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Capsules
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Part

Object

Capsule: A group of hidden units that jointly encode one visual entity.

Stroke

Stroke

Hinton et al. ICLR 2018, Sabour et al. NeurIPS 2017 



Capsules
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CNN Representation Capsule Representation
One computational entity per real-world entity



Capsules: Computing Agreement 
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� Transform the feature (pose) in        to the vote for the features

Layer L

Layer 
L+1

� Compute the agreement: 

� Bi-linear relationship between capsules



Capsules: Routing 
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� Determine routing probabilities:

Layer L

Layer 
L+1

� Inverted Attention: how high-level capsules 
compete with for attention of low-level 
capsules

� Normalization over j. 
� Opposite to attention used in Transformer. 

Tsai, Srivastava, Goh, Salakhutdinov ICLR 2020



Capsules: Updates
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� Update layer L+1  capsule 

Layer L

Layer 
L+1

� Note that this is a Linear Aggregation.
� Agreement depends on features (poses) at 

both layers à Iterative Updates. 



Inverted Dot-Product Attention Routing Algorithm 
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� Vote: 

� Agreement: 

� Routing Probabilities:

� Update:

� Repeat  

Tsai, Srivastava, Goh, Salakhutdinov ICLR 2020
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Capsule Net



Multimodal Language 
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� Human Language is naturally multimodal.
� It contains textual (e.g. spoken/written words), visual (e.g. body gestures) and 

acoustic (e.g. voice tones) modalities.
� It is important to understand both single modality and interactions between 

modalities in modeling multimodal language.



Tsai, Liang, Zadeh, Morency, Salakhutdinov, ICLR 2019



Interpretability 
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� Interpretability allows to identify crucial explanatory features for model 
prediction. 

� Provide further insight into multimodal learning, improving model design or 
dataset debugging.

Multimodal 
Input Black-

box
Prediction



Multimodal Models
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Features

unimodal bimodal

Audio Text Visual

trimodal

· · ·

Encoding 
Function

� We can use a linear prediction: 

� Betas can provide global interpretability: the 
general insight of the importance of explanatory 
features over the whole dataset

� Local interpretability: the high-resolution insight of 
feature importance specifically depending on each 
individual sample during training/inference



Multimodal Models: In Practice
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Features

unimodal bimodal

Audio Text Visual

trimodal
Encoding 
Function · · ·

· · ·

Text

· · ·

· · ·

Audio
· · ·
· · ·

· · ·
· · ·

Visual

· · ·

· · ·
Nonlinear

Snoek et al. 2005, Srivastava et al 2014, Tsai et. al ICLR, 2019



Capsules
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Part

Object

Capsule: A group of hidden units that jointly encode one visual entity.

Stroke

Stroke

Hinton et al. ICLR 2018, Sabour et al. NeurIPS 2017 



Multimodal Routing 
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Bimodal Interaction

� Dynamically adjust local 
weights of 
unimodal/multimodal 
features

� Iteratively update concepts 
and routing coefficients

� Use the updated concepts 
for prediction Dynamic Weight Assignment



Input Representation
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� For example, let xa, xt represent raw audio/textual features
� Trough encoding, we obtain feature vectors    ,    , and bimondal

Features

unimodal bimodal

Audio Text

Encoding 
Function

Probability of 
Existence

Tsai, Ba, Liang, Kolter, Morency, Salakhutdinov, ACL2019



Model

17

� Concepts: 1-d vectors, where            representing the concept for the jth class

Features

Concepts

Concept 
Decoding

H
appy

Angry

N
eutral

(Prediction)

Linear transform

� Features à Parts, 
Concepts à Objects 

Tsai, Ma, Yang, Salakhutdinov, Morency, 2020



Model
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Tsai, Ma, Yang, Salakhutdinov, Morency, 2020



Dynamic Routing 
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� Agreement: bilinear model:

features

concepts

� Routing coefficients:

� Concept update:



Dynamic Routing 
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� Concept Update

features

concepts

Probability of 
existence of 
feature fi. 

Probability of 
routing feature i
to concept j. 

Linear transform 
of feature i into 
concept space 

� Prediction:

� Softmax/Sigmoid is then applied on the logits to 
obtain the final prediction 



Analysis
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Red to Blue: Most High to Most Low importance features



Analysis
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Red to Blue: Most High to Most Low importance features



Applications in Vision
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� We already start with nonlinear representations:

Features

unimodal bimodal

Audio Text

Encoding 
Function

Probability of 
Existence



Geometric Capsules 
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� Each capsule contains pose and feature

Pose Feature

Translation Rotation

Srivastava, Goh, Salakhutdinov, 2020



Geometric Capsules 
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=

Global 
coordinate 

frame

Object’s 
canonical 

frame



Geometric Capsules 
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� Each capsule can be viewed from any viewpoint z:

� Feature      is pose invariant 

Pose Feature



Pose Equivariance Results
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Object as viewed from 
inferred poseInput Object as viewed from 

inferred poseInput



Multi-View Agreement: Unsupervised Learning 
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viewpoint

viewpoint

Obj
ect
Object O (set 
of 3-D points)

Features should 
be the same

viewpoint 

viewpoint 

feature

feature

� : parameterized 
set-to-value function 

� such that  
.              is a canonical 
pose of the object.                                  

� will be 
the same for all k. 



Multi-View Agreement 
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viewpoint

viewpoint

feature

feature

Obj
ect

viewpoint 

viewpoint 

Features should 
be the same

pose-
invariant

pose

Object O (set 
of 3-D points)

� Decoder          reconstructs the object in its canonical frame
� Transformed:                 reconstructs O.  
� can be learned jointly. 

Transform
Decoder 



Points to Parts
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Input

Part Visualization



Representing Parts using Folding Net 
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� FoldingNet (Yang et al., CVPR 2018) is a way to parametrize folded surfaces.

DNN



Points to Parts Autoencoder
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� Let                                    be the set of 3-D points

� Let                                be the set of J part capsules  

� Let                   probability of point i belonging to part capsule j

� Iteratively update V and R.  



Points to Parts Decoder
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� Decoder:                                 maps capsule’s feature       concatenated with 
a 2D point sampled from a unit square to a 3D point 

� The pose      transform the generated 3D surface to the global frame:



Points to Parts Routing
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� Point      should be routed to capsule j if it is well explained by some point in

� The log probs are used to compute                   using softmax over J capsules. 



Points to Parts Encoder
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� Given R, Multi-View Agreement is used to infer each capsule

� Generate K random viewpoints. 3D points are then embedded, pooled and projected 



Points to Parts Autoencoder Loss
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� Chamfer Loss:



Parts to Object Autoencoder
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Results:

39

� Datasets : Training on ShapeNet Core 55, Testing on ModelNet40.
� ShapeNet: 55-object-category, with 57,448 CAD models, each uniformly sampled to 2048 

3D points. We used 2,468 test objects
� Use 16 part capsules, each with 16-D feature
� Entire object is modeled with 1024-D feature 

� Two things to evaluate:
� Pose-invariance of the feature component: Object retrieval

� Can the inferred feature be used to query and find an object, if it is present in a different 
view in the database?

� Metric: Top-k retrieval accuracy. 
� Pose-equivariance of the pose component: Alignment

� Given two rotated views of the object, can the inferred pose be used to align them?
� Metric: Relative Rotation Error.



Pose Equivariance Results
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Point cloud in 
recovered
canonical pose
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cloud in recovered 
canonical pose



Pose Equivariance Results
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Object as viewed from 
inferred poseInput Object as viewed from 

inferred poseInput

Input Object as viewed from 
inferred pose



Pose Equivariance Results
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� If the inferred pose is rotation equivariant, the superposed point clouds should align. 



Reconstructions 
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Reconstructions 
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Conclusion

� Capsules allow us to potentially learn more interpretable object representations 
via learning “parts – to – whole” representations compared to black-box deep 
neural nets, such as CNNs. 
� Multi-Modal Routing can provide interpretability without sacrificing performance 
� Geometric Capsules can provide interpretable parts based representation  

� Adaptively set the number of part capsules.
� 3D Scene flow using consistency of part-whole relationships over time.
� Need better inference (routing) algorithms
� How can we apply capsules to the raw input data (raw audio, visual, textual 

input). 
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