10707 Deep Learning

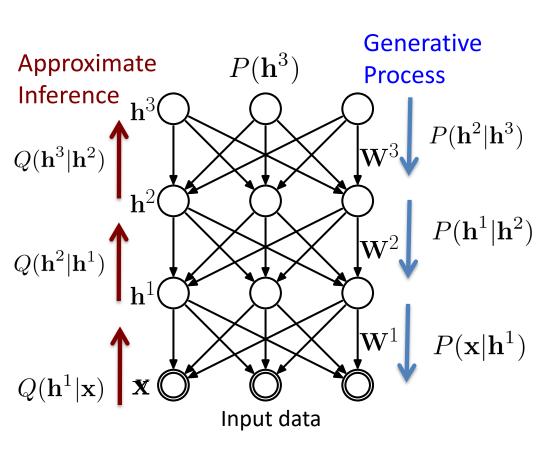
Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Variational Autoencoders

Variational Autoencoders (VAEs)

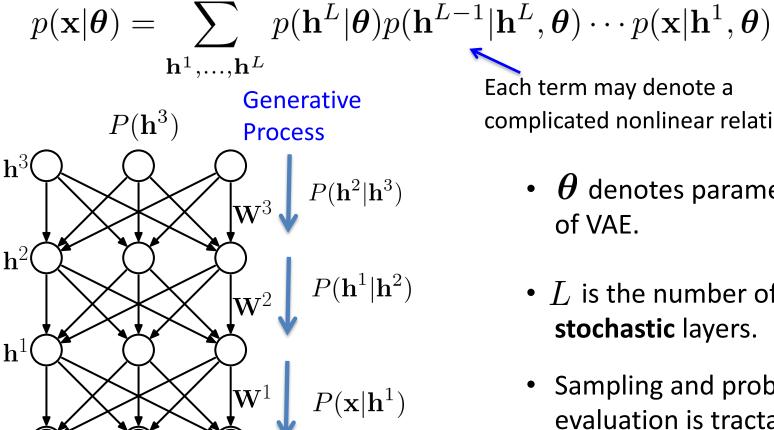
• Hinton, G. E., Dayan, P., Frey, B. J. and Neal, R., Science 1995



- Kingma & Welling, 2014
- Rezende, Mohamed, Daan, 2014
- Mnih & Gregor, 2014
- Bornschein & Bengio, 2015
- Tang & Salakhutdinov, 2013

Variational Autoencoders (VAEs)

 The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:



Input data

Each term may denote a complicated nonlinear relationship

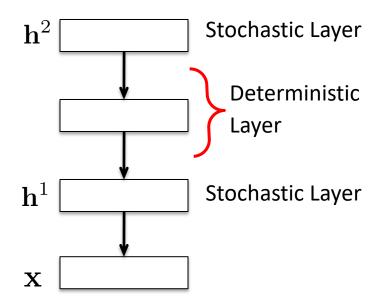
- heta denotes parameters of VAE.
- ullet L is the number of stochastic layers.
- Sampling and probability evaluation is tractable for each $p(\mathbf{h}^{\ell}|\mathbf{h}^{\ell+1})$.

VAE: Example

• The VAE defines a generative process in terms of ancestral sampling through a cascade of hidden stochastic layers:

$$p(\mathbf{x}|\boldsymbol{\theta}) = \sum_{\mathbf{h}^1, \mathbf{h}^2} p(\mathbf{h}^2|\boldsymbol{\theta}) p(\mathbf{h}^1|\mathbf{h}^2, \boldsymbol{\theta}) p(\mathbf{x}|\mathbf{h}^1, \boldsymbol{\theta})$$

This term denotes a one-layer neural net.

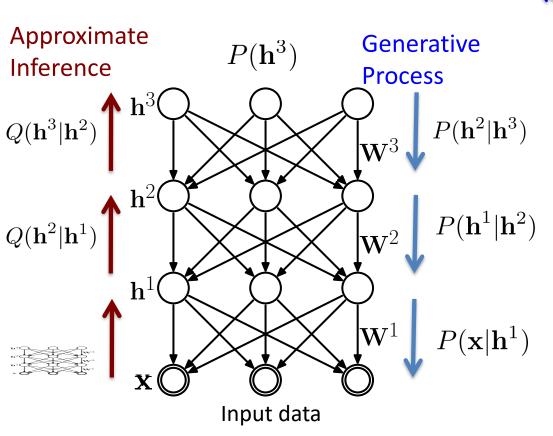


- heta denotes parameters of VAE.
- *L* is the number of **stochastic** layers.
- Sampling and probability evaluation is tractable for each $p(\mathbf{h}^{\ell}|\mathbf{h}^{\ell+1})$.

Recognition Network

 The recognition model is defined in terms of an analogous factorization:

$$q(\mathbf{h}|\mathbf{x}, \boldsymbol{\theta}) = q(\mathbf{h}^1|\mathbf{x}, \boldsymbol{\theta})q(\mathbf{h}^2|\mathbf{h}^1, \boldsymbol{\theta}) \cdots q(\mathbf{h}^L|\mathbf{h}^{L-1}, \boldsymbol{\theta})$$



Each term may denote a complicated nonlinear relationship

- We assume that $\mathbf{h}^L \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})$
- The conditionals:

$$p(\mathbf{h}^{\ell}||\mathbf{h}^{\ell+1})$$
 $q(\mathbf{h}^{\ell}||\mathbf{h}^{\ell-1})$

are Gaussians with diagonal covariances

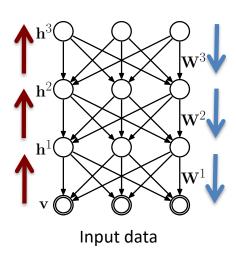
Variational Bound

The VAE is trained to maximize the variational lower bound:

$$\log p(\mathbf{x}) = \log \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] \ge \mathbb{E}_{q(\mathbf{h}|\mathbf{x})} \left[\log \frac{p(\mathbf{x}, \mathbf{h})}{q(\mathbf{h}|\mathbf{x})} \right] = \mathcal{L}(\mathbf{x})$$

$$\mathcal{L}(\mathbf{x}) = \log p(\mathbf{x}) - D_{KL} (q(\mathbf{h}|\mathbf{x})) || p(\mathbf{h}|\mathbf{x}))$$

 Trading off the data log-likelihood and the KL divergence from the true posterior.



- Hard to optimize the variational bound with respect to the recognition network (high-variance).
- Key idea of Kingma and Welling is to use reparameterization trick.

Reparameterization Trick

Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}), \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}))$$

with mean and covariance computed from the state of the hidden units at the previous layer.

Alternatively, we can express this in term of auxiliary variable:

$$oldsymbol{\epsilon}^{\ell} \sim \mathcal{N}(\mathbf{0}, oldsymbol{I}) \ \mathbf{h}^{\ell} \left(oldsymbol{\epsilon}^{\ell}, \mathbf{h}^{\ell-1}, oldsymbol{ heta}
ight) = oldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, oldsymbol{ heta})^{1/2} oldsymbol{\epsilon}^{\ell} + oldsymbol{\mu}(\mathbf{h}^{\ell-1}, oldsymbol{ heta})$$

Reparameterization Trick

Assume that the recognition distribution is Gaussian:

$$q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1}, \boldsymbol{\theta}) = \mathcal{N}(\boldsymbol{\mu}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}), \boldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, \boldsymbol{\theta}))$$

• Or

$$oldsymbol{\epsilon}^{\ell} \sim \mathcal{N}(\mathbf{0}, oldsymbol{I}) \ \mathbf{h}^{\ell} \left(oldsymbol{\epsilon}^{\ell}, \mathbf{h}^{\ell-1}, oldsymbol{ heta}
ight) = oldsymbol{\Sigma}(\mathbf{h}^{\ell-1}, oldsymbol{ heta})^{1/2} oldsymbol{\epsilon}^{\ell} + oldsymbol{\mu}(\mathbf{h}^{\ell-1}, oldsymbol{ heta})$$

• The recognition distribution $q(\mathbf{h}^{\ell}|\mathbf{h}^{\ell-1},\boldsymbol{\theta})$ can be expressed in terms of a deterministic mapping:

$$\begin{array}{ll} \mathbf{h}\left(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta}\right), & \text{with} & \boldsymbol{\epsilon}=(\boldsymbol{\epsilon}^{1},\ldots,\boldsymbol{\epsilon}^{L}) \\ & \text{Deterministic} & \text{Distribution of } \boldsymbol{\epsilon} \\ & \text{Encoder} & \text{does not depend on } \boldsymbol{\theta} \end{array}$$

Computing the Gradients

 The gradient w.r.t the parameters: both recognition and generative:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h}|\mathbf{x}, \boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x}, \mathbf{h}|\boldsymbol{\theta})}{q(\mathbf{h}|\mathbf{x}, \boldsymbol{\theta})} \right]$$

$$= \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\boldsymbol{\epsilon}^1, \dots, \boldsymbol{\epsilon}^L \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})} \left[\log \frac{p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) | \boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) | \mathbf{x}, \boldsymbol{\theta})} \right]$$

$$= \mathbb{E}_{\boldsymbol{\epsilon}^1, ..., \boldsymbol{\epsilon}^L \sim \mathcal{N}(\mathbf{0}, \boldsymbol{I})} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) | \boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon}, \mathbf{x}, \boldsymbol{\theta}) | \mathbf{x}, \boldsymbol{\theta})} \right]$$

Gradients can be computed by backprop

The mapping \mathbf{h} is a deterministic neural net for fixed $\boldsymbol{\epsilon}$.

Computing the Gradients

The gradient w.r.t the parameters: recognition and generative:

$$\nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h} \sim q(\mathbf{h}|\mathbf{x},\boldsymbol{\theta})} \left[\log \frac{p(\mathbf{x},\mathbf{h}|\boldsymbol{\theta})}{q(\mathbf{h}|\mathbf{x},\boldsymbol{\theta})} \right] = \mathbb{E}_{\boldsymbol{\epsilon}^1,...,\boldsymbol{\epsilon}^L \sim \mathcal{N}(\mathbf{0},\boldsymbol{I})} \left[\nabla_{\boldsymbol{\theta}} \log \frac{p(\mathbf{x},\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\boldsymbol{\theta})}{q(\mathbf{h}(\boldsymbol{\epsilon},\mathbf{x},\boldsymbol{\theta})|\mathbf{x},\boldsymbol{\theta})} \right]$$

• Approximate expectation by generating k samples from ϵ

$$\frac{1}{k} \sum_{i=1}^{k} \nabla_{\boldsymbol{\theta}} \log w \left(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_{i}, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta} \right)$$

where we defined unnormalized importance weights:

$$w(\mathbf{x}, \mathbf{h}, \boldsymbol{\theta}) = p(\mathbf{x}, \mathbf{h}|\boldsymbol{\theta})/q(\mathbf{h}|\mathbf{x}, \boldsymbol{\theta})$$

 VAE update: Low variance as it uses the log-likelihood gradients with respect to the latent variables.

VAE: Assumptions

Remember the variational bound:

$$\mathcal{L}(\mathbf{x}) = \log p(\mathbf{x}) - D_{KL} \left(q(\mathbf{h}|\mathbf{x}) \right) || p(\mathbf{h}|\mathbf{x}) \rangle$$

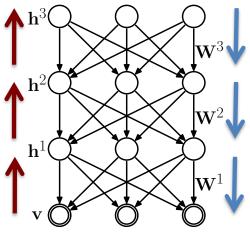
- The variational assumptions must be approximately satisfied.
- The posterior distribution must be approximately factorial (common practice) and predictable with a feed-forward net.
- We show that we can relax these assumptions using a tighter lower bound on marginal log-likelihood.

Importance Weighted Autoencoders

 Consider the following k-sample importance weighting of the log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i|\mathbf{x})} \right]$$

$$= \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k w_i \right]$$



Input data

unnormalized importance weights

where $\mathbf{h}_1, \dots, \mathbf{h}_k$ are sampled from the recognition network.

Importance Weighted Autoencoders

 Consider the following k-sample importance weighting of the log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}_{\mathbf{h}_1, \dots, \mathbf{h}_k \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^k \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i|\mathbf{x})} \right]$$

This is a lower bound on the marginal log-likelihood:

$$\mathcal{L}_k(\mathbf{x}) = \mathbb{E}\left[\log \frac{1}{k} \sum_{i=1}^k w_i\right] \le \log \mathbb{E}\left[\frac{1}{k} \sum_{i=1}^k w_i\right] = \log p(\mathbf{x})$$

- Special Case of k=1: Same as standard VAE objective.
- Using more samples

 Improves the tightness of the bound.

Tighter Lower Bound

- Using more samples can only improve the tightness of the bound.
- For all k, the lower bounds satisfy:

$$\log p(\mathbf{x}) \ge \mathcal{L}_{k+1}(\mathbf{x}) \ge \mathcal{L}_k(\mathbf{x})$$

• Moreover if $p(\mathbf{h}, \mathbf{x})/q(\mathbf{h}|\mathbf{x})$ is bounded, then:

$$\mathcal{L}_k(\mathbf{x}) \to \log p(\mathbf{x}), \text{ as } k \to \infty$$

Computing the Gradients

 We can use the unbiased estimate of the gradient using reparameterization trick:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}_{k}(\mathbf{x}) = \nabla_{\boldsymbol{\theta}} \mathbb{E}_{\mathbf{h}_{1},...,\mathbf{h}_{k} \sim q(\mathbf{h}|\mathbf{x})} \left[\log \frac{1}{k} \sum_{i=1}^{k} w_{i} \right]$$

$$= \mathbb{E}_{\boldsymbol{\epsilon}_{1},...,\boldsymbol{\epsilon}_{k}} \left[\nabla_{\boldsymbol{\theta}} \log \frac{1}{k} \sum_{i=1}^{k} w(\mathbf{x}, h(\boldsymbol{\epsilon}_{i}, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta}) \right]$$

$$= \mathbb{E}_{\boldsymbol{\epsilon}_{1},...,\boldsymbol{\epsilon}_{k}} \left[\sum_{i=1}^{k} \widetilde{w}_{i} \nabla_{\boldsymbol{\theta}} \log w(\mathbf{x}, h(\boldsymbol{\epsilon}_{i}, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta}) \right]$$

where we define normalized importance weights:

$$\widetilde{w}_i = w_i / \sum_{i=1}^k w_i$$
, where $w_i = \frac{p(\mathbf{x}, \mathbf{h}_i)}{q(\mathbf{h}_i | \mathbf{x})}$

IWAEs vs. VAEs

- Draw k-samples form the recognition network $q(\mathbf{h}|\mathbf{x})$
 - or k-sets of auxiliary variables ϵ .
- Obtain the following Monte Carlo estimate of the gradient:

$$abla_{m{ heta}} \mathcal{L}_k(\mathbf{x}) pprox \sum_{i=1}^k \widetilde{w}_i \nabla_{m{ heta}} \log w(\mathbf{x}, \mathbf{h}(m{\epsilon}_i, \mathbf{x}, m{ heta}), m{ heta})
abla_i$$

Compare this to the VAE's estimate of the gradient:

$$\nabla_{\boldsymbol{\theta}} \mathcal{L}(\mathbf{x}) \approx \frac{1}{k} \sum_{i=1}^{k} \nabla_{\boldsymbol{\theta}} \log w(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta})$$

IWAE: Intuition

The gradient of the log weights decomposes:

$$\nabla_{\boldsymbol{\theta}} \log w(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta})$$

$$= \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}) | \boldsymbol{\theta}) - \log q(\mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}) | \mathbf{x}, \boldsymbol{\theta})$$
Deterministic Deterministic decoder Encoder

\mathbf{h}^{1} \mathbf{h}^{2} \mathbf{w}^{2} Input data

First term:

- Decoder: encourages the generative model to assign high probability to each $\mathbf{h}^l | \mathbf{h}^{l+1}$.
- Encoder: encourages the recognition net to adjust its latent states h so that the generative network makes better predictions.

IWAE: Intuition

The gradient of the log weights decomposes:

$$\nabla_{\boldsymbol{\theta}} \log w(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}), \boldsymbol{\theta})$$

$$= \nabla_{\boldsymbol{\theta}} \log p(\mathbf{x}, \mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}) | \boldsymbol{\theta}) - \log q(\mathbf{h}(\boldsymbol{\epsilon}_i, \mathbf{x}, \boldsymbol{\theta}) | \mathbf{x}, \boldsymbol{\theta})$$
Deterministic Deterministic decoder Encoder

\mathbf{h}^{1} \mathbf{h}^{2} \mathbf{w}^{2} Input data

Second term:

 Encoder: encourages the recognition network to have a spread-out distribution over predictions.

Two Architectures

2-stochastic layers

 For the MNIST experiments, we \mathbf{h}^2 50 considered two architectures: 100 Deterministic **Stochastic Layers** Layers 100 1-stochastic layer \mathbf{h}^1 \mathbf{h}^1 50 100 200 200 Deterministic Deterministic Layers Layers 200 200 784 784 \mathbf{X} \mathbf{X}

MNIST Results

MNIST

		VAE		IWAE	
# stoch.	$\frac{k}{}$	NLL	active	NLL	active
1	1	86.76	19	86.76	19
	5	86.47	20	85.54	22
	50	86.35	20	84.78	25

MNIST Results

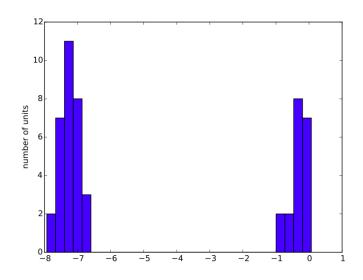
MNIST

		VAE		IWAE	
# stoch.	\underline{k}	NLL	active	NLL	active
1	1	86.76	19	86.76	19
	5	86.47	20	85.54	22
	50	86.35	20	84.78	25
2	1	85.33	16+5	85.33	16+5
	_5	_85.01	17+5_	_83.89	21+5
	50	84.78	17+5	82.90	26+7

Latent Space Representation

- Both VAEs and IWAEs tend to learn latent representations with effective dimensions far below their capacity.
- Measure the activity of the latent dimension u using the statistics:

$$A_u = \operatorname{Cov}_{\mathbf{x}} \left(\mathbb{E}_{u \sim q(u|\mathbf{x})}[u] \right)$$



- The distribution of $\log A_u$ consist of two separated modes.
- Inactive dimensions → units dying out.
- Optimization issue?

IWAEs vs. VAEs

First stage

trained as	NLL	active units
VAE	86.76	19
$\overline{\text{IWAE, } k = 50}$	84.78	25

IWAEs vs. VAEs

First stage

trained as	NLL	active units
VAE	86.76	19
$\overline{\text{IWAE, } k = 50}$	84.78	25

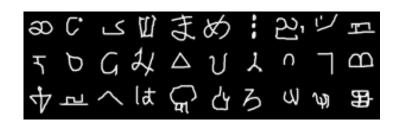
Second stage

trained as	NLL	active units
$\overline{\text{IWAE, } k = 50}$	84.88	22
VAE	86.02	23

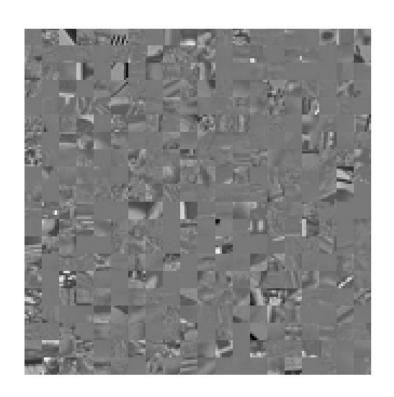
OMNIGLOT Experiments

OMNIGLOT

		VAE		IWAE	
# stoch.	$\frac{k}{-}$	NLL	active	NLL	active
1	1	108.11	28	108.11	28
	5	107.62	28	106.12	34
	50	107.80	28	104.67	41
2	1	107.58	28+4	107.56	30+5
	5	106.31	30+5	104.79	38+6
	50	106.30	30+5	103.38	44+7

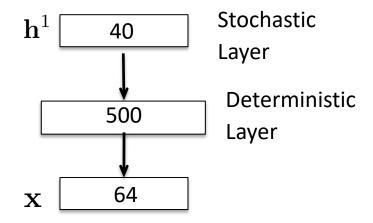


Modeling Image Patches BSDS Dataset



Model 8x8 patches.

1-stochastic layer



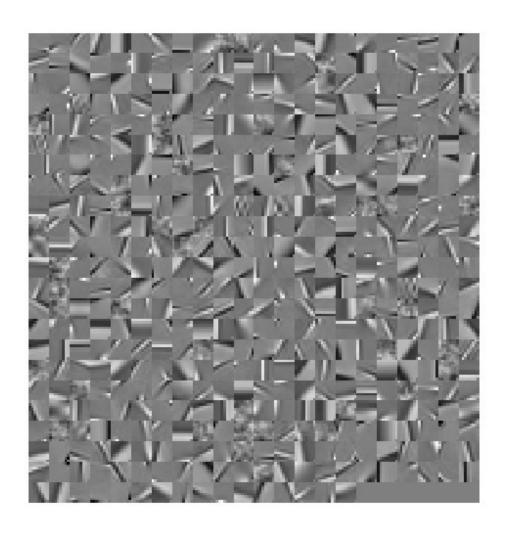
- Report test log-likelihoods on 10⁶ 8x8 patches, extracted from BSDS test dataset.
- Evaluation protocol established by Uria, Murray and Larochelle):
 - add uniform noise between 0 and 1, divide by 256,
 - subtract the mean and discarding the last pixel

Test Log-probabilities

Model	nats	Bits/pixel
RNADE 6 hidden layers (Uria et. al. 2013)	155.2 nats	3.55 bit/pixel
MoG, 200 full- covariance mixture (Zoran and Weiss, 2012)	152.8 nats	3.50 bit/pixel
IWAE (k=500)	151.4 nats	3.47 bit/pixel
VAE (k=500)	148.0 nats	3.39 bit/pixel
GSM (Gaussian Scale Mixture)	142 nats	3.25 bit/pixel
ICA	111 nats	2.54 bit/pixel
PCA	96 nats	2.21 bit/pixel

Burda 2015

Learned Filters



Burda 2015

Motivating Example

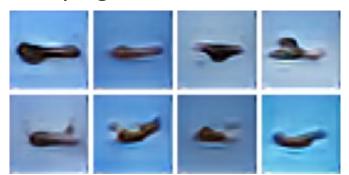
Can we generate images from natural language descriptions?

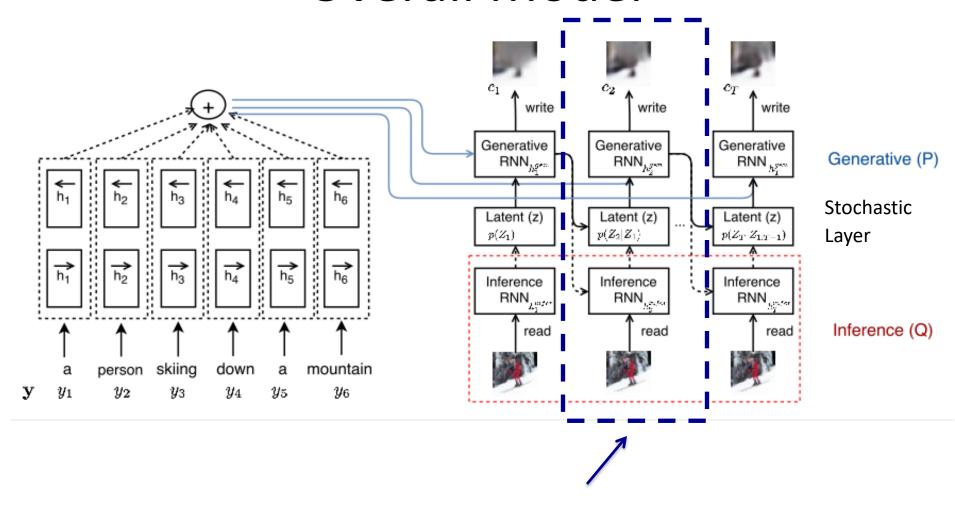
A **stop sign** is flying in blue skies

A **herd of elephants** is flying in blue skies

A pale yellow school bus is flying in blue skies

A large commercial airplane is flying in blue skies

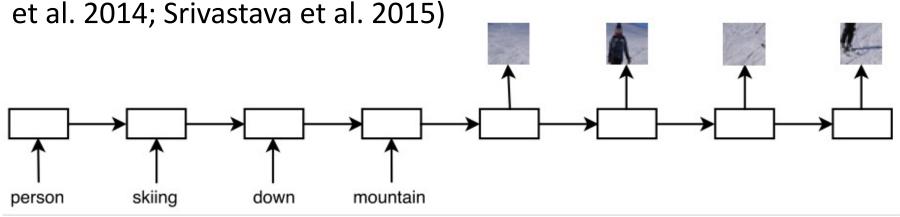




Variational Autoecnoder

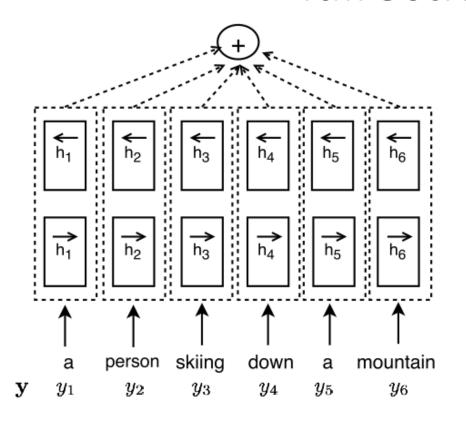
Sequence-to-Sequence

• Sequence-to-sequence framework. (Sutskever et al. 2014; Cho



- Caption (y) is represented as a sequence of consecutive words.
- Image (x) is represented as a sequence of patches drawn on canvas.
- Attention mechanism over:
 - Words: Which words to focus on when generating a patch
 - Image Location Where to place the generated patches on the canvas

Representing Captions Bidirectional RNN



 Forward RNN reads the sentence y from left to right:

$$[\overrightarrow{\mathbf{h}}_{1}^{lang}, \overrightarrow{\mathbf{h}}_{2}^{lang},, \overrightarrow{\mathbf{h}}_{N}^{lang}]$$

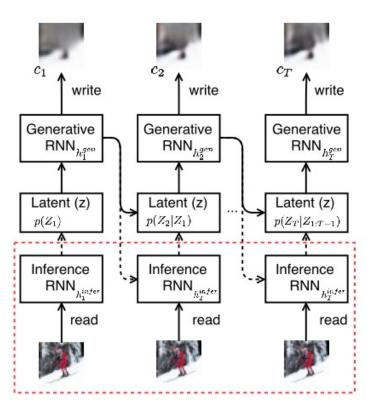
 Backward RNN reads the sentence y from right to left:

$$\left[\overleftarrow{\mathbf{h}}_{1}^{lang}, \overleftarrow{\mathbf{h}}_{2}^{lang}, , \overleftarrow{\mathbf{h}}_{N}^{lang}\right]$$

The hidden states are then concatenated:

$$\mathbf{h}^{lang} = \left[\mathbf{h}_{1}^{lang}, \mathbf{h}_{2}^{lang}, \dots, \mathbf{h}_{N}^{lang}\right], \text{ with } \mathbf{h}_{i}^{lang}\left[\overrightarrow{\mathbf{h}}_{i}^{lang}, \overleftarrow{\mathbf{h}}_{i}^{lang}\right]$$

DRAW Model



write operator:

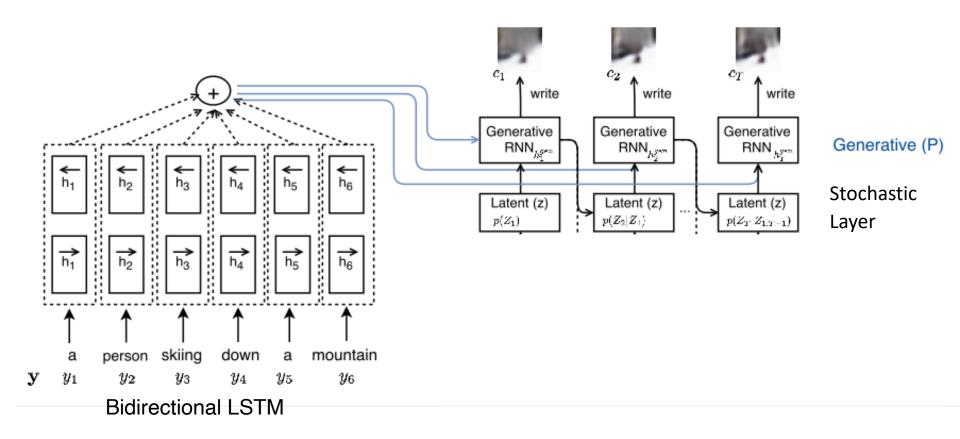
- At each step the model generates a p x p patch $K(\mathbf{h}_t^{gen}) \in R^{p \times p}$
- It gets transformed into w x h canvas using two arrays of Gaussian filter banks

$$F_x(\mathbf{h}_t^{gen}) \in R^{h \times p}$$

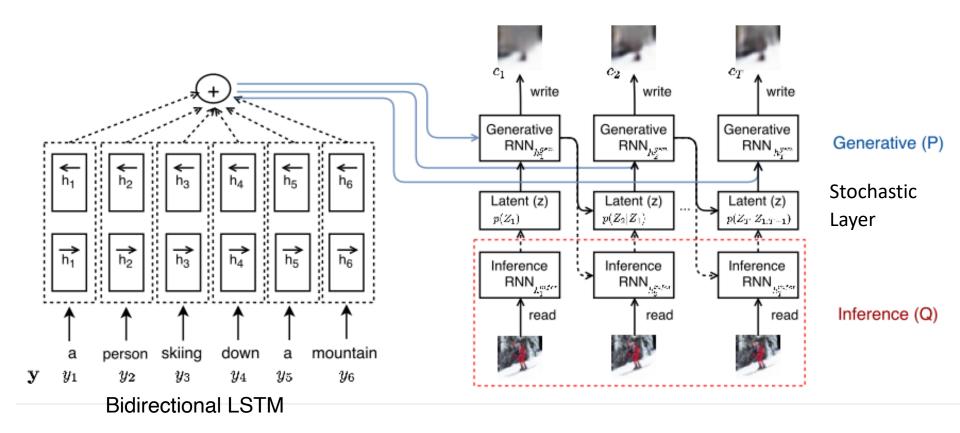
 $F_y(\mathbf{h}_t^{gen}) \in R^{w \times p}$

whose filter locations and scales are computed from \mathbf{h}_{t}^{gen} :

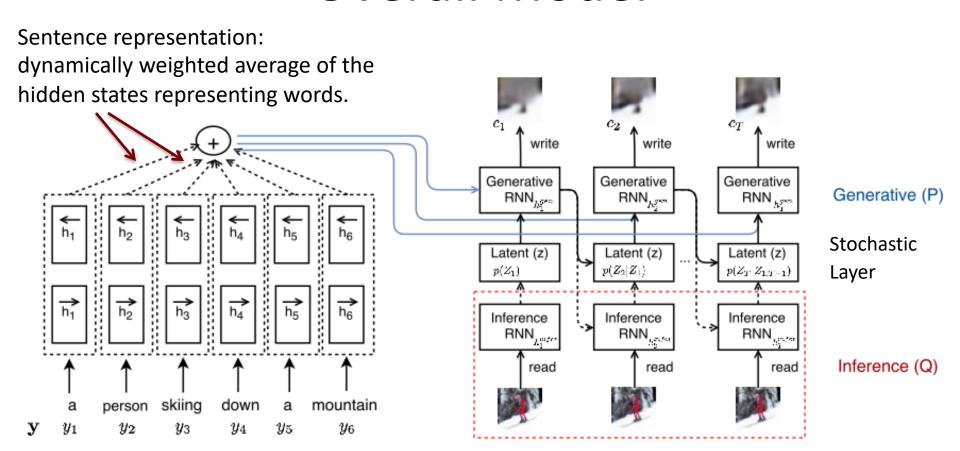
$$write(\mathbf{h}_t^{gen}) = F_x(\mathbf{h}_t^{gen}) \times K(\mathbf{h}_t^{gen}) \times F_y(\mathbf{h}_t^{gen})$$



• Generative Model: Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.



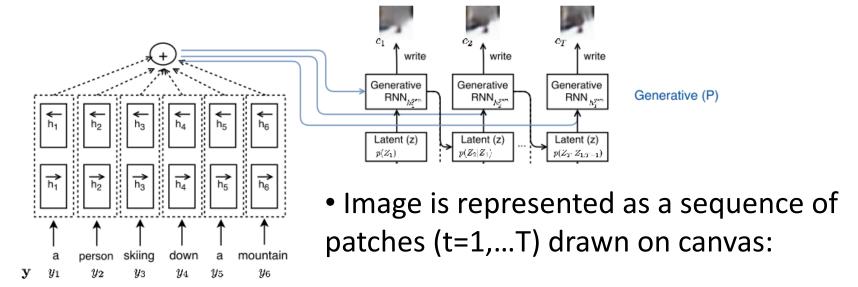
- Generative Model: Stochastic Recurrent Network, chained sequence of Variational Autoencoders, with a single stochastic layer.
- Recognition Model: Deterministic Recurrent Network.



• Attention (alignment): Focus on different words at different time steps when generating patches and placing them on the canvas.

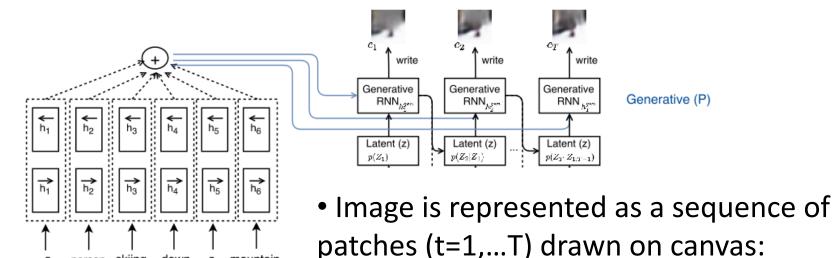
Bahdanau et. al. 2015

Generating Images



$$\mathbf{z}_{t} \sim P(\mathbf{Z}_{t}|\mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_{1}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

Generating Images

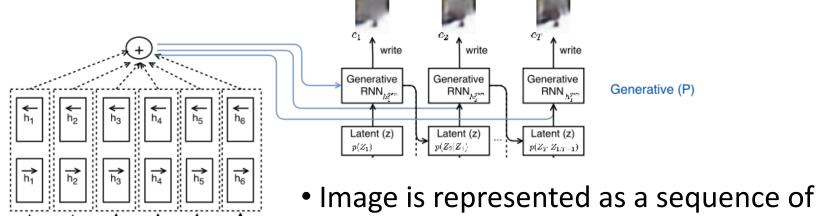


 y_6

$$\mathbf{z}_{t} \sim P(\mathbf{Z}_{t}|\mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_{1}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$s_{t} = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) \quad \mathbf{h}_{t}^{gen} = LSTM^{gen}(\mathbf{h}_{t-1}^{gen}, [\mathbf{z}_{t}, s_{t}])$$

Generating Images



patches (t=1,...T) drawn on canvas:

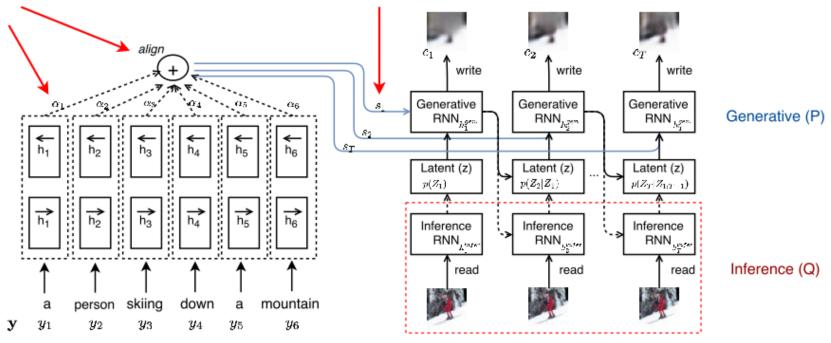
$$\mathbf{z}_{t} \sim P(\mathbf{Z}_{t}|\mathbf{Z}_{1:t-1}) = \mathcal{N}(\mu(\mathbf{h}_{t-1}^{gen}), \sigma(\mathbf{h}_{t-1}^{gen})), \quad P(\mathbf{Z}_{1}) = \mathcal{N}(\mathbf{0}, \mathbf{I})$$

$$s_{t} = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) \quad \mathbf{h}_{t}^{gen} = LSTM^{gen}(\mathbf{h}_{t-1}^{gen}, [\mathbf{z}_{t}, s_{t}])$$

$$\mathbf{c}_{t} = \mathbf{c}_{t-1} + write(\mathbf{h}_{t}^{gen}) \quad \mathbf{x} \sim P(\mathbf{x}|\mathbf{y}, \mathbf{Z}_{1:T}) = \prod_{i} Bern(\boldsymbol{\sigma}(c_{T,i}))$$

• In practice, we use the conditional mean: $\mathbf{x} = \boldsymbol{\sigma}(\mathbf{c}_T)$.

Alignment Model



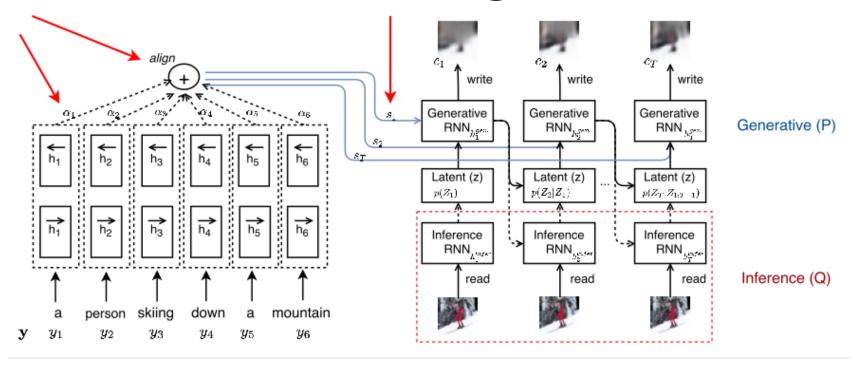
• Dynamic sentence representation at time t: weighted average of the bi-directional hidden states:

$$s_t = align(\mathbf{h}_{t-1}^{gen}, \mathbf{h}^{lang}) = \alpha_1^t \mathbf{h}_1^{lang} + \alpha_2^t \mathbf{h}_2^{lang} + \dots + \alpha_N^t \mathbf{h}_N^{lang}$$

where the alignment probabilities are computed as:

$$e_k^t = \mathbf{v}^{\top} \tanh \left(U \mathbf{h}_k^{lang} + W \mathbf{h}_{t-1}^{gen} + b \right), \ \alpha_k^t = \frac{\exp \left(e_k^t \right)}{\sum_{i=1}^N \exp \left(e_i^t \right)}$$

Learning

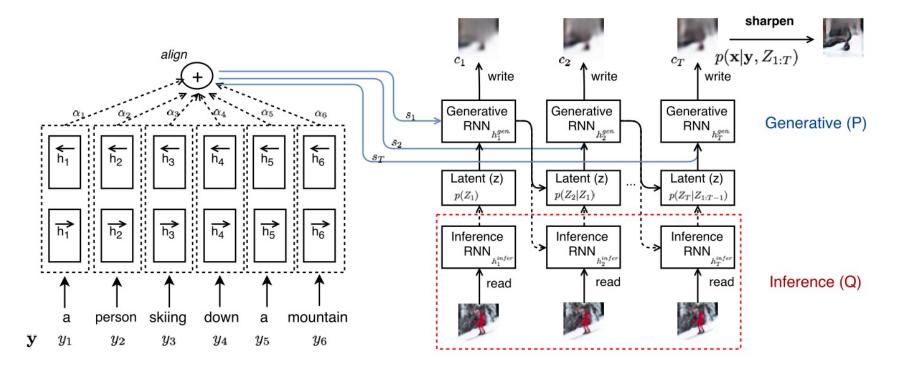


• Maximize the variational lower bound on the marginal log-likelihood of the correct image \mathbf{x} given the caption \mathbf{y} :

$$\mathcal{L} = \sum_{Z} Q(Z|\mathbf{x}, \mathbf{y}) \log P(\mathbf{x}|Z, \mathbf{y}) - D_{KL}(Q(Z|\mathbf{x}, \mathbf{y})||P(Z|\mathbf{y}))$$

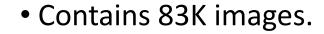
$$\leq \log P(\mathbf{x}|\mathbf{y})$$

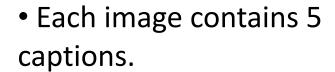
Sharpening



• Additional post processing step: use an adversarial network trained on residuals of a Laplacian pyramid to sharpen the generated images (Denton et. al. 2015).

MS COCO Dataset





• Standard benchmark dataset for many of the recent image captioning systems.

Lin et. al. 2014

Flipping Colors

A **yellow school bus** parked in the parking lot

A **red school bus** parked in the parking lot

A **green school bus** parked in the parking lot

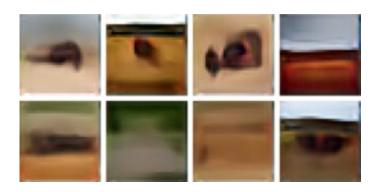
A **blue school bus** parked in the parking lot

Flipping Backgrounds

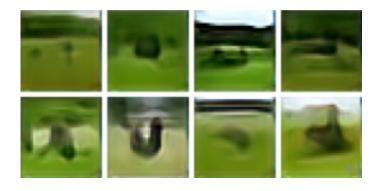
A very large commercial plane flying in clear skies.

A very large commercial plane flying **in rainy skies**.

A herd of elephants walking across a **dry grass field**.



A herd of elephants walking across a green grass field.



Flipping Objects

The decadent chocolate desert is on the table.

A bowl of bananas is on the table..

A vintage photo of **a cat**.

A vintage photo of **a dog**.

Qualitative Comparison

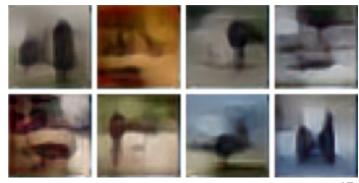
A group of people walk on a beach with surf boards

Our Model

Conv-Deconv VAE

LAPGAN (Denton et. al. 2015)

Fully Connected VAE



Variational Lower-Bound

• We can estimate the variational lower-bound on the average test log-probabilities:

Model	Training	Test
Our Model	-1792,15	-1791,53
Skipthought-Draw	-1794,29	-1791,37
noAlignDraw	-1792,14	-1791,15

• At least we can see that we do not overfit to the training data, unlike many other approaches.