Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Capsule: A group of hidden units that jointly encode one visual entity.

Stroke

Hinton et al. ICLR 2018, Sabour et al. NeurIPS 2017

CNN Representation

Capsule Representation

One computational entity per real-world entity

Capsules: Computing Agreement

▶ Transform the feature (pose) in $f_i^{(L)}$ to the vote for the features $f_i^{(L+1)}$

$$v_{ij}^{(L)} = W_{ij}^{(L)} f_i^{(L)}$$

Compute the agreement:

$$\alpha_{ij}^{(L)} = f_j^{(L+1)\top} v_{ij}^{(L)}$$

Bi-linear relationship between capsules

Capsules: Routing

5

Determine routing probabilities:

$$f_{j}^{(L+1)} = \sum_{j} \exp \left(\alpha_{ij}^{(L)} \right)$$

$$= \text{Inverted Attention: how high-level capsules} \text{ compete with for attention of low-level capsules}$$

$$= \text{Normalization over j.}$$

 $r^{(L)}$

• Opposite to attention used in Transformer.

 \exp

$$v_{ij}^{(L)} = W_{ij}^{(L)} f_i^{(L)}$$
$$\alpha_{ij}^{(L)} = f_j^{(L+1)\top} v_{ij}^{(L)}$$

Tsai, Srivastava, Goh, Salakhutdinov ICLR 2020

Capsules: Updates

• Update layer L+1 capsule $f_i^{(L+1)}$

$$f_j^{(L+1)} = \sum_i r_{ij}^{(L)} v_{ij}^{(L)} = \sum_i r_{ij}^{(L)} W_{ij}^{(L)} f_i^{(L)}$$

- ► Note that this is a Linear Aggregation.
- ► Agreement depends on features (poses) at both layers → Iterative Updates.

Layer

Layer L

L+1

Inverted Dot-Product Attention Routing Algorithm

▶ Vote:
$$v_{ij}^{(L)} = W_{ij}^{(L)} f_i^{(L)}$$

- ► Agreement: $\alpha_{ij}^{(L)} = f_j^{(L+1)\top} v_{ij}^{(L)}$
- ► Routing Probabilities: $r_{ij}^{(L)} = \frac{\exp\left(\alpha_{ij}^{(L)}\right)}{\sum_{j} \exp\left(\alpha_{ij}^{(L)}\right)}$
- Update: $f_j^{(L+1)} = \sum_i r_{ij}^{(L)} v_{ij}^{(L)}$
- ► Repeat

Tsai, Srivastava, Goh, Salakhutdinov ICLR 2020

Capsule Net

A capsule network = a backbone CNN block + convolutional capsule layers + fully-connected capsule layers

Multimodal Language

- ► Human Language is naturally multimodal.
- It contains textual (e.g. spoken/written words), visual (e.g. body gestures) and acoustic (e.g. voice tones) modalities.
- It is important to understand both single modality and interactions between modalities in modeling multimodal language.

Interpretability

- Interpretability allows to identify crucial explanatory features for model prediction.
- Provide further insight into multimodal learning, improving model design or dataset debugging.

Multimodal Models

► We can use a linear prediction:

$$\hat{y} = \beta_1 f_a + \beta_2 f_t + \beta_3 f_v + \beta_{12} f_{at} + \beta_{13} f_{av} + \beta_{23} f_{tv} + \beta_{123} f_{atv}$$

- Betas can provide global interpretability: the general insight of the importance of explanatory features over the whole dataset
- Local interpretability: the high-resolution insight of feature importance specifically depending on each *individual* sample during training/inference

 $\mathbf{W}^{(2t)}$

 $\mathbf{W}^{(1t)}$

Audio

 $\mathbf{W}^{(3t)}$

Multimodal Models: In Practice Multimodal DBM Joint Representation $W^{(3m)}$ •••(____ $h^{(2m)}$ $h^{(2t)}$ Nonlinear $W^{(2m)}$ $\mathbf{h}^{(1t)}$ $h^{(1m)}$. . . $\mathbf{W}^{(1\mathbf{m})}$ Features f_{at} f_a f_t f_{atv} unimodal bimodal trimodal •••• . . . Encoding Function Visual Text Text Visual Audio

Snoek et al. 2005, Srivastava et al 2014, Tsai et. al ICLR, 2019

Capsule: A group of hidden units that jointly encode one visual entity.

Hinton et al. ICLR 2018, Sabour et al. NeurIPS 2017

Multimodal Routing

- Dynamically adjust local weights of unimodal/multimodal features
- Iteratively update concepts and routing coefficients
- Use the updated concepts for prediction

Dynamic Weight Assignment

Input Representation

- For example, let x_a , x_t represent raw audio/textual features
- Trough encoding, we obtain feature vectors f_a , f_t , and bimondal f_{at}

Model

• Concepts: 1-d vectors, where $c_j \in \mathbb{R}^{d_c}$ representing the concept for the jth class

Model

Tsai, Ma, Yang, Salakhutdinov, Morency, 2020

Dynamic Routing

- Agreement: bilinear model: $\alpha_{ij} = c_j^\top W_{ij} f_i$
 - Routing coefficients:

$$c_j = \sum_i p_i r_{ij}(W_{ij}f_i)$$

concepts C_j W_{ij} features f_i

Dynamic Routing

Concept Update

concepts V_{ij} features f_i

 Softmax/Sigmoid is then applied on the logits to obtain the final prediction

Analysis

I had sharp, shooting pains going through my feet ...

(much frowned with grimace) (painful voice)

I think that they could have done a much better job on that movie.

(wry smile) (reluctant voice)

Red to Blue: Most High to Most Low importance features

High

Analysis

	Sentiment 0	Sentiment -3	Sentiment +3	
$p_i r_{ij}$	t a v ta av vt tav Modality	t a v ta av vt tav Modality	t a v ta av vt tav Modality	Low
Text	This movie is musical. So, if you don't like musicals, don't go see this movie.	I'm going to have to say do not get this movie. Do not go out there and watch it. It's just no good.	So it's fun, it's diverse, it requires good communication skills and we also enjoy just hanging around talking about flying.	
Vision				
	(frowned)	(shaking head with grimace)	(slight smiling)	
Acoustic	(neutral and calm voice)	(disappointed voice)	(satisfied voice)	

Red to Blue: Most High to Most Low importance features

Applications in Vision

► We already start with nonlinear representations:

Geometric Capsules

► Each capsule contains pose and feature

Srivastava, Goh, Salakhutdinov, 2020

Geometric Capsules

Geometric Capsules

► Each capsule can be viewed from any viewpoint z:

Pose Feature
$$c = (c_q, c_f)$$

▶ Feature c_f is pose invariant

Input Object as viewed from inferred pose

Input Object as viewed from inferred pose

Multi-View Agreement: Unsupervised Learning

- ► F(O|z_k): parameterized set-to-value function
- $\Delta z_k = Q(O|z_k)$ such that $z_k \circ \Delta z_k$ canonical pose of the object.
- $F(O|z_k \circ \Delta z_k)$ will be the same for all k.

Multi-View Agreement

Points to Parts

Representing Parts using Folding Net

► FoldingNet (Yang et al., CVPR 2018) is a way to parametrize folded surfaces.

Points to Parts Autoencoder

- Let $X = \{\mathbf{x}^i\}_{i=1}^I, \mathbf{x}^i \in \mathbb{R}^3$ be the set of 3-D points
- Let $V = \{(\mathbf{v}_q^j, \mathbf{v}_f^j)\}_{j=1}^J$ be the set of J part capsules
- Let $R_{ij} \in [0,1]$ probability of point i belonging to part capsule j
- ► Iteratively update V and R.

Points to Parts Decoder

- Decoder: $G: (\mathbb{R}^D \times \mathbb{R}^2) \to \mathbb{R}^3$ maps capsule's feature $\mathbf{v}_f^{\mathcal{I}}$ concatenated with a 2D point sampled from a unit square to a 3D point
- The pose \mathbf{v}_q^j transform the generated 3D surface to the global frame: $Y^j = \{\mathbf{v}_q^j \circ G(\mathbf{v}_f^j, s) | s \in S\}$

Points to Parts Routing

 \blacktriangleright Point \mathbf{x}^i should be routed to capsule j if it is well explained by some point in Y^j

$$b_{ij} \equiv \log P(\boldsymbol{x}^i | Y^j) \propto -\min_{\boldsymbol{y} \in Y^j} \left(\frac{||\boldsymbol{x}^i - \boldsymbol{y}||^2}{\sigma_j^2} + \log(\sigma_j) \right)$$

• The log probs are used to compute $R_{ij} \in [0,1]$ using softmax over J capsules.

Points to Parts Encoder

- Given R, Multi-View Agreement is used to infer each capsule $(\mathbf{v}_q^j, \mathbf{v}_f^j)$
- ► Generate K random viewpoints. 3D points are then embedded, pooled and projected

$$\Delta \boldsymbol{z}_{k}^{j} = Q(X|\boldsymbol{z}_{k}^{j}, R) = Q_{\text{project}}(\text{maxpool}_{i}R_{ij}Q_{\text{embed}}((\boldsymbol{z}_{k}^{j})^{-1} \odot \boldsymbol{x}^{i}))$$
$$\boldsymbol{f}_{k}^{j} = F(X|\boldsymbol{z}_{k}^{j} \circ \Delta \boldsymbol{z}_{k}^{j}, R) = F_{\text{project}}(\text{maxpool}_{i}R_{ij}F_{\text{embed}}((\boldsymbol{z}_{k}^{j} \circ \Delta \boldsymbol{z}_{k}^{j})^{-1} \odot \boldsymbol{x}^{i}))$$

Points to Parts Autoencoder Loss

► Chamfer Loss:

$$\mathcal{L} = d_{\text{Chamfer}}(X, Y) = \frac{1}{|Y|} \sum_{\boldsymbol{y} \in Y} \min_{\boldsymbol{x} \in X} ||\boldsymbol{x} - \boldsymbol{y}||^2 + \frac{1}{|X|} \sum_{\boldsymbol{x} \in X} \min_{\boldsymbol{y} \in Y} ||\boldsymbol{x} - \boldsymbol{y}||^2$$

Parts to Object Autoencoder

Results:

- ► Datasets : Training on ShapeNet Core 55, Testing on ModelNet40.
 - ShapeNet: 55-object-category, with 57,448 CAD models, each uniformly sampled to 2048 3D points. We used 2,468 test objects
 - ▶ Use 16 part capsules, each with 16-D feature
 - Entire object is modeled with 1024-D feature
- ► Two things to evaluate:
- Pose-invariance of the feature component: Object retrieval
 - Can the inferred feature be used to query and find an object, if it is present in a different view in the database?
 - ► Metric: Top-k retrieval accuracy.
- Pose-equivariance of the pose component: Alignment
 - Given two rotated views of the object, can the inferred pose be used to align them?
 - ▶ Metric: Relative Rotation Error.

Input Object as viewed from inferred pose

Input Object as viewed from inferred pose

▶ If the inferred pose is rotation equivariant, the superposed point clouds should align.

Object	Reference object instance	Superimposed point cloud in recovered canonical pose		
class		Setting A	Setting C	Setting E
Monitor		0		
Bed		ð		
Chair				
Sofa	A		Ø	Ø
Toilet	R	3	P	

Setting			Average	Instance
K	$ heta_\delta$	steps	E_R	Retrieval
A 1	45	1	0.184 ± 0.022	0.42 ± 0.09
B 2	45	1	0.106 ± 0.020	0.78 ± 0.07
C 4	45	1	0.099 ± 0.018	0.82 ± 0.05
D 4	180	1	0.056 ± 0.021	0.99 ± 0.01
E 4	180	3	0.021 ± 0.003	0.95 ± 0.01

Reconstructions

Reconstructions

Conclusion

- Capsules allow us to potentially learn more interpretable object representations via learning "parts – to – whole" representations compared to black-box deep neural nets, such as CNNs.
 - Multi-Modal Routing can provide interpretability without sacrificing performance
 - Geometric Capsules can provide interpretable parts based representation
- ► Adaptively set the number of part capsules.
- ► 3D Scene flow using consistency of part-whole relationships over time.
- ► Need better inference (routing) algorithms
- How can we apply capsules to the raw input data (raw audio, visual, textual input).