers can be viewed as feature extraction

Pre-training

- Unsupervsed Pre-training
> first layer: find hidden unit features that are more common in training inputs than in random inputs
> second layer: find combinations of hidden unit features that are more common than random hidden unit features
> third layer: find combinations of combinations of ...
- Pre-training initializes the parameters in a region such that the near local optima overfit less the data

Fine-tuning

- Once all layers are pre-trained
> add output layer
> train the whole network using supervised learning
- Supervised learning is performed as in a regular network
> forward propagation, backpropagation and update
- We call this last phase fine-tuning
> all parameters are "tuned" for the supervised task at hand
> representation is adjusted to be more discriminative

Why Training is Hard

- First hypothesis (underfitting): better optimize
> Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
> Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
> Unsupervised pre-training
> Stochastic drop-out training
- For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Dropout

- Key idea: Cripple neural network by removing hidden units stochastically
> each hidden unit is set to 0 with probability 0.5
> hidden units cannot co-adapt to other units
> hidden units must be more generally useful
- Could use a different dropout probability, but 0.5 usually works well

Dropout

- Use random binary masks $\mathrm{m}^{(k)}$
> layer pre-activation for $\mathrm{k}>0$

$$
\mathbf{a}^{(k)}(\mathbf{x})=\mathbf{b}^{(k)}+\mathbf{W}^{(k)} \mathbf{h}^{(k-1)}(\mathbf{x})
$$

> hidden layer activation ($\mathrm{k}=1$ to L):

$$
\mathbf{h}^{(k)}(\mathbf{x})=\mathbf{g}\left(\mathbf{a}^{(k)}(\mathbf{x})\right) \odot \mathbf{m}^{(k)}
$$

> Output activation ($\mathrm{k}=\mathrm{L}+1$)

$$
\mathbf{h}^{(L+1)}(\mathbf{x})=\mathbf{o}\left(\mathbf{a}^{(L+1)}(\mathbf{x})\right)=\mathbf{f}(\mathbf{x}) \quad \mathbf{W}^{(1)}
$$

Backpropagation Algorithm

- Perform forward propagation
- Compute output gradient (before activation):

$$
\nabla_{\mathbf{a}^{(L+1)}(\mathbf{x})}-\log f(\mathbf{x})_{y} \Longleftarrow-(\mathbf{e}(y)-\mathbf{f}(\mathbf{x}))
$$

Includes the mask $\mathrm{m}^{(k-1)}$

- For $\mathrm{k}=\mathrm{L}+1$ to 1
- Compute gradients w.r.t. the hidden layer parameters:

$$
\begin{aligned}
\nabla_{\mathbf{W}^{(k)}}-\log f(\mathbf{x})_{y} & \Longleftarrow\left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})}-\log f(\mathbf{x})_{y}\right) \mathbf{h}^{(k-1)}(\mathbf{x})^{\top} \\
\nabla_{\mathbf{b}^{(k)}}-\log f(\mathbf{x})_{y} & \Longleftarrow \nabla_{\mathbf{a}^{(k)}(\mathbf{x})}-\log f(\mathbf{x})_{y}
\end{aligned}
$$

- Compute gradients w.r.t. the hidden layer below:

$$
\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})}-\log f(\mathbf{x})_{y} \Longleftarrow \mathbf{W}^{(k)^{\prime}}\left(\nabla_{\mathbf{a}^{(k)}(\mathbf{x})}-\log f(\mathbf{x})_{y}\right)
$$

- Compute gradients w.r.t. the hidden layer below (before activation):

$$
\nabla_{\mathbf{a}^{(k-1)}(\mathbf{x})}-\log f(\mathbf{x})_{y} \Longleftarrow\left(\nabla_{\mathbf{h}^{(k-1)}(\mathbf{x})}-\log f(\mathbf{x})_{y}\right) \odot\left[\ldots, g^{\prime}\left(a^{(k-1)}(\mathbf{x})_{j}\right), \ldots\right]
$$

Dropout at Test Time

- At test time, we replace the masks by their expectation
> This is simply the constant vector 0.5 if dropout probability is 0.5
> For single hidden layer: equivalent to taking the geometric average of all neural networks, with all possible binary masks
- Can be combined with unsupervised pre-training
- Beats regular backpropagation on many datasets
- Ensemble: Can be viewed as a geometric average of exponential number of networks.

Why Training is Hard

- First hypothesis (underfitting): better optimize
> Use better optimization tools (e.g. batch-normalization, second order methods, such as KFAC)
> Use GPUs, distributed computing.
- Second hypothesis (overfitting): use better regularization
> Unsupervised pre-training
> Stochastic drop-out training
- For many large-scale practical problems, you will need to use both: better optimization and better regularization!

Batch Normalization

- Normalizing the inputs will speed up training (Lecun et al. 1998)
> could normalization be useful at the level of the hidden layers?
- Batch normalization is an attempt to do that (loffe and Szegedy, 2014)
> each unit's pre-activation is normalized (mean subtraction, stddev division)
> during training, mean and stddev is computed for each minibatch
> backpropagation takes into account the normalization

> at test time, the global mean / stddev is used

Batch Normalization

Input: Values of x over a mini-batch: $\mathcal{B}=\left\{x_{1 \ldots m}\right\}$; Parameters to be learned: γ, β
Output: $\left\{y_{i}=\mathrm{BN}_{\gamma, \boldsymbol{\beta}}\left(x_{i}\right)\right\}$
$\mu_{\mathcal{B}} \leftarrow \frac{1}{m} \sum_{i=1}^{m} x_{i}$
// mini-batch mean
$\sigma_{\mathcal{B}}^{2} \leftarrow \frac{1}{m} \sum_{i=1}^{m}\left(x_{i}-\mu_{\mathcal{B}}\right)^{2} \quad / /$ mini-batch variance

$\widehat{x}_{i} \leftarrow \frac{x_{i}-\mu_{\mathcal{B}}}{\sqrt{\sigma_{\mathcal{B}}^{2}+\epsilon}}$	// normalize
$y_{i} \leftarrow \gamma \widehat{x}_{i}+\beta \equiv \mathrm{BN}_{\gamma, \beta}\left(x_{i}\right)$	// scale and shift

Learned linear transformation to adapt to non-linear activation function (γ and β are trained)

Batch Normalization

-Why normalize the pre-activation?
> can help keep the pre-activation in a non-saturating regime (though the linear transform $y_{i} \leftarrow \gamma \widehat{x}_{i}+\beta$ could cancel this effect)

- Why use minibatches?
> since hidden units depend on parameters, can't compute mean/stddev once and for all
> adds stochasticity to training, which might regularize

Batch Normalization

- How to take into account the normalization in backdrop?
> derivative w.r.t. x_{i} depends on the partial derivative of both: the mean and stddev
> must also update γ and β
-Why use the global mean and stddev at test time?
> removes the stochasticity of the mean and stddev
> requires a final phase where, from the first to the last hidden layer
- propagate all training data to that layer
- compute and store the global mean and stddev of each unit
> for early stopping, could use a running average

Optimization Tricks

- SGD with momentum, batch-normalization, and dropout usually works very well
- Pick learning rate by running on a subset of the data
> Start with large learning rate \& divide by 2 until loss does not diverge
> Decay learning rate by a factor of ~ 100 or more by the end of training
- Use ReLU nonlinearity
- Initialize parameters so that each feature across layers has similar variance. Avoid units in saturation.

Improving Generalization

- Weight sharing (greatly reduce the number of parameters)
- Dropout
- Weight decay (L2, L1)
- Sparsity in the hidden units

Visualization

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance

- Good training: hidden units are sparse across samples
hidden unit

Visualization

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance
- Visualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated

too noisy

too correlated

BAD

lack stru3cture
[From Marc'Aurelio Ranzato, CVPR tutorial]

Visualization

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance

- Bad training: many hidden units ignore the input and/or exhibit strong correlations

Visualization

- Check gradients numerically by finite differences
- Visualize features (features need to be uncorrelated) and have high variance
- Visualize parameters: learned features should exhibit structure and should be uncorrelated and are uncorrelated
- Measure error on both training and validation set
- Test on a small subset of the data and check the error $\rightarrow 0$.

When it does not work

- Training diverges:
> Learning rate may be too large \rightarrow decrease learning rate
$>$ BPROP is buggy \rightarrow numerical gradient checking
- Parameters collapse / loss is minimized but accuracy is low
> Check loss function: Is it appropriate for the task you want to solve?
> Does it have degenerate solutions?
- Network is underperforming
$>$ Compute flops and nr. params. \rightarrow if too small, make net larger
> Visualize hidden units/params \rightarrow fix optimization
- Network is too slow
> GPU,distrib. framework, make net smaller

