Embodied AI: Language and Perception

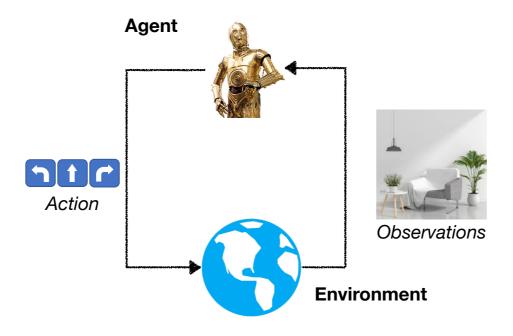
Russ Salakhutdinov

Machine Learning Department Carnegie Mellon University

Learning Behaviors

Learning to map sequences of observations to actions, for a particular goal

Physical Intelligence

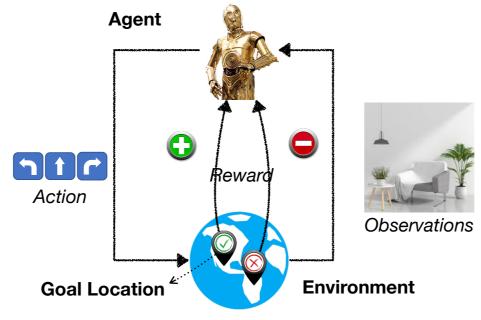


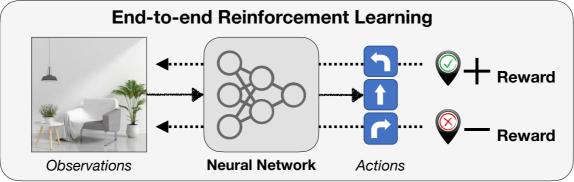
Agent needs to move in the world physically.

Current actions affect future observations.

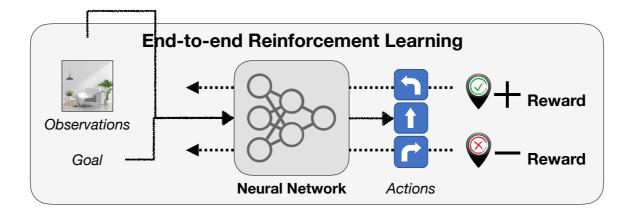
Require Spatial and Semantic Understanding.

Navigation





Goal-conditioned Navigation



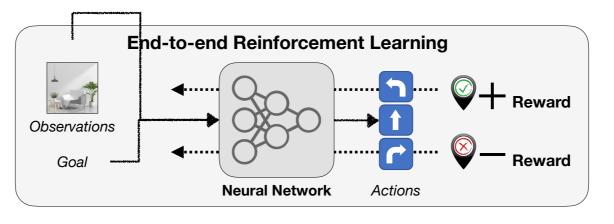
Language Goal

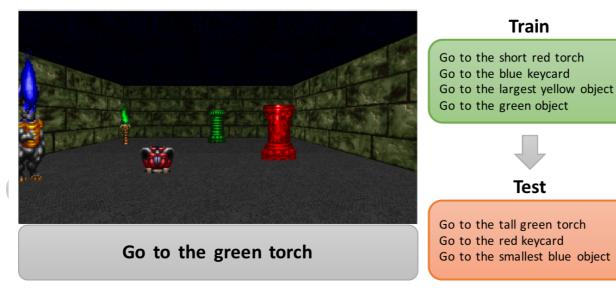
Blue Chair Largest TV

White Sofa

- Convenient for humans
- Compositionality

Goal-conditioned Navigation



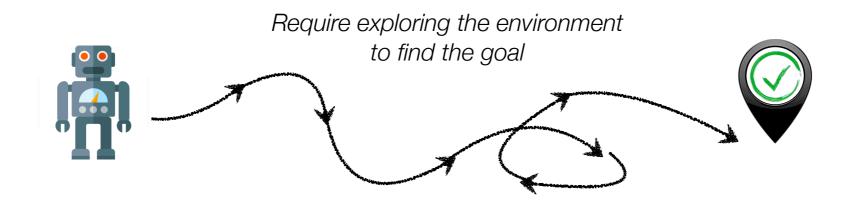


Language Goal

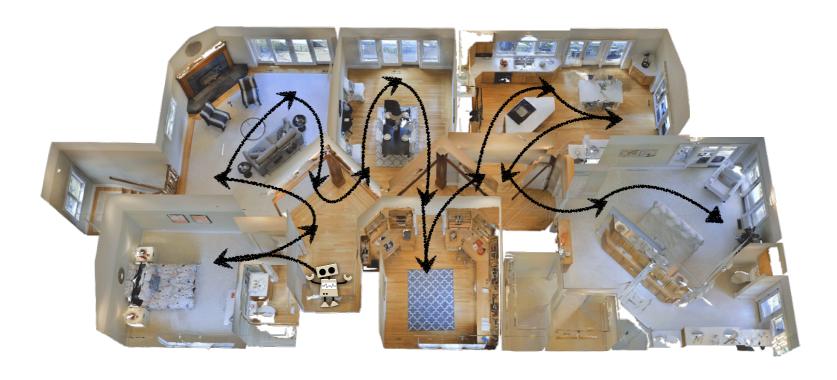
Blue Chair Largest TV White Sofa

- Convenient for humans
- Compositionality

Navigation Tasks



Exploration



Exploration

• How to efficiently explore an unseen environment?

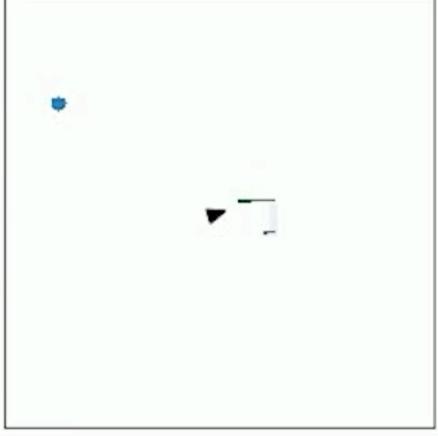
- Learning about mapping, pose estimation and path-planning in expensive
- Sample inefficiency
- Poor generalization
- Our solution:
 - Incorporating the strengths of learning
 - Modular and hierarchical system

Preview: Visual Navigation in the Real World

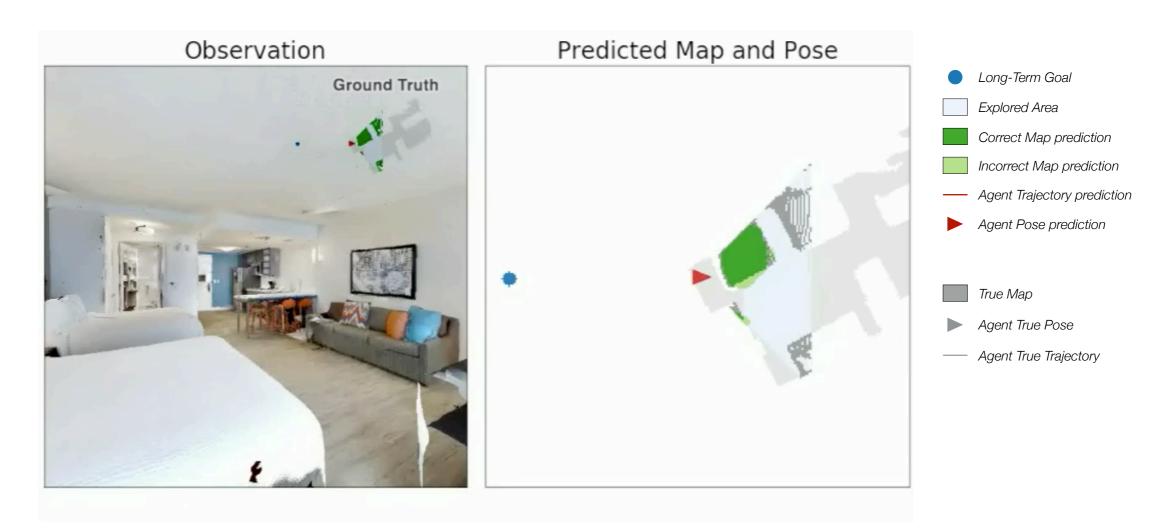
Observation



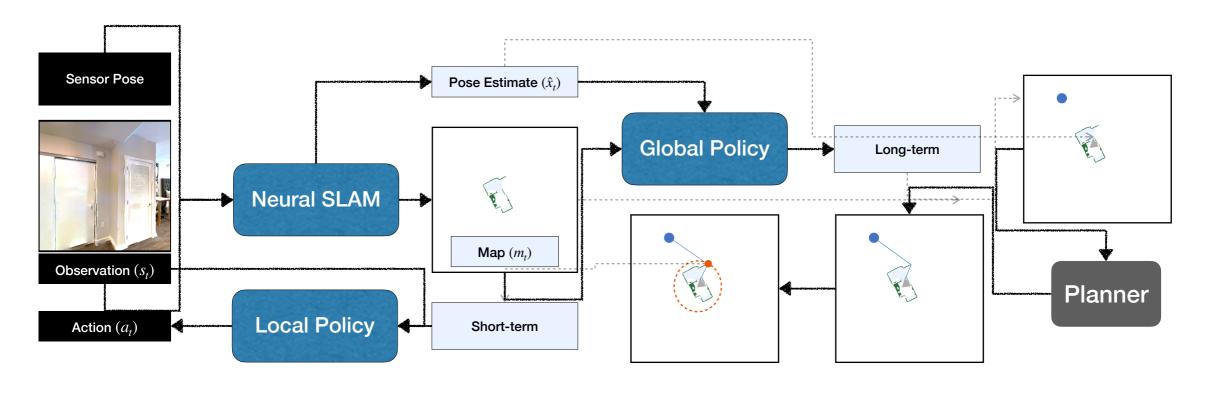
Predicted Map and Pose



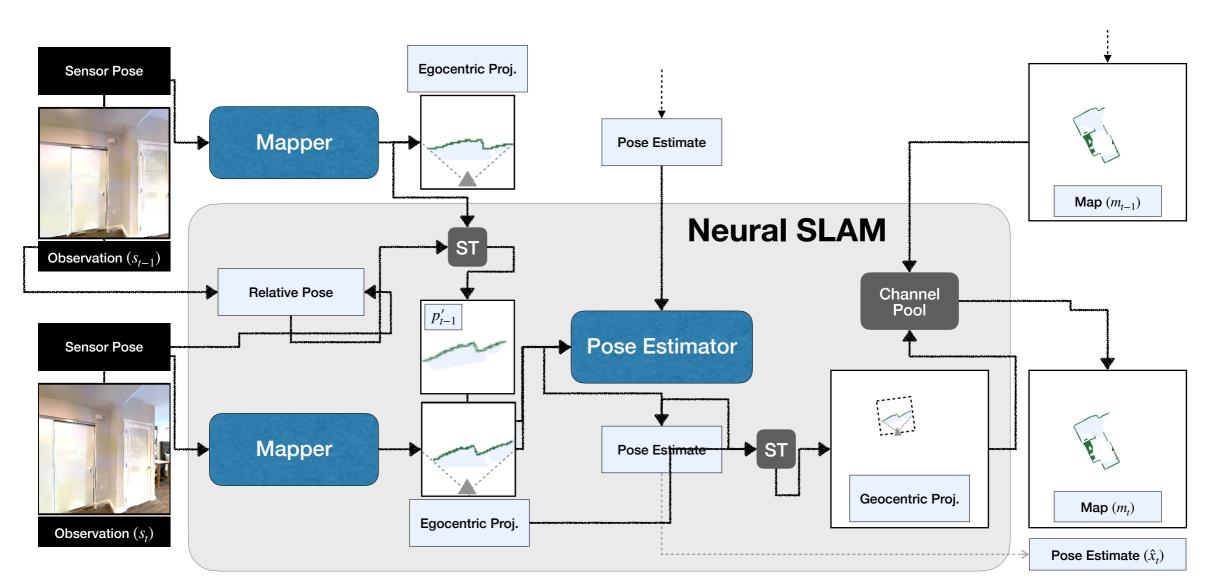
Exploration in Gibson Environment



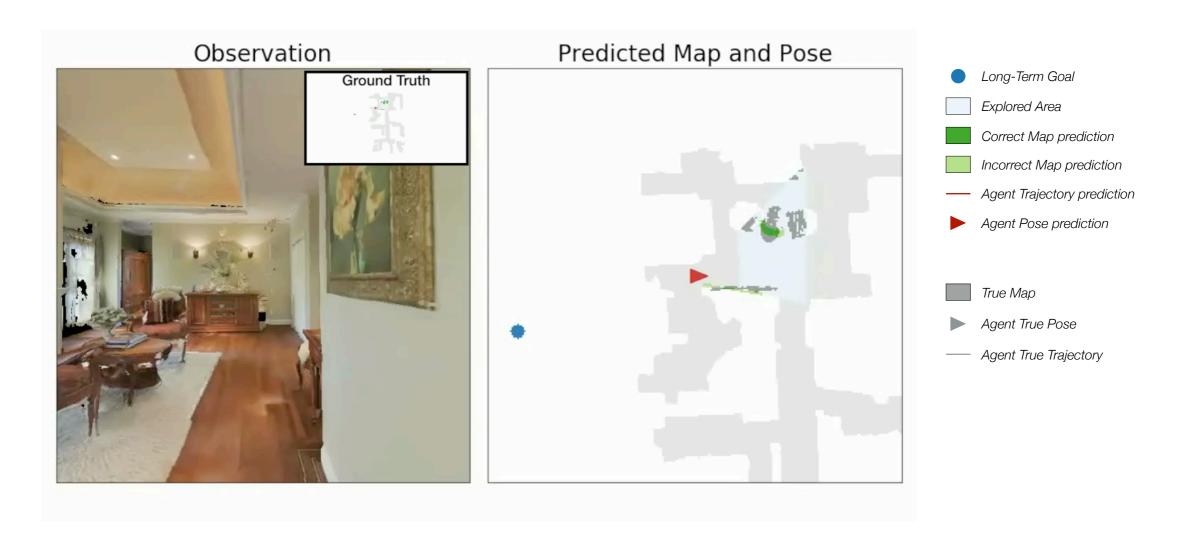
Active Neural SLAM: Overview



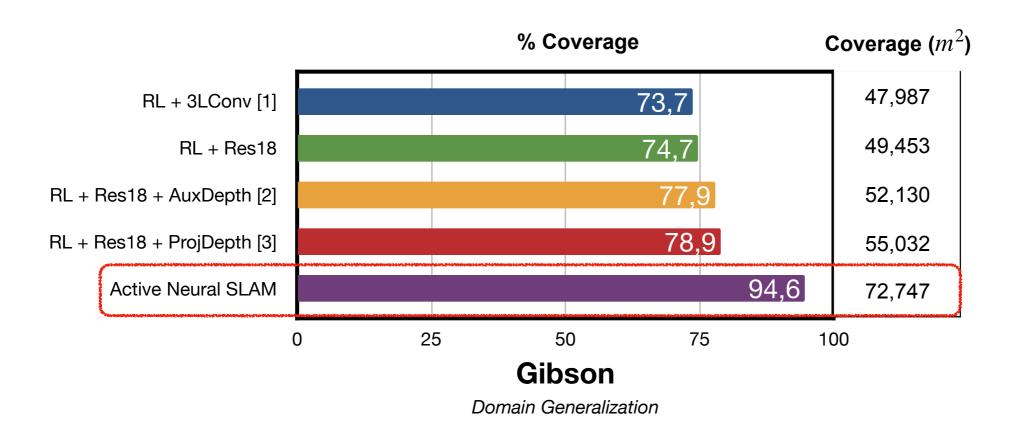
Neural SLAM Module



Domain Generalization: Matterport3D

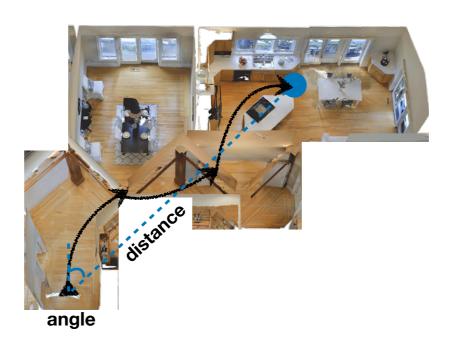


Exploration Results



Goal-conditioned Navigation

Point-Goal Navigation



Point-Goal Navigation

Objective: Navigate to goal coordinates

Metric: Success weighted by invers

$$\frac{1}{N} \sum_{i=1}^{N} Success * \frac{ShortestPathLength}{PathLength}$$

Global Policy -> always gives the point goal
 the long-term goal

angle

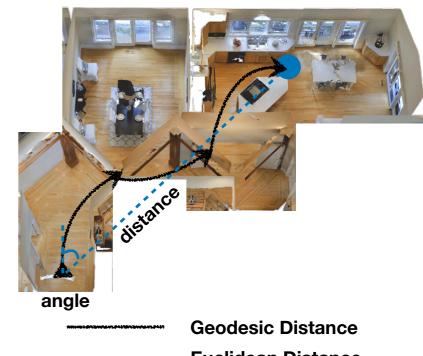
Harder Datasets

Hard-GEDR

- Higher Geodesic to Euclidean distance ratio (GEDR)
- Avg GEDR 2.5 vs 1.37, minimum GEDR is 2

Hard-Dist

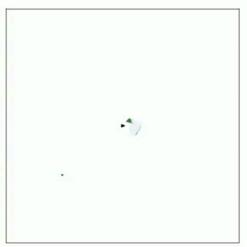
- Higher Geodesic distance
- Avg Dist 13.5m vs 7.0m, minimum Dist is 10m

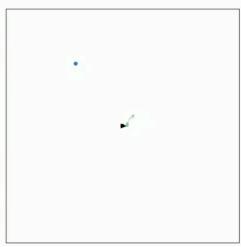


Euclidean Distance

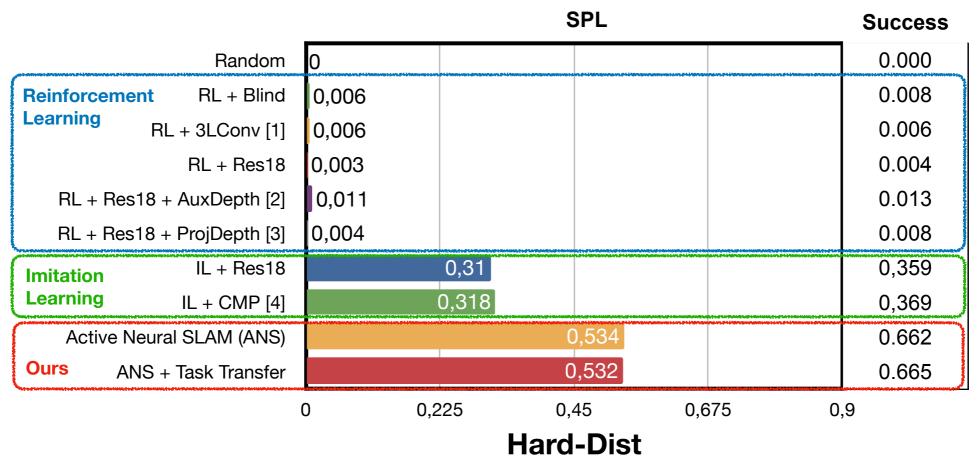
Point-Goal Navigation

Gibson MP3D



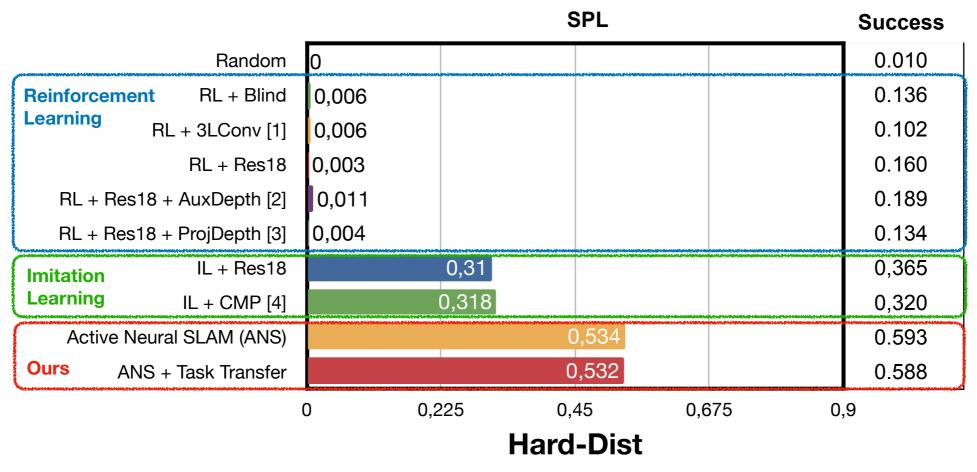


Results



*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Results



*Adapted from [1] Lample & Chaplot. AAAI-17, [2] Mirowski et al. ICLR-17, [3] Chen el al. ICLR-19, [4] Gupta et al. CVPR-17

Navigation Tasks

Point Goal

Object Goal

Chair TV Sofa

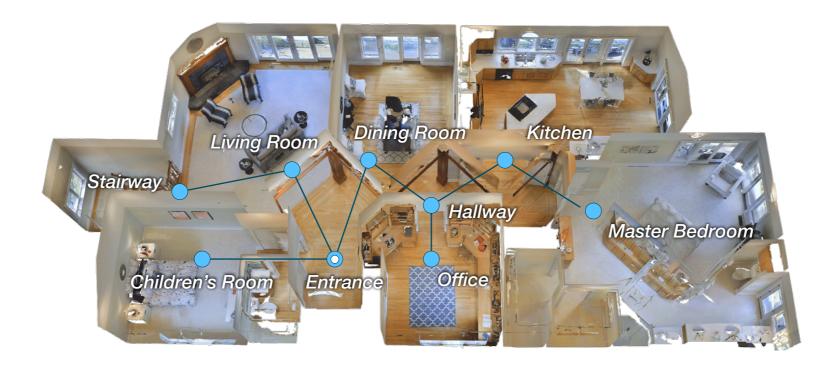
Language Goal

Blue Chair Largest TV White Sofa

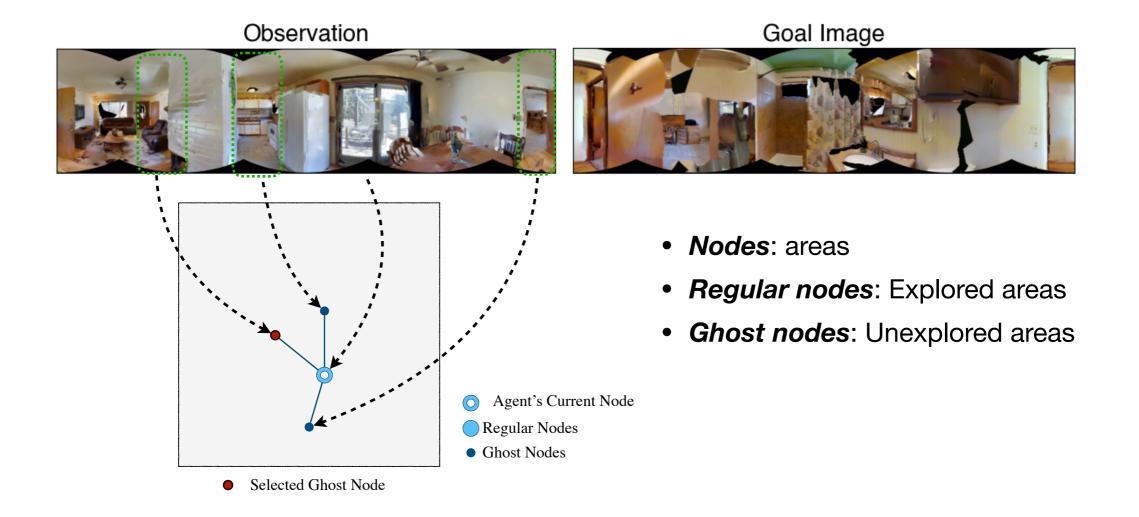
Semantic Priors and Common-Sense

- Humans use semantic priors and common-sense to explore and navigate everyday
- Most navigation algorithms struggle to do so

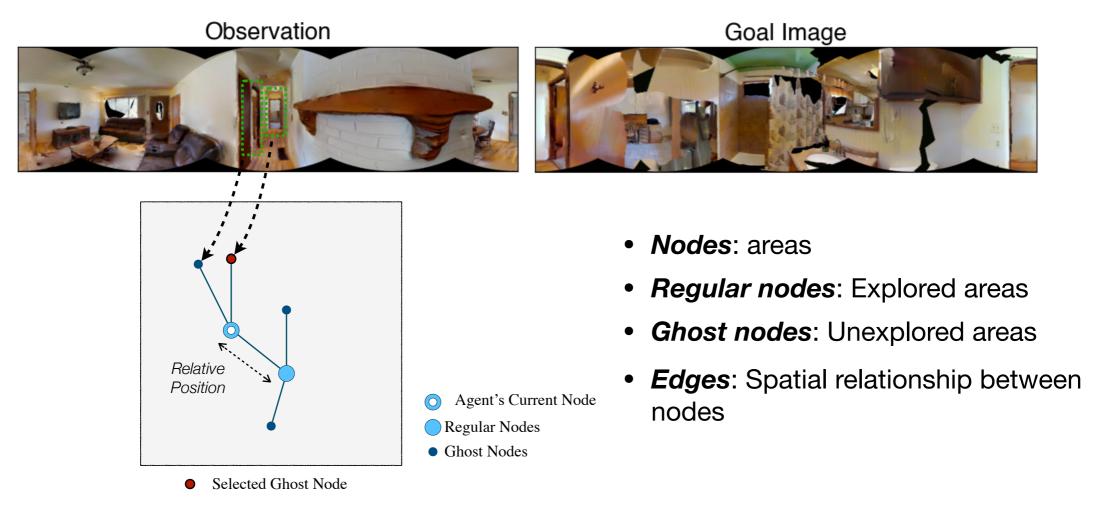
Topological Maps



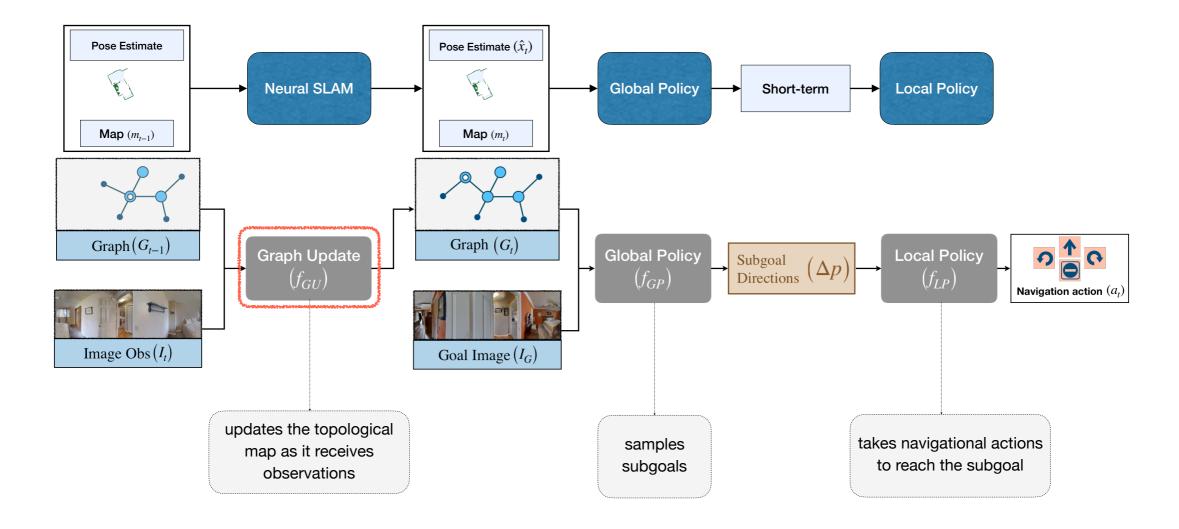
Topological Graph Representation

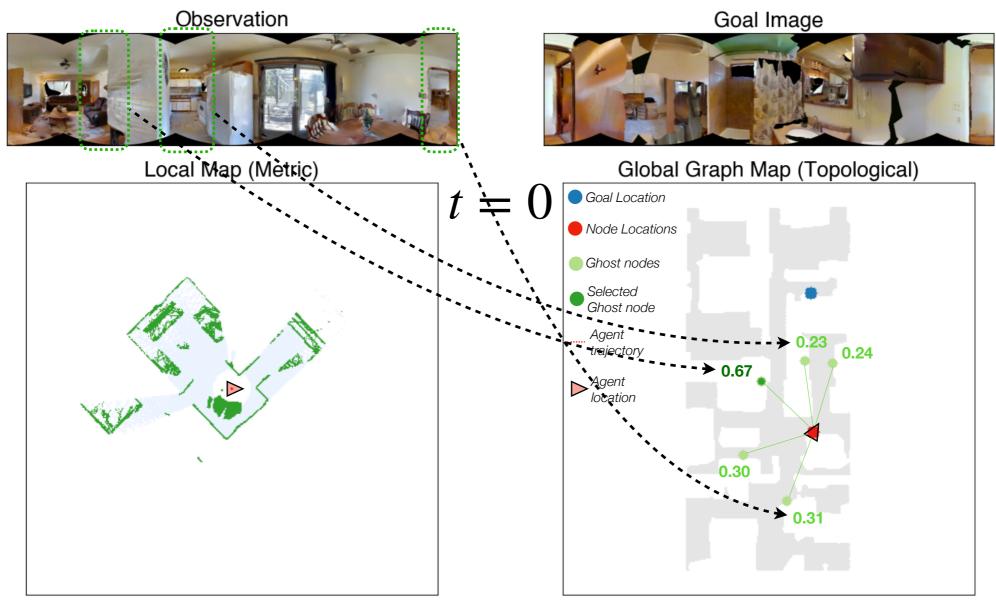


Topological Graph Representation



Neural Topological SLAM

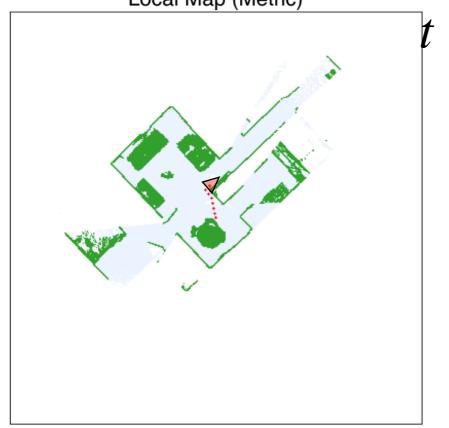


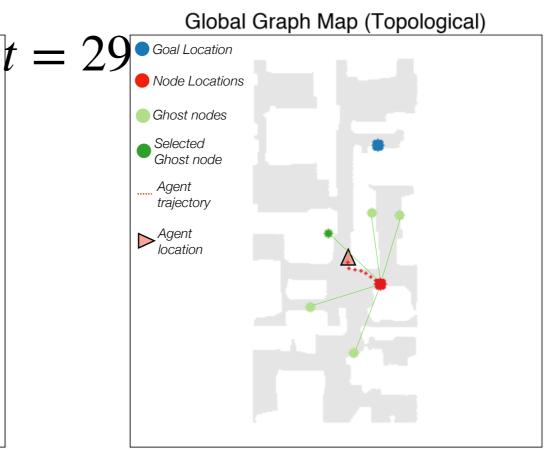


Observation

Local Map (Metric)

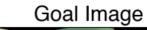
Goal Image



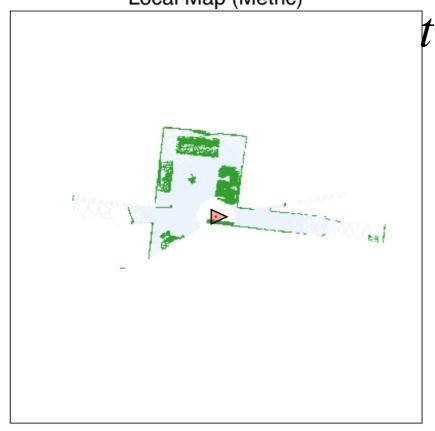


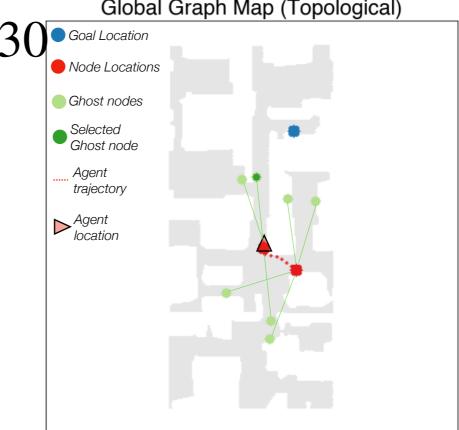
Observation

Local Map (Metric)



Global Graph Map (Topological)

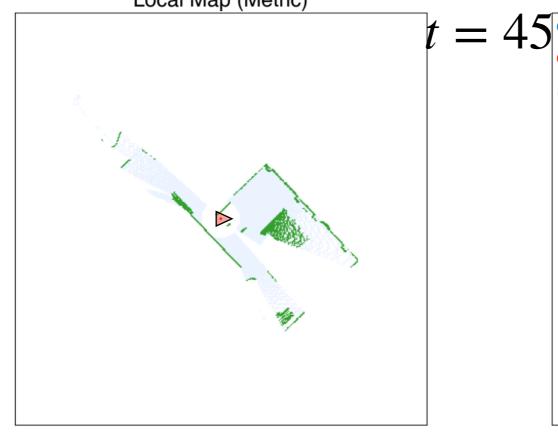


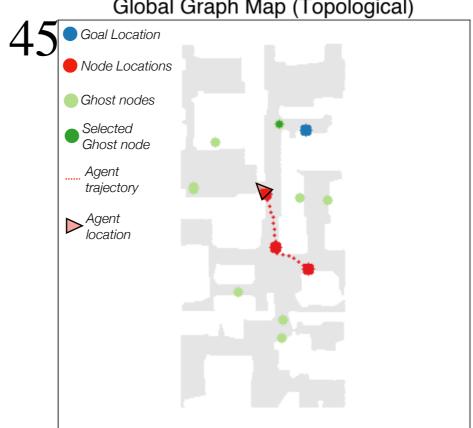


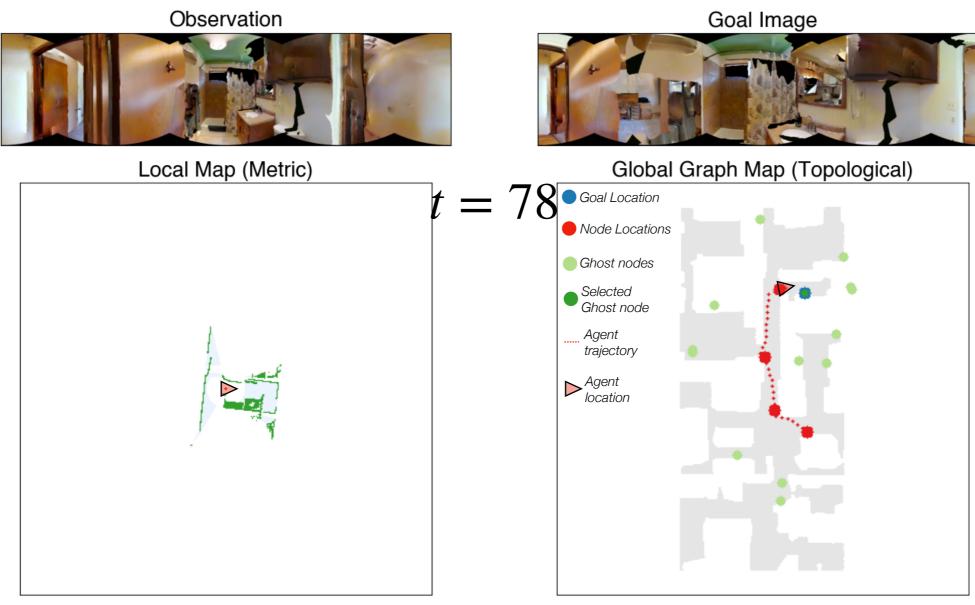
Observation

Local Map (Metric)

Global Graph Map (Topological)



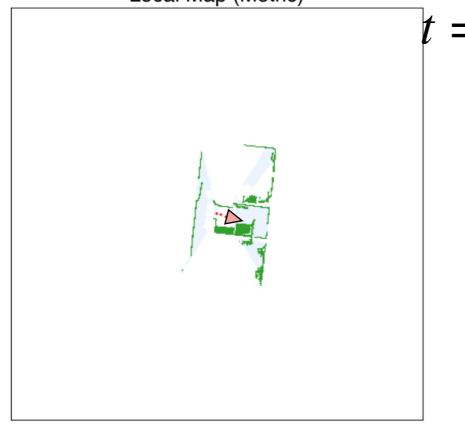


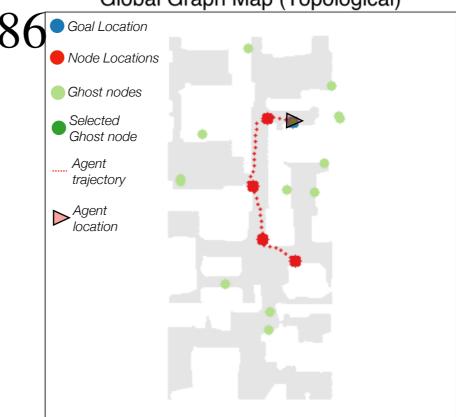


Observation

Local Map (Metric)

Global Graph Map (Topological)





Observation

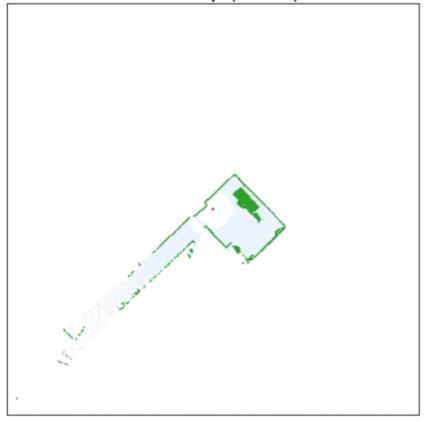
Local Map (Metric)

Goal Image

Global Graph Map (Topological)

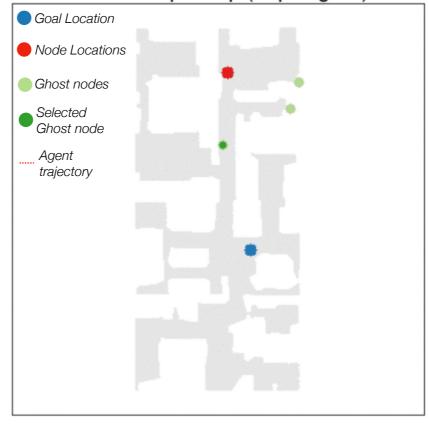
Observation

Local Map (Metric)



Goal Image

Global Graph Map (Topological)



Results

Robustness to Pose Noise

		RGB	RGBD	RGBD (No Noise)	RGBD (No Stop)
End-to-end Learning	LSTM + Imitation	0,10	0,14	0,15	0,18
	LSTM + RL	0,10	0,13	0,14	0,17
Modular Metric Maps	Occupancy Maps + FBE + RL	N/A	0,26	0,31	0,24
	Active Neural SLAM	0,23	0,29	0,35	0,39
Topological Maps	Neural Topological SLAM	0,38	0,43	0,45	0,60

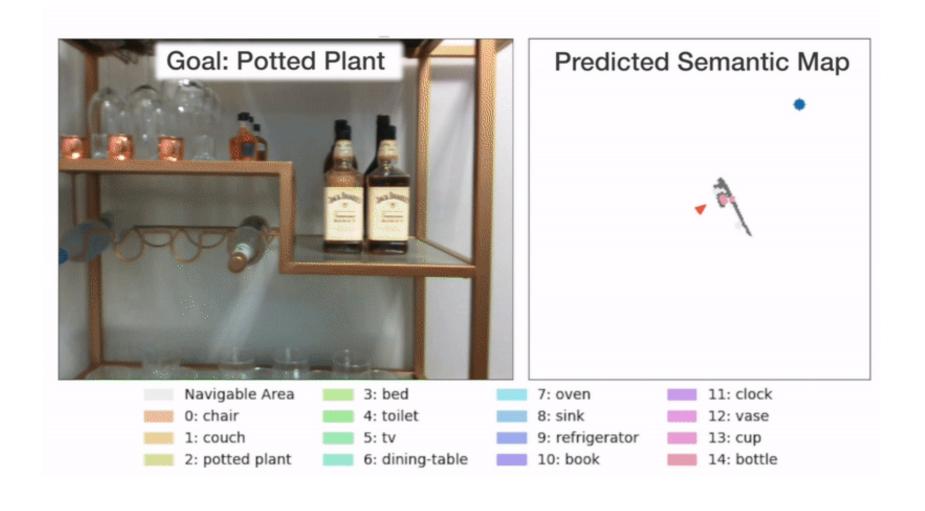
Map based methods are better than vanilla learning methods even in presence of noise

NTS is better than occupancy map models, captures and uses semantic priors.

Explicit Semantic Mapping

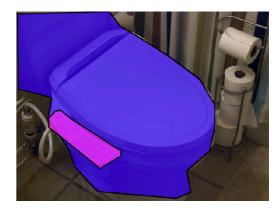
Time

Explicit Semantic Mapping

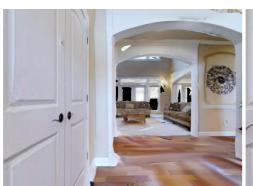


Internet vs Embodied Data

Static Internet Data



Active Embodied Data



Using Internet models for Embodied Agents

False positives

False negatives

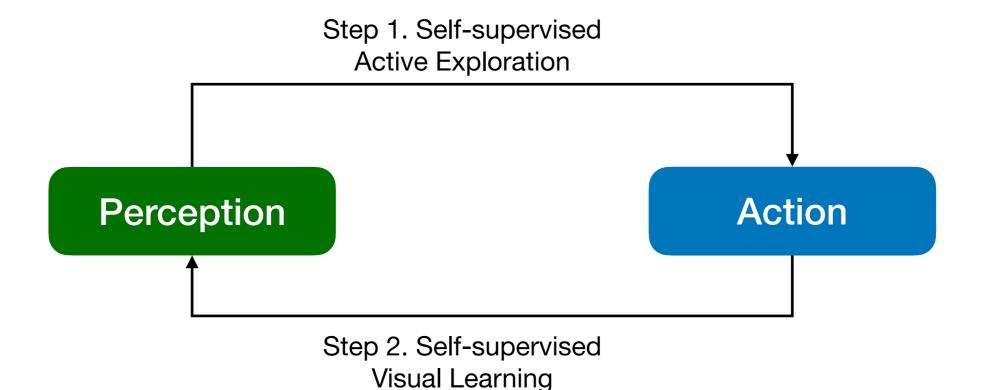
Embodied Perception

Active Embodied data

Embodied Perception

Active Embodied data

Perception-Action Loop



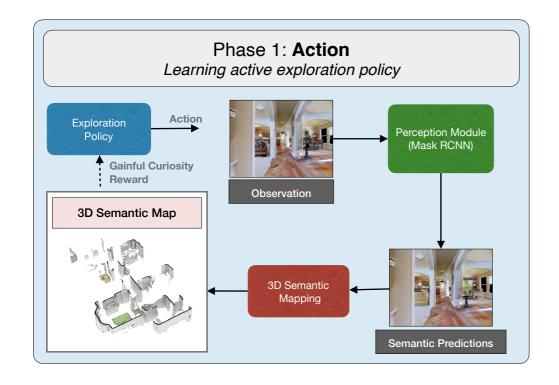
Pathak et al, Learning instance segmentation by interaction, 2018

Jang et al, Grasp2vec: Learning object representations from self-supervised grasping, 2018

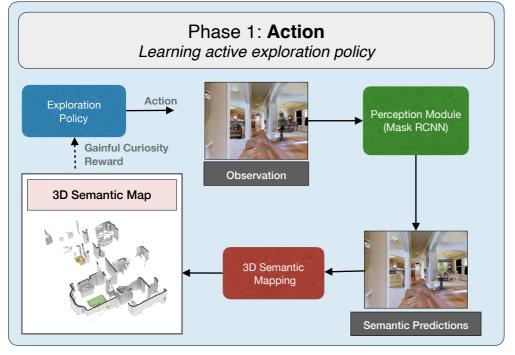
Eitel et al, Self-supervised transfer learning for instance segmentation through physical interaction, 2019

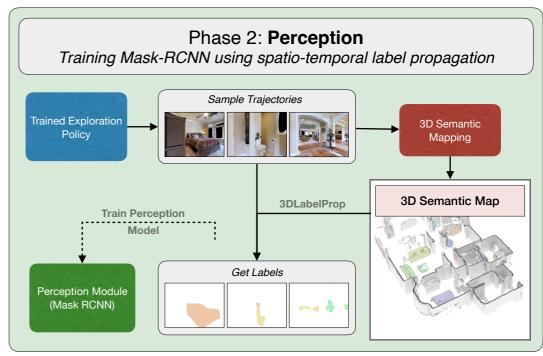
Fang et al., Move to See Better: Self-Improving Embodied Object Detection, 2021

SEAL: Self-supervised Embodied Active Learning



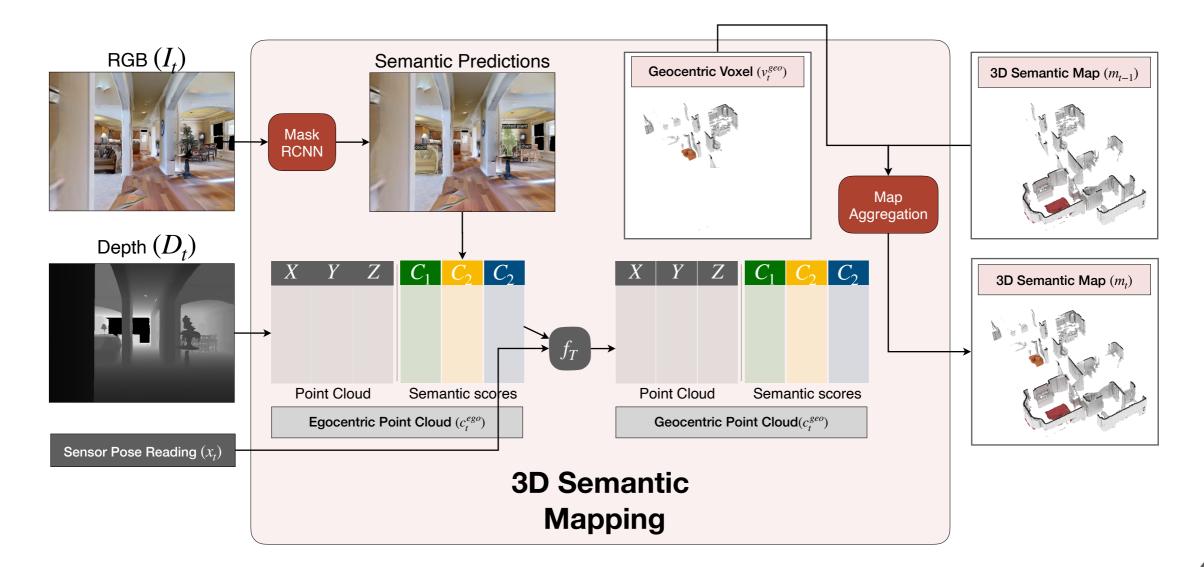
SEAL: Self-supervised Embodied Active Learning





Both phases do not require any additional labelled data

3D Semantic Mapping

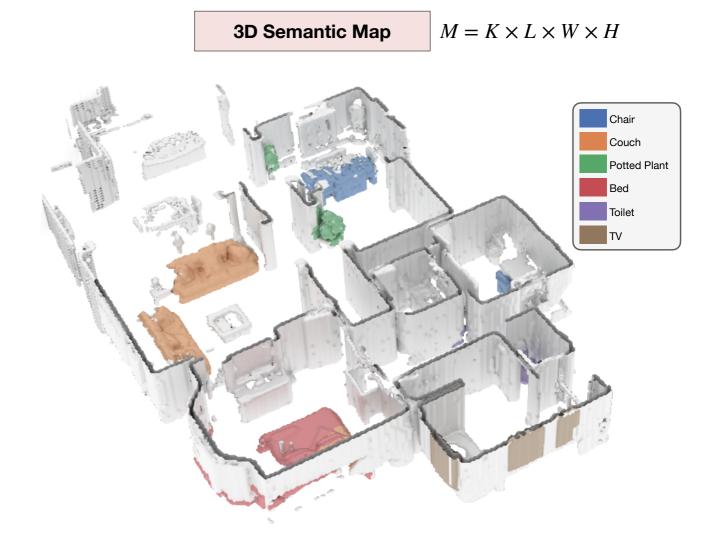


3D Semantic Mapping

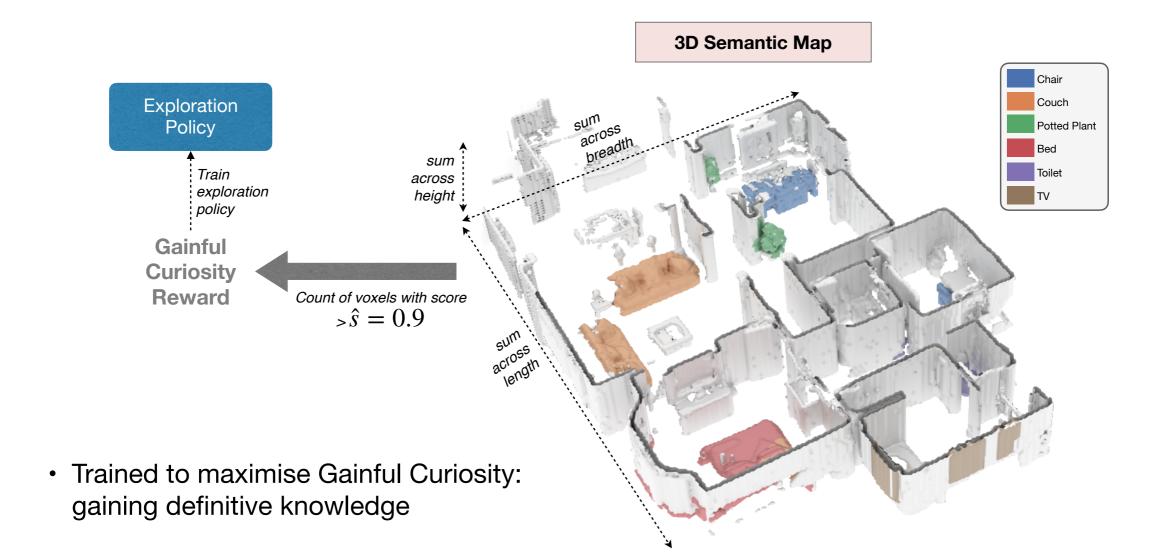
3D Semantic Map

$$M = K \times L \times W \times H$$

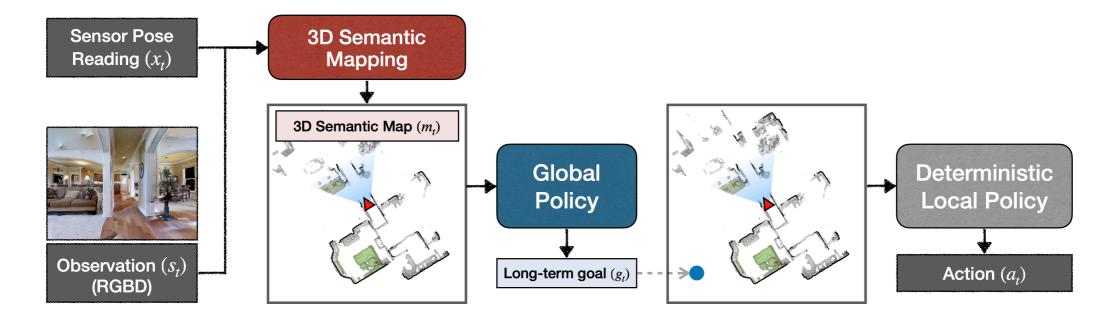
3D Semantic Mapping



Gainful Curiosity

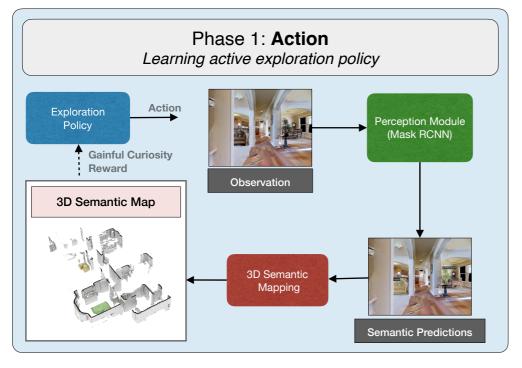


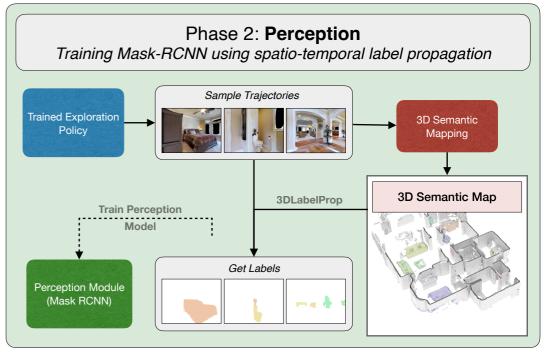
Policy Learning



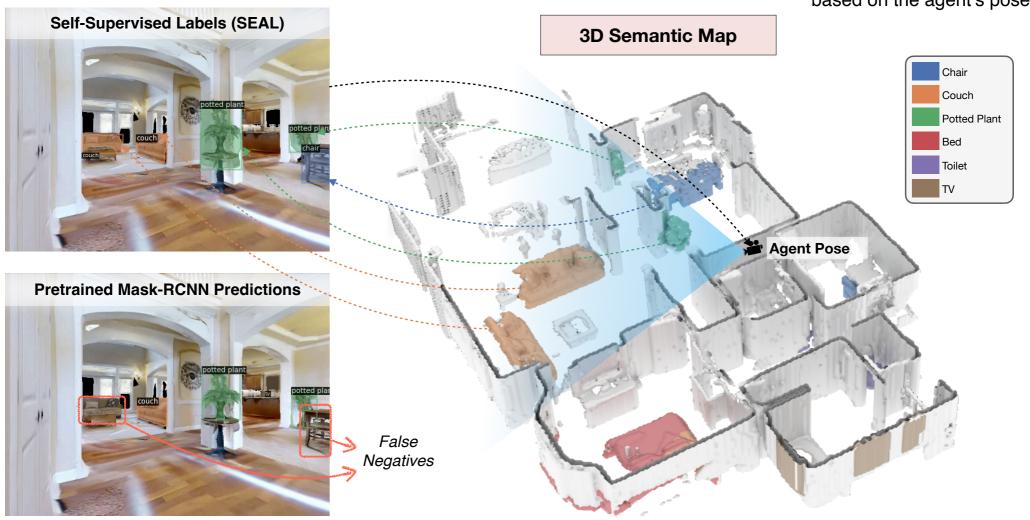
- Global Policy: samples a goal every 25 local steps
- Action Space: move forward (25cm), turn left or right (30 degrees)

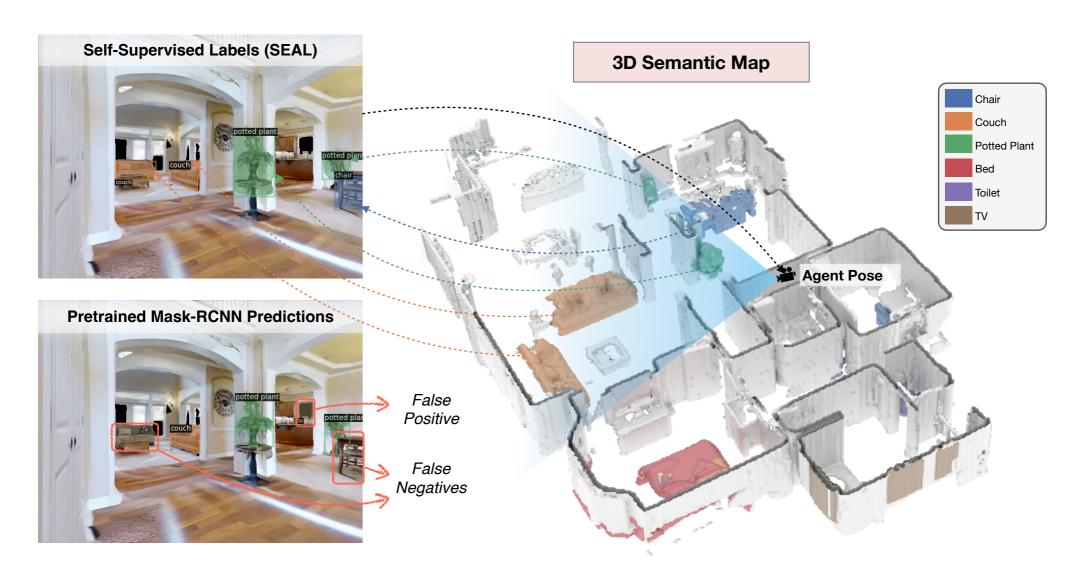
SEAL: Self-supervised Embodied Active Learning

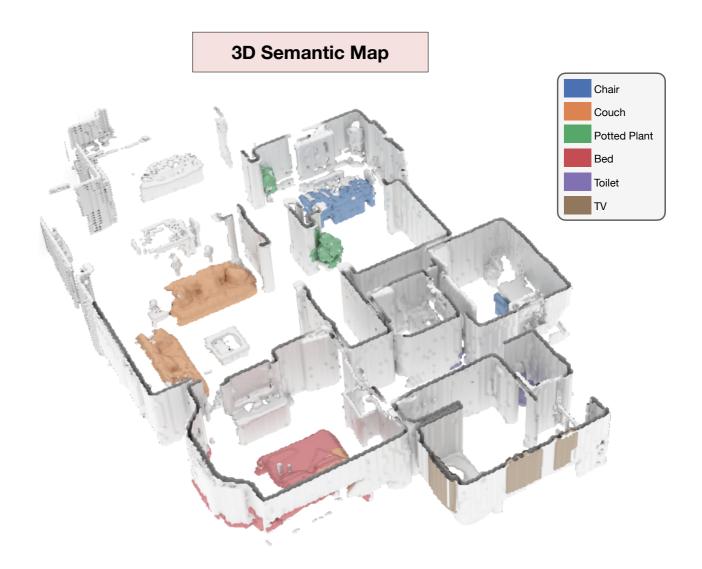




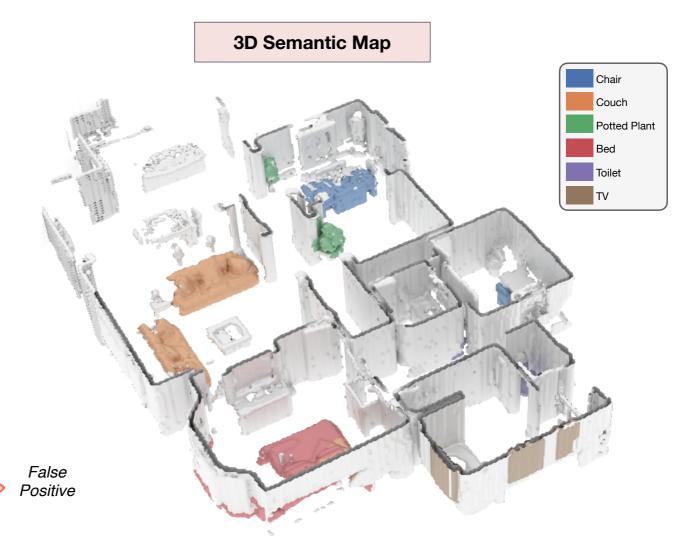
Instance label for each pixel is obtained using ray tracing based on the agent's pose

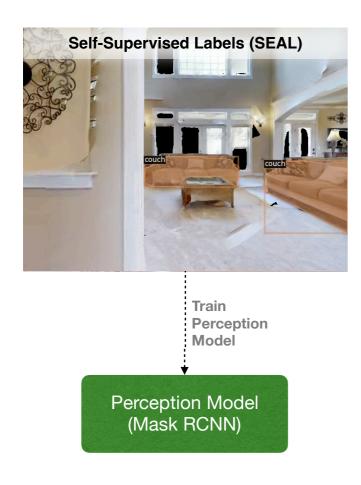


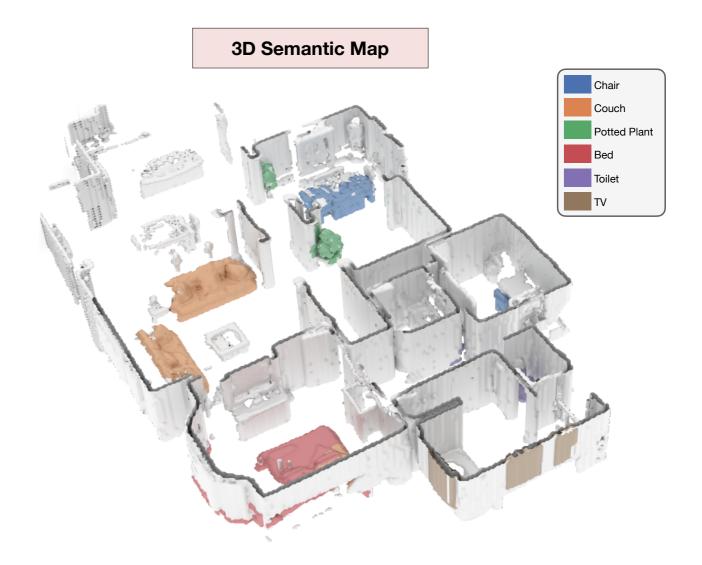




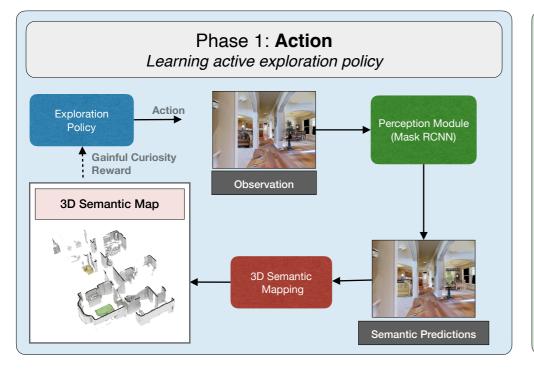


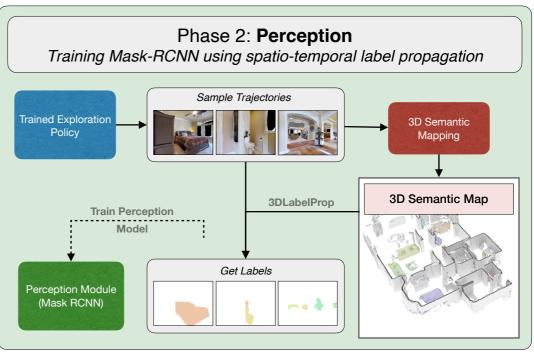






SEAL: Self-supervised Embodied Active Learning





	Action	Perception
Generalization	Train	Train
Specialization	Train	Train + 1 episode test

Dataset

- Gibson dataset: 25 training and 5 test scenes
- 6 object categories: chair, couch, bed, toilet, TV, potted plant.
- Training Set: randomly sample 2500 images (500 per test scene)
- Evaluation Set: randomly sample 12,500 images (500 per training scene)
- Report bounding box and mask AP50 scores for detection and instance segmentation

Results

	Generalization		Specialization	
Method	Object Detection	Instance Segmentation	Object Detection	Instance Segmentation
Pretrained Mask-RCNN	34.82	32.54	34.82	32.54
Random Policy + Self-training [51]	33.41	31.89	34.11	31.23
Random Policy + Optical Flow [22]	33.97	32.34	34.33	32.22
Frontier Exploration [52] + Self-training [51]	33.78	32.45	33.29	32.50
Frontier Exploration [52] + Optical Flow [22]	35.22	31.90	34.19	32.12
Active Neural SLAM [10] + Self-training [51]	34.35	31.20	34.84	32.44
Active Neural SLAM [10] + Optical Flow [22]	35.85	32.22	35.90	33.12
Semantic Curiosity [11] + Self-training [51]	35.04	32.19	35.23	32.88
Semantic Curiosity [11] + Optical Flow [22]	35.61	32.57	35.71	33.29
SEAL	40.02	36.23	41.23	37.28

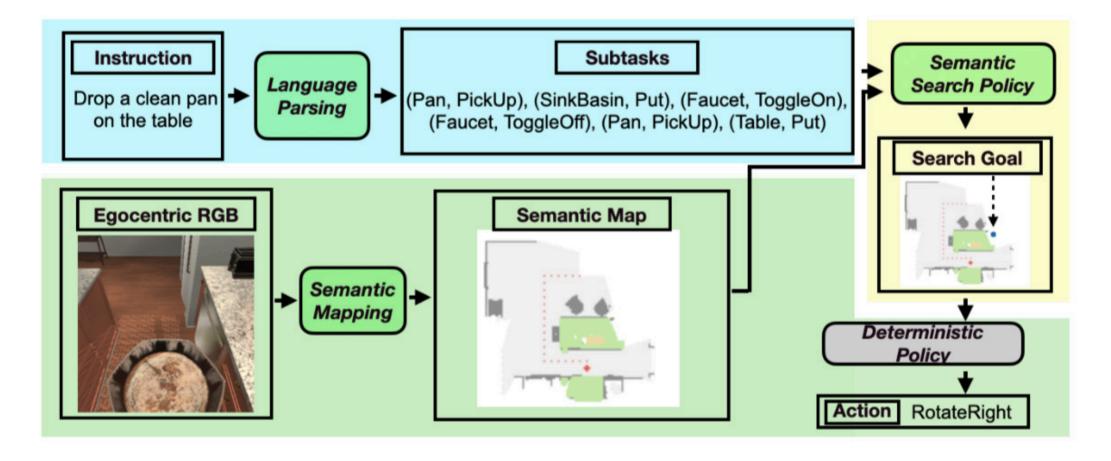
EIF: Embodied Instruction Following: ALFRED

Instruction: place a cold lettuce slice in a waste basket.



Mohit Shridhar, Jesse Thomason, Daniel Gordon, Yonatan Bisk, Winson Han, Roozbeh Mottaghi, Luke Zettlemoyer, and Dieter Fox. Alfred: A benchmark for interpreting grounded instructions for everyday tasks

FILM: Following Instructions in Language with Modular Methods



FII M: Following Instructions in Language with Modular Methods

Instruction: place a cold lettuce slice in a waste basket.

RGB

Semantic Map

Completed Subgoals

X PickUp, Knife

X Slice, Lettuce

X Put, Knife, Sink

X PickUp SlicedLettuce

X Open, Fridge

X Put, SlicedLettuce, Fridge

X Close, Fridge

X Open, Fridge

X PickUp, SlicedLettuce

X Close, Fridge

X Put, SlicedLettuce, GarbageCan

RotateLeft_90

Predicted Action

Simulation to Real

Games

ViZDoom

[CL AAAI-17]



[CMPRS AAAI-18]

Photorealistic simulation

Unreal

[CPS ICLR-18]

[PCZS CVPR-18 (w)]

Reconstructed simulation

Habitat (Gibson, MP3D)

[CGSGG ICLR-20]

[CSGG CVPR-20]

Real-world

Visual Domain Gap

-

Simulation to Real

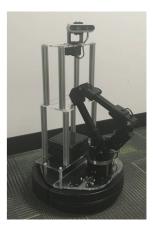
- Physical Domain Gap
 - Actuation noise models
 - Sensor noise models
- Visual Domain Gap
 - Image Translation
 - Policy-based

PyRobot is a light weight, high-level interface which provides hardware independent APIs for robotic manipulation and navigation. This repository also contains the low-level stack for LoCoBot, a low cost mobile manipulator hardware platform

- · What can you do with PvRobot?
- · Getting Started
- The Team
- Citation
- License
- Future features

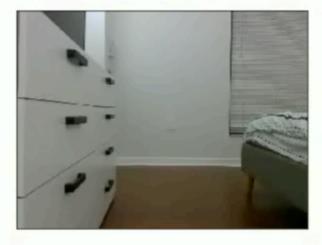
What can you do with PyRobot?

pyrobot.org



locobot.org

Simulation to Real



Action

Observation / State

Building Intelligent Agents

 a_t Navigate Autonomously Localize and Plan Reward Multi-modal Input Perceptive Human Speech Reason & Understand Language Recognize objects