10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu

Sequence Model / Transformers

Slides borrowed from ICML Tutorial

Seq2Seq ICML Tutorial

Oriol Vinyals and Navdeep Jaitly

@OriolVinyalsML | @NavdeepLearning

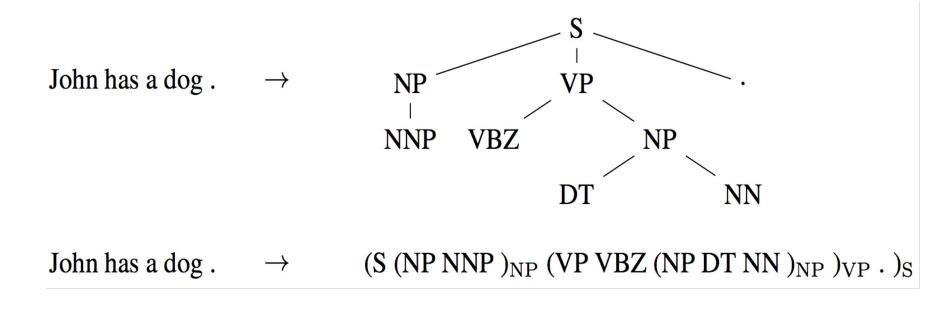
Site: https://sites.google.com/view/seq2seq-icm

Sydney, Australia, 2017

Applications

Sentence to Constituency Parse Tree

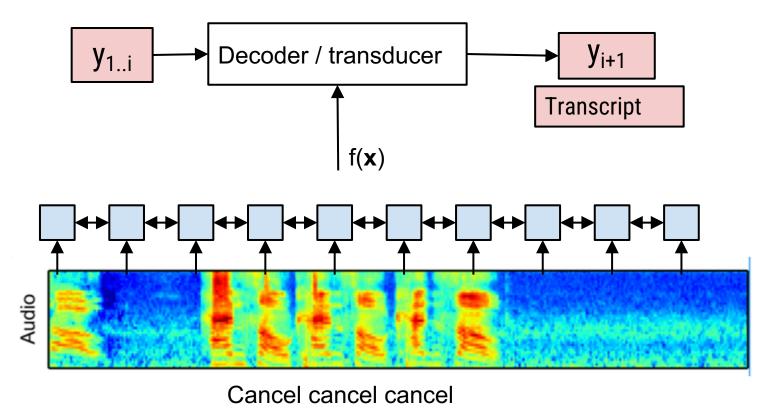
- 1. Read a sentence
- 2. Flatten the tree into a sequence (adding (,))
- 3. "Translate" from sentence to parse tree

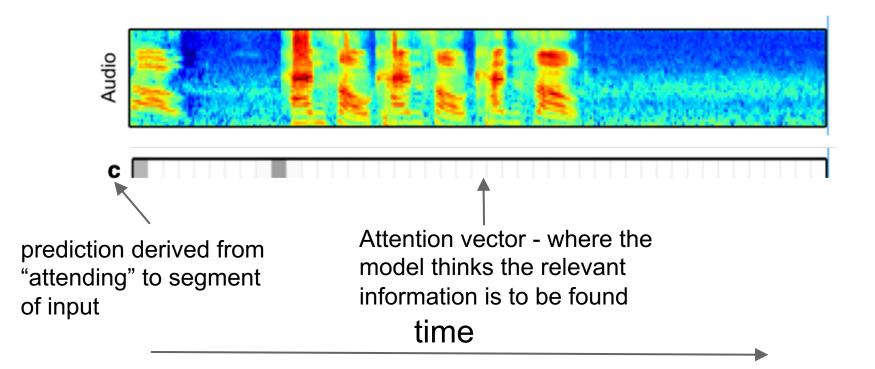


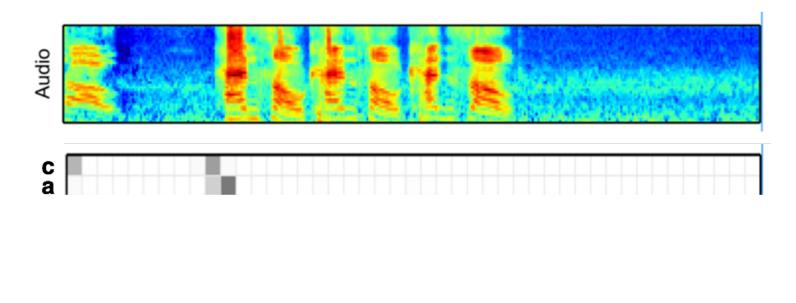
Vinyals, O., et al. "Grammar as a foreign language." NIPS (2015).

Speech Recognition

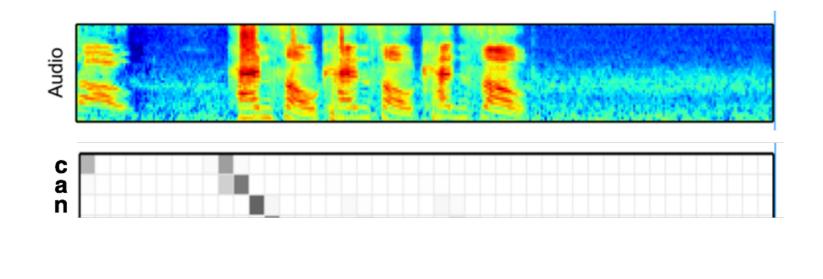
 $p(y_{i+1}|y_{1..i}, x)$



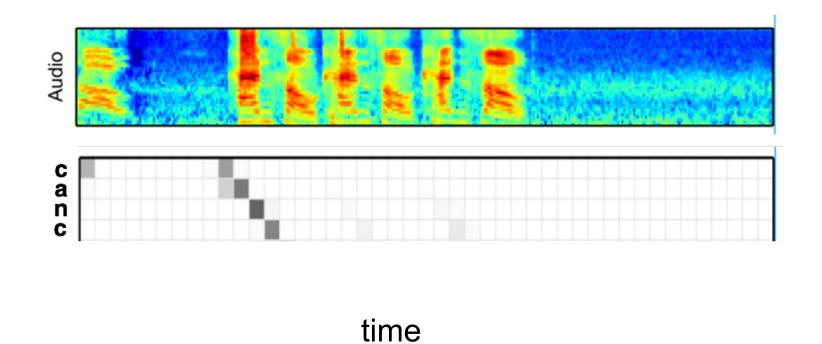


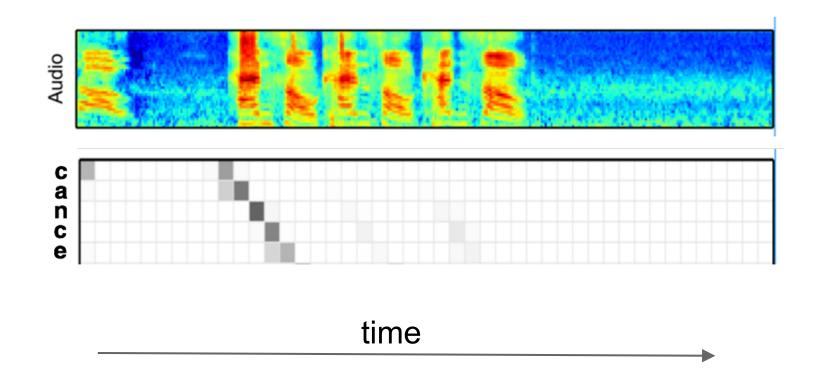


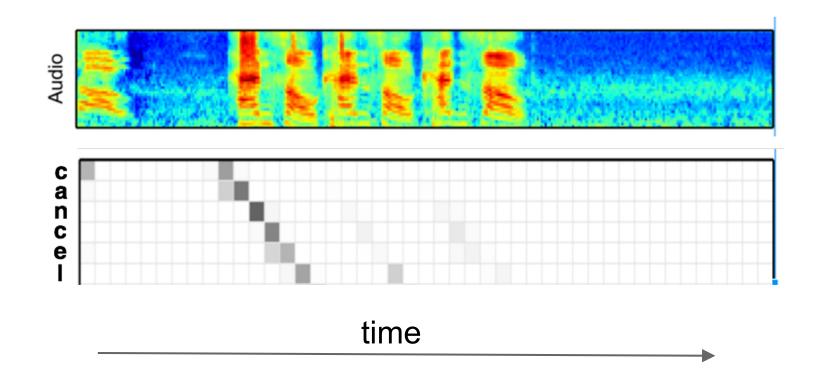
time

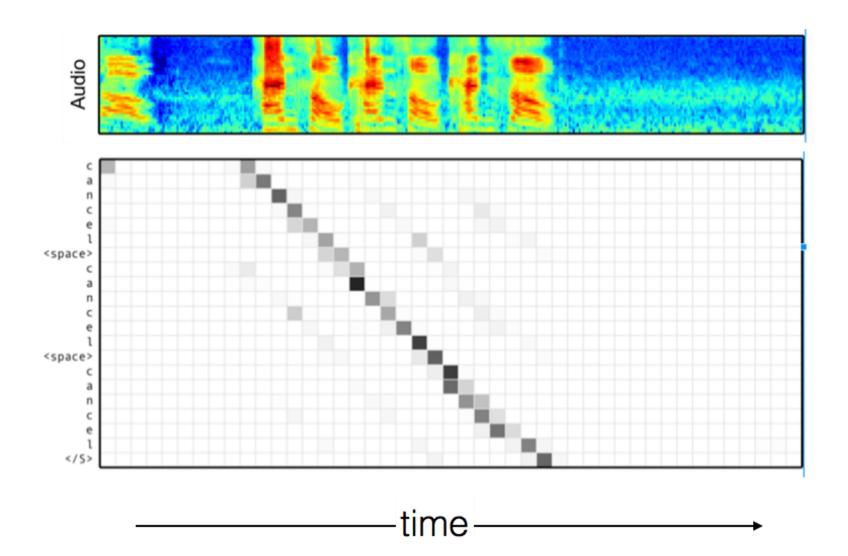


time



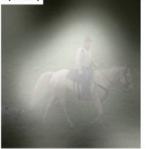






Caption Generation with Visual Attention

a(0.17)

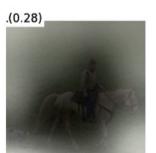


A(0.99)

in(0.24)

riding(0.26)

a(0.14)



A man riding a horse in a field.

Xu et al, ICML 2015

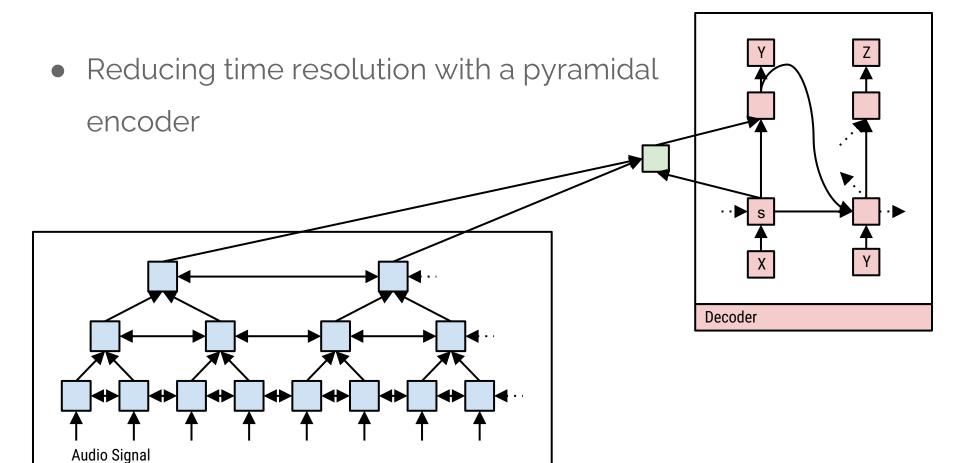
Caption Generation with Visual Attention

A woman holding a <u>clock</u> in her hand.

A large white bird standing in a forest.

Xu et al, ICML 2015

Listen Attend and Spell (LAS)



Chan, W., Jaitly, N., Le, Q., Vinyals, O. "Listen Attend and Spell." ICASSP (2015).

Acoustic Model

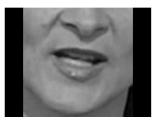
LAS Results

Beam	Text	LogProb	WER
Truth	call aaa roadside assistance	-	-
1	call aaa roadside assistance	-0.5740	0.00
2	call triple a roadside assistance	-1.5399	50.0
3	call trip way roadside assistance	-3.5012	50.0
4	call xxx roadside assistance	-4.4375	25.0

Lip Reading

Channel	Series name	# hours	# sent.
BBC 1 HD	News [†]	1,584	50,493
BBC 1 HD	Breakfast	1,997	29,862
BBC 1 HD	Newsnight	590	17,004
BBC 2 HD	World News	194	3,504
BBC 2 HD	Question Time	323	11,695
BBC 4 HD	World Today	272	5,558
All		4,960	118,116

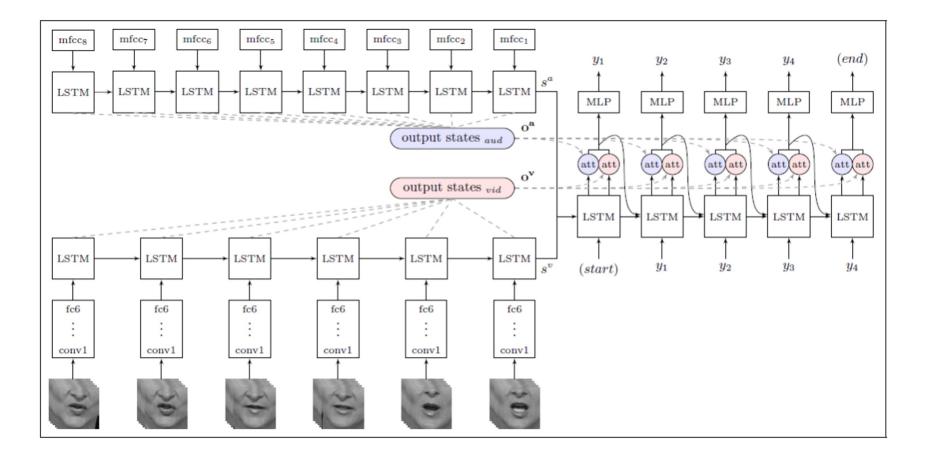
http://www.robots.ox.ac.uk/~vgg/data/lip_reading/



- 1. Chung, J., et al. "Lip reading sentences in the wild." CVPR (2017).
- 2. Assael, Y., et al. "Lipnet: Sentence-level lipreading." arxiv (2016).

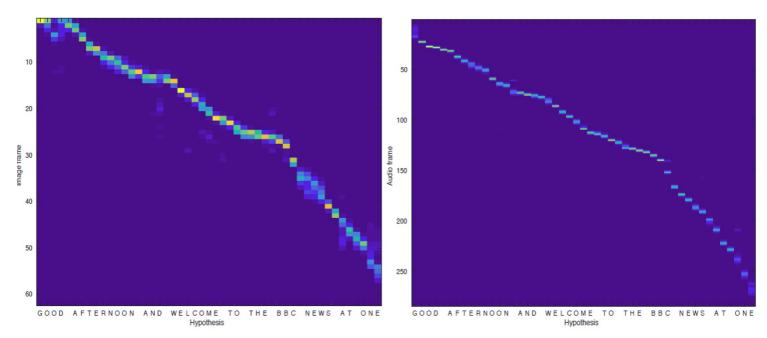
Lip Reading

Separate embedding and attention for audio and visual streams



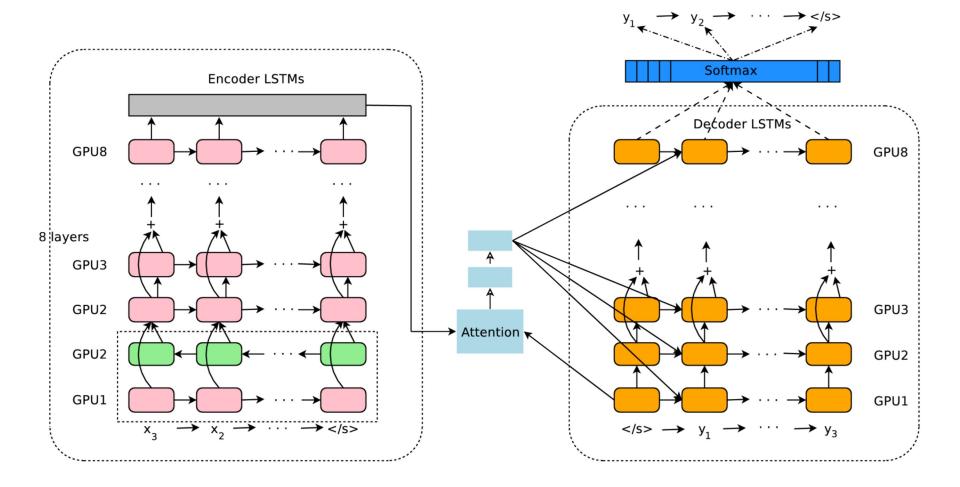
Lip Reading

Method	SNR	CER	WER	BLEU [†]
Lips only				
Professional [‡]	-	58.7%	73.8%	23.8
WAS	-	59.9%	76.5%	35.6
WAS+CL	-	47.1%	61.1%	46.9
WAS+CL+SS	-	42.4%	58.1%	50.0
WAS+CL+SS+BS	-	39.5%	50.2%	54.9



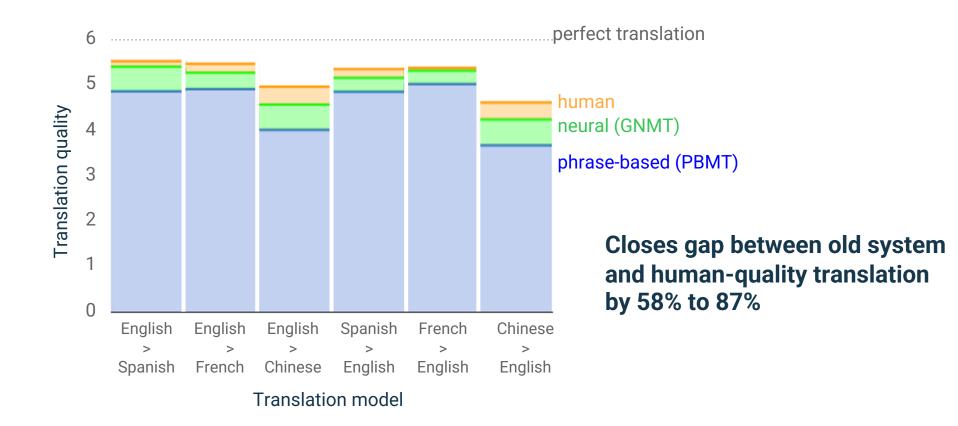
Chung, J., et al. "Lip reading sentences in the wild." CVPR (2017).

Google Neural Machine Translation System



Wu, Y., et al. "Google's Neural Machine Translation System: Bridging the Gap between Human and Machine Translation." *arxiv (2016).*

Google Neural Machine Translation System



research.googleblog.com/2016/09/a-neural-network-for-machine.html

Loss Functions

Loss Functions

- Cross Entropy
- Scheduled Sampling [1]
- Expected Loss [2]
- Augmented Loss [3]
- Sequence to Sequence as a beam search optimization [4]
- Learning decoders with different loss function [5]

- 1. Bengio, S., et al. "Scheduled sampling for sequence prediction with recurrent neural networks." *NIPS (2015).*
- 2. Ranzato, M., et al. "Sequence level training with recurrent neural networks." ICLR (2016).
- 3. Norouzi, M., et al. "Reward augmented maximum likelihood for neural structured prediction." NIPS (2016).
- 4. Wiseman, S., Rush, A. "Sequence-to-sequence learning as beam-search optimization." EMLP (2016).
- 5. Gu, J, Cho, K and Li, V.O.K. "Trainable greedy decoding for neural machine translation." arXiv preprint arXiv:1702.02429 (2017).

Cross Entropy (Negative Log Likelihood) Loss

 Log Likelihood, by chain rule is sum of next step log likelihoods

$$\log p(\mathbf{y}|\mathbf{x}) = \sum_{i=1}^{N} \log p(y_i|y_{< i}, \mathbf{x})$$

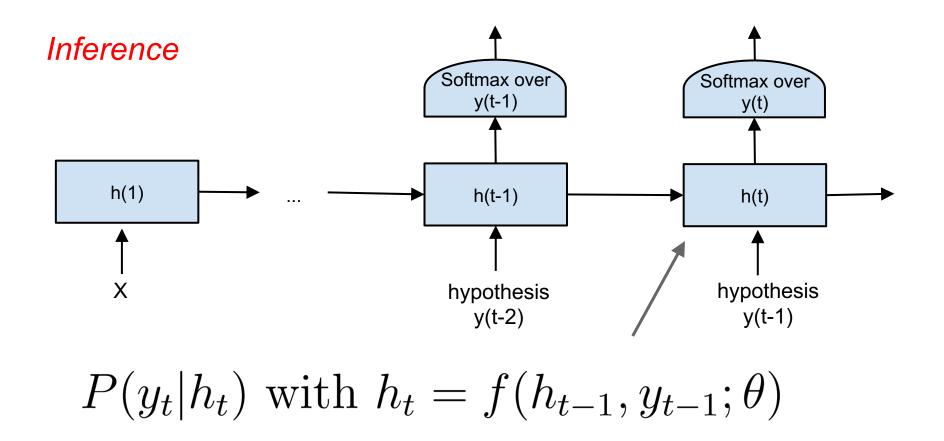
- Supervised classification for each time step
 - depends on input, past outputs, which are known during training

Training and Inference Mismatch



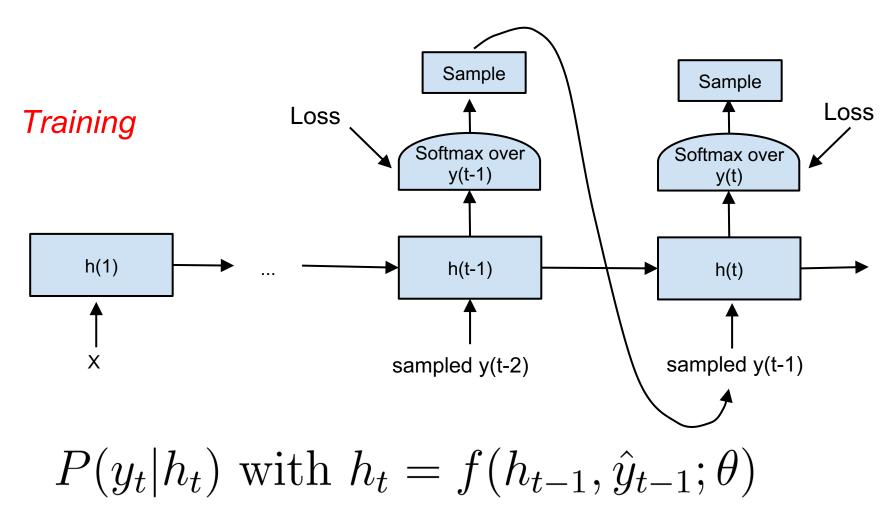
Bengio, S., et al. "Scheduled sampling for sequence prediction with recurrent neural networks." NIPS (2015).

Training and Inference Mismatch



Bengio, S., et al. "Scheduled sampling for sequence prediction with recurrent neural networks." NIPS (2015).

Scheduled Sampling



Bengio, S., et al. "Scheduled sampling for sequence prediction with recurrent neural networks." NIPS (2015).

Scheduled Sampling

Machine Translation Model	Bleu-4	Meteor	Cider
Baseline	28.8	24.2	89.5
Baseline with dropout	28.1	23.9	87.0
Scheduled sampling	30.6	24.3	92.1

Parsing Model	F1
Baseline LSTM with dropout	87.00
Scheduled sampling with dropout	88.68

Speech Recognition Model	WER
LAS + LM Rescoring	12.6
LAS + Sampling + LM Rescoring	10.3

Bengio, S., et al. "Scheduled sampling for sequence prediction with recurrent neural networks." NIPS (2015).

Rewards (-loss) used in Structured Prediction

TASK	REWARD	
Classification	0/1 rewards	$r(\mathbf{y}, \mathbf{y}^*) = \mathbb{1}[\mathbf{y} = \mathbf{y}^*]$
Segmentation	Intersection over Union	$r(\mathbf{y}, \mathbf{y}^*) = \bigcap(\mathbf{y}, \mathbf{y}^*) / \bigcup(\mathbf{y}, \mathbf{y}^*) \qquad \underbrace{\bigcirc}_{\bigcirc}$
Speech Recognition	Edit Distance	$r(\mathbf{y}, \mathbf{y}^*) = (\#d + \#i + \#s) \qquad \qquad \begin{array}{c} \texttt{INTE*NTION} \\ & & & & & & \\ * & \texttt{EXECUTION} \\ \texttt{dss is} \end{array}$
Machine Translation	BLEU	

Expected reward (-loss)

Given a dataset of input output pairs, $\mathcal{D} \equiv \{(\mathbf{x}^{(i)}, \mathbf{y}^{(i)*})\}_{i=1}^N$

learn a conditional distribution $p_{\theta}(\mathbf{y} \mid \mathbf{x})$ that minimizes

expected loss:

$$\mathcal{L}_{\mathrm{RL}}(\boldsymbol{\theta}) = \sum_{(\mathbf{x}, \mathbf{y}^*) \in \mathcal{D}} - \sum_{\mathbf{y} \in \mathcal{Y}} p_{\boldsymbol{\theta}}(\mathbf{y} \mid x) \ r(\mathbf{y}, \mathbf{y}^*)$$

Sample from the **model** distribution

Difficult / Impossible to train from scratch!!

Mixed Incremental Cross-Entropy Reinforce (MIXER)

• Gradually interpolate from Cross-Entropy to Expected Loss

```
Data: a set of sequences with their corresponding context.

Result: RNN optimized for generation.

Initialize RNN at random and set N^{XENT}, N^{XE+R} and \Delta;

for s = T, 1, -\Delta do

if s == T then

| train RNN for N^{XENT} epochs using XENT only;

else

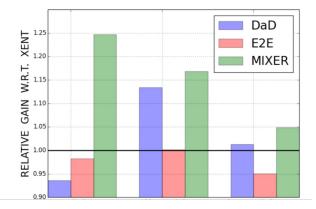
| train RNN for N^{XE+R} epochs. Use XENT loss in the first s steps, and REINFORCE (sampling from the model) in the remaining T - s steps;

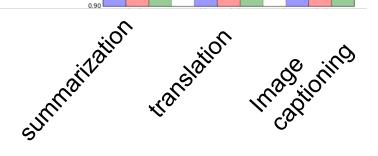
end

end
```

Mixed Incremental Cross-Entropy Reinforce (MIXER)

TASK	XENT	DAD	E2E	MIXER
summarization	13.01	12.18	12.78	16.22
translation	17.74	20.12	17.77	20.73
image captioning	27.8	28.16	26.42	29.16





Ranzato, M., et al. "Sequence level training with recurrent neural networks." ICLR (2016).

Reward Augmented Maximum Likelihood (RML)

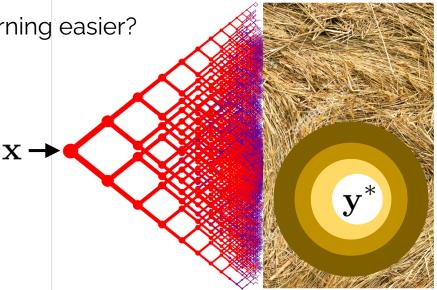
Finding the *right output sequence*, for tasks like speech recognition or machine

translation is like finding *a needle in a haystack*.

It is very risky to shoot *only* for the *true target*.

What if we expand the targets to make learning easier?

E.g. by inserting, deleting random words...



Reward Augmented maximum likelihood (RML)

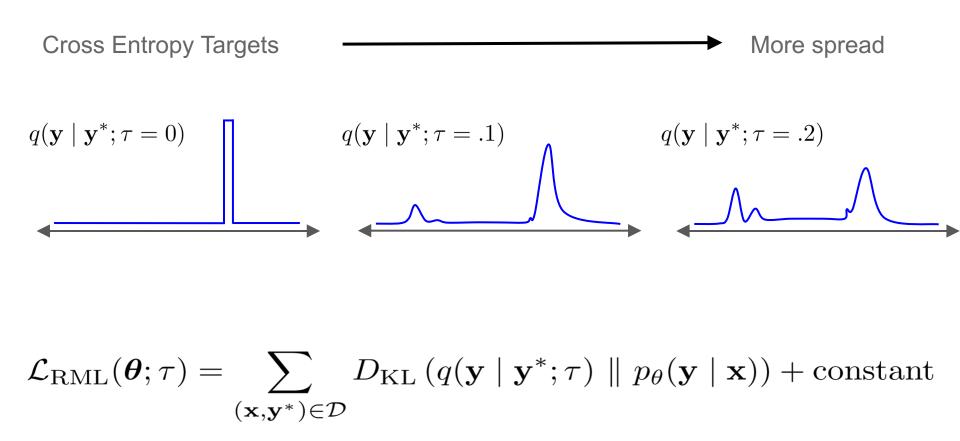
$$\mathcal{L}_{\mathrm{RML}}(\boldsymbol{\theta};\tau) = \sum_{(\mathbf{x},\mathbf{y}^*)\in\mathcal{D}} \left\{ -\sum_{\mathbf{y}\in\mathcal{Y}} q(\mathbf{y} \mid \mathbf{y}^*;\tau) \log p_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x}) \right\}$$
Optimal $p_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x})$:
$$q(\mathbf{y} \mid \mathbf{y}^*;\tau) = \frac{1}{Z(\mathbf{y}^*,\tau)} \exp\left\{r(\mathbf{y},\mathbf{y}^*)/\tau\right\}$$

$$\mathcal{L}_{\mathrm{RML}}(\boldsymbol{\theta};\tau) = \sum_{(\mathbf{x},\mathbf{y}^*)\in\mathcal{D}} D_{\mathrm{KL}}\left(q(\mathbf{y} \mid \mathbf{y}^*;\tau) \parallel p_{\boldsymbol{\theta}}(\mathbf{y} \mid \mathbf{x})\right) + \text{constant}$$

Norouzi, M., et al. "Reward augmented maximum likelihood for neural structured prediction." NIPS (2016).

RML - Impact of temperature au

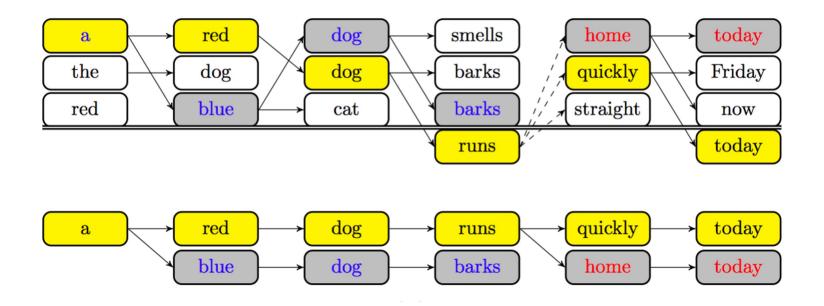
Temperature impacts spread of distribution we sample from



Norouzi, M., et al. "Reward augmented maximum likelihood for neural structured prediction." NIPS (2016).

Margin Loss

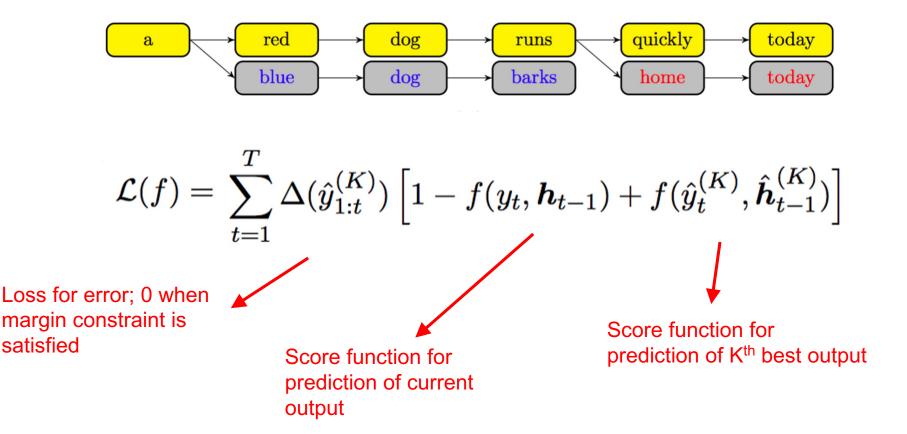
- Perform beam search until correct hypothesis falls out of the beam
- Restart beam whenever there is a violation
- Extract correct hypothesis and competing hypotheses



Wiseman, S., Rush, A. "Sequence-to-sequence learning as beam-search optimization." EMLP (2016).

Margin Loss

Add a margin score for all time steps where the correct hypothesis is not better than the Kth best hypothesis by a certain margin



Wiseman, S., Rush, A. "Sequence-to-sequence learning as beam-search optimization." EMLP (2016).

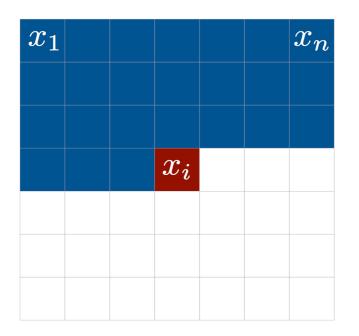
Margin Loss

	Machine Translation (BLEU)		
	$K_{te} = 1$	$K_{te} = 5$	$K_{te} = 10$
seq2seq	22.53	24.03	23.87
BSO, SB- Δ	23.83	26.36	25.48
XENT	17.74	20.10	20.28
DAD	20.12	22.25	22.40
MIXER	20.73	21.81	21.83

Wiseman, S., Rush, A. "Sequence-to-sequence learning as beam-search optimization." EMLP (2016).

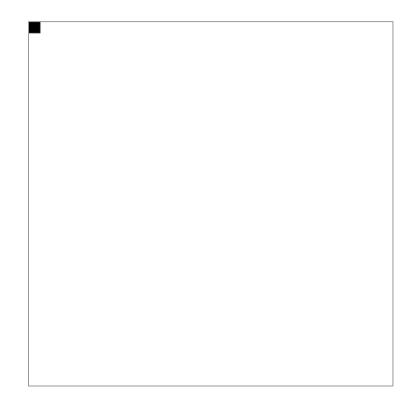
Autoregressive Generative Models

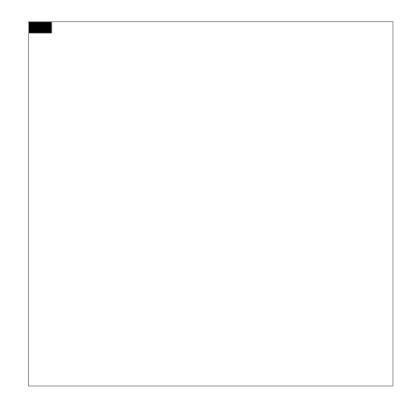
Pixel RNN Model

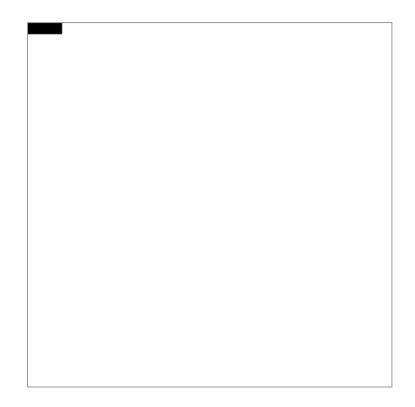


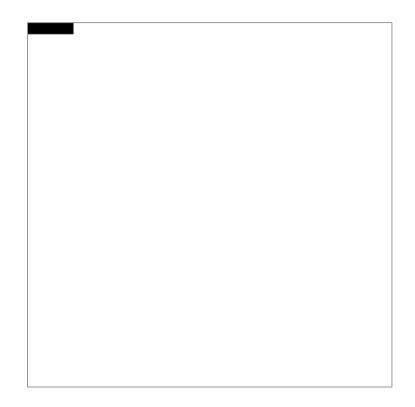
$$p(\mathbf{x}) = \prod_{i=1}^{n^2} p(x_i | x_1, \dots, x_{i-1})$$

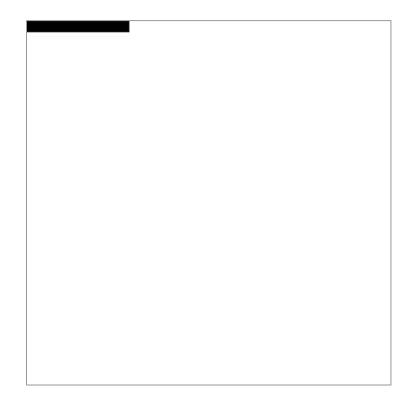
- Fully visible
- Similar to language models with RNNs
- Model pixels with Softmax

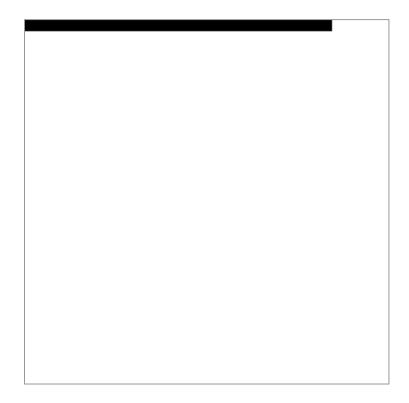


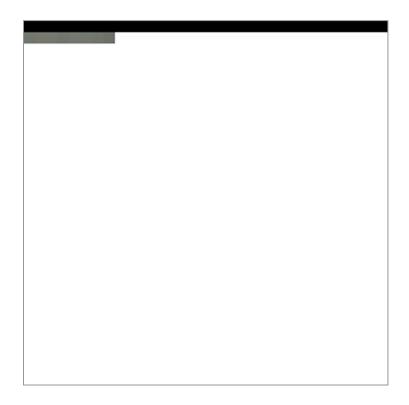


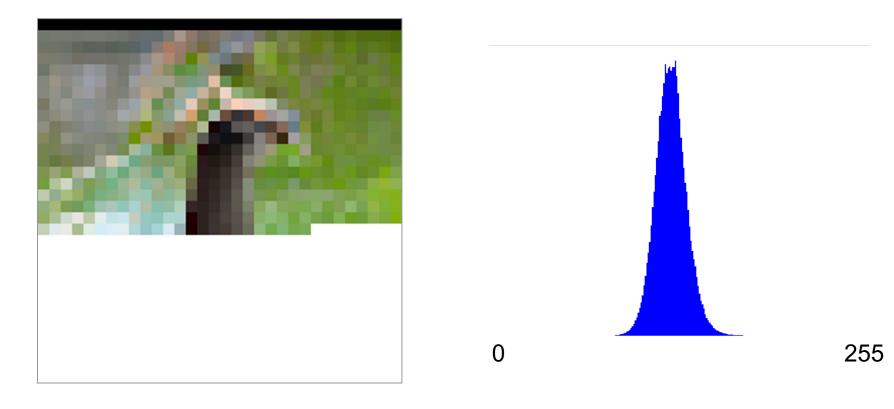


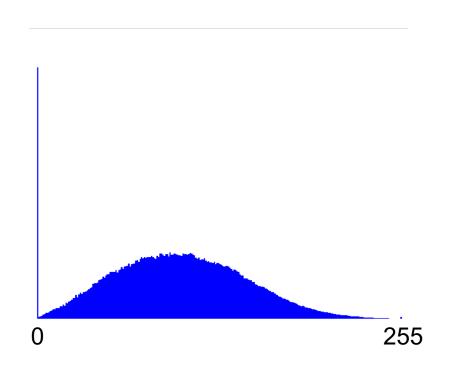


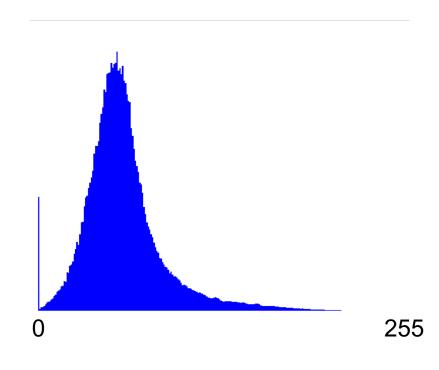


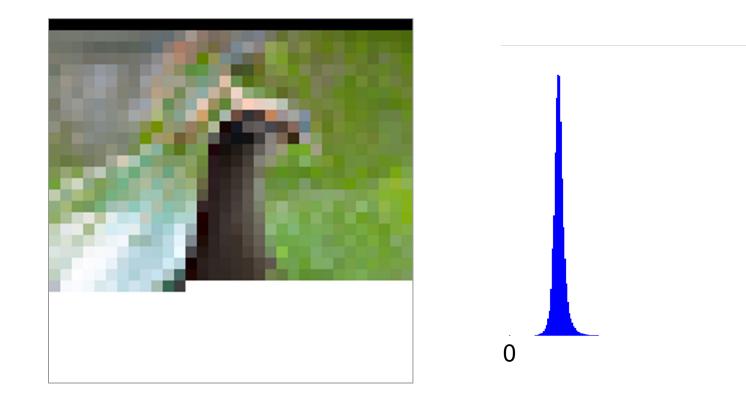


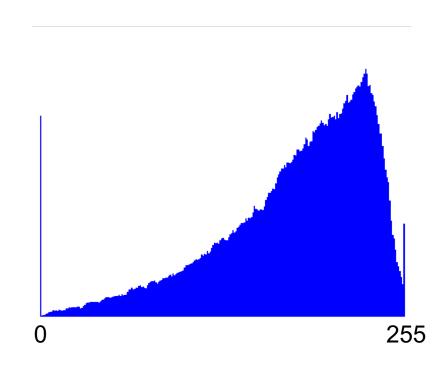


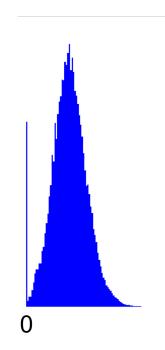




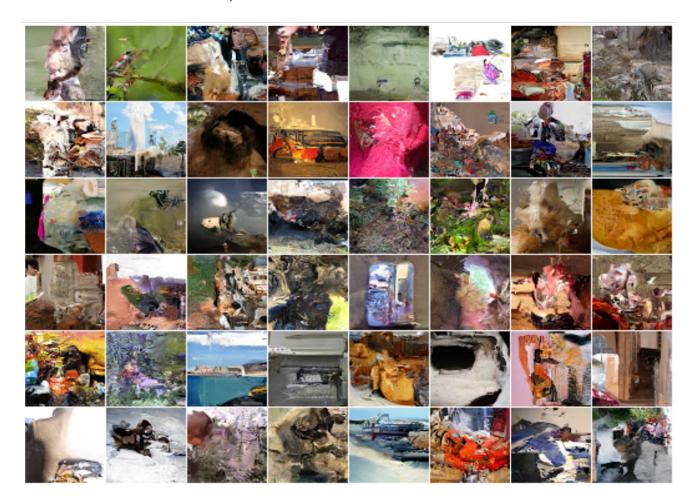








Sequence of Words == Sequence of Pixels



occluded

occluded

completions

Conditional Pixel CNN

Geyser

Hartebeest

Grey whale

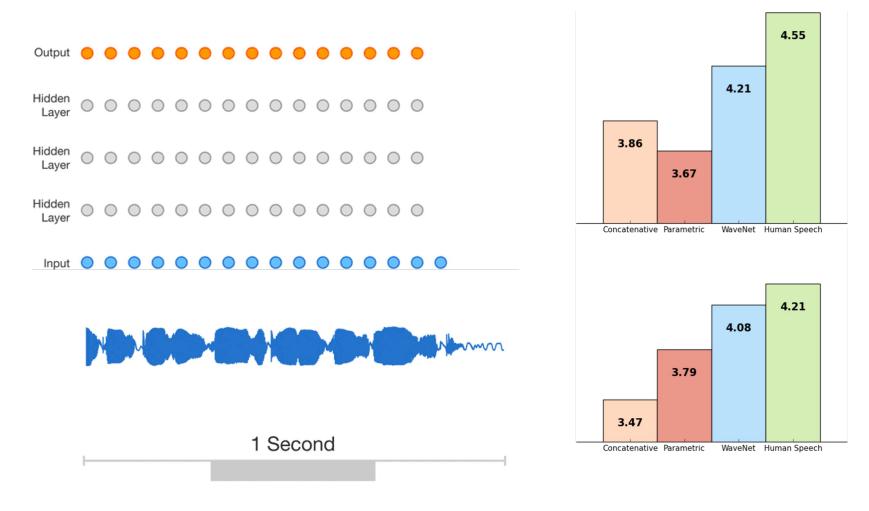
Tiger

EntleBucher (dog)

Yellow lady's slipper (flower)

van den Oord, A., et al. "Conditional Pixel CNN." NIPS (2016).

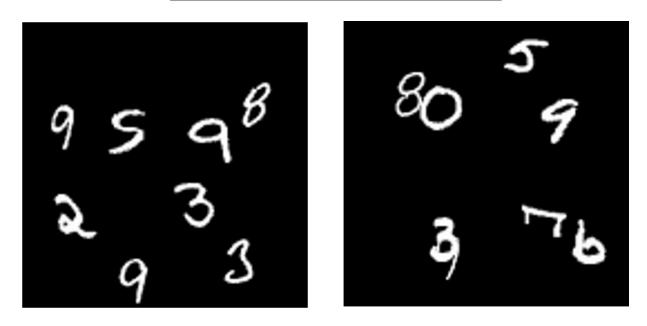
WaveNets



van den Oord, A., et al. "WaveNet: A Generative Model for Raw Audio." arxiv (2016).

Video Pixel Network (VPN)

Model	Test
(Shi et al., 2015)	367.2
(Srivastava et al., 2015a)	341.2
(Brabandere et al., 2016)	285.2
(Patraucean et al., 2015)	179.8
Baseline model	110.1
VPN	87.6
Lower Bound	86.3

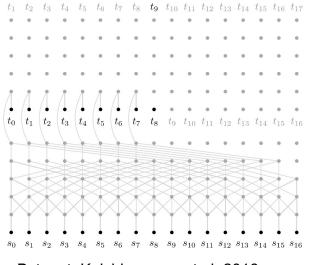


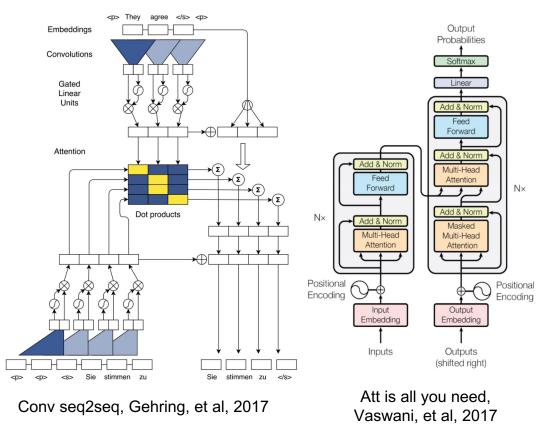
Kalchbrenner, N., et al. "Video Pixel Networks." ICML (2017).

New Architectures

Output 🕘 🕘 🕘 🕘 🕘 🕘 🕘 🕘 🕘 🕘 🕚

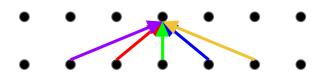
Wavenet, van den Oord, et al, 2016



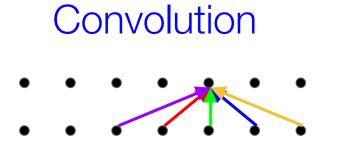


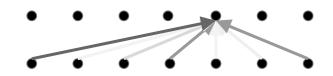
Bytenet, Kalchbrenner, et al, 2016

Self-Attention



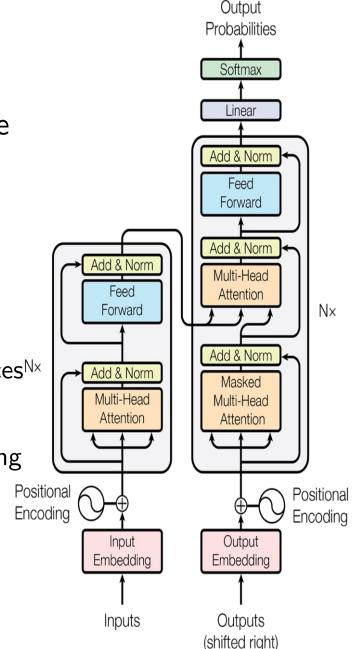
Self-Attention



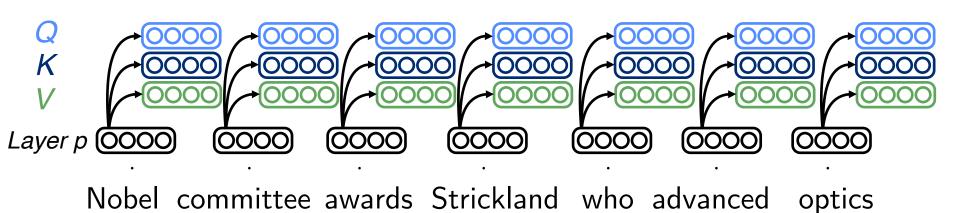


Transformer Networks

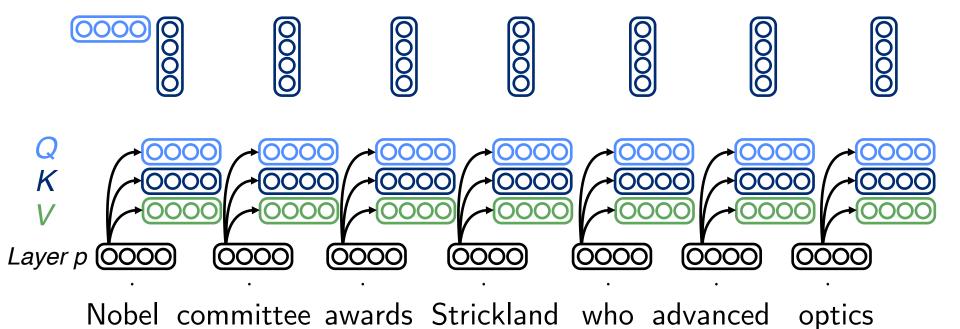
- Originally designed for Neural Machine Translation
- Input/Output Embedding Layer:
 - Lookup table from discrete tokens to continuous word representations
- Positional Encoding
 - Adding temporal information into sequences^{Nx}
- Encoder / Decoder
 - Performing Sequence-to-Sequence Modeling
 - Core: Scaled Dot-Product Attention Mechanism
- Output Probability Layer
 - Lookup table from continuous word representations to discrete tokens



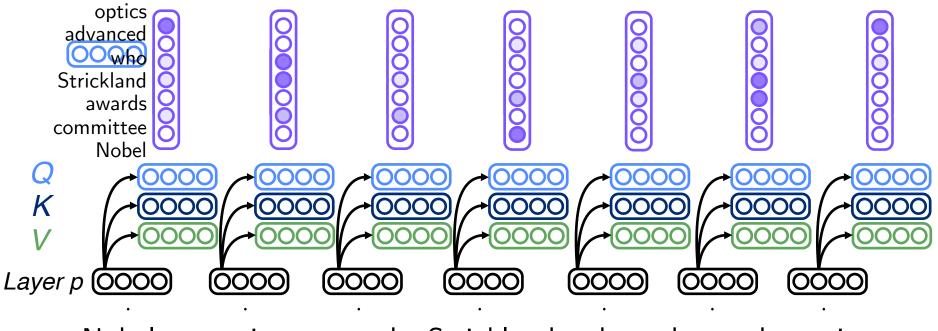
Self Attention



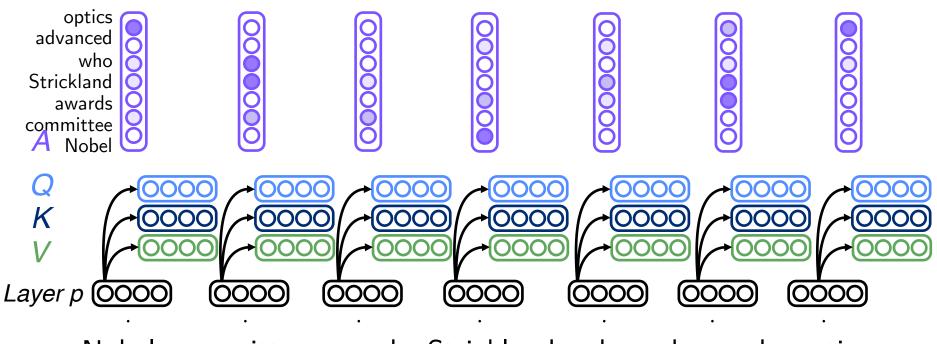
Self Attention



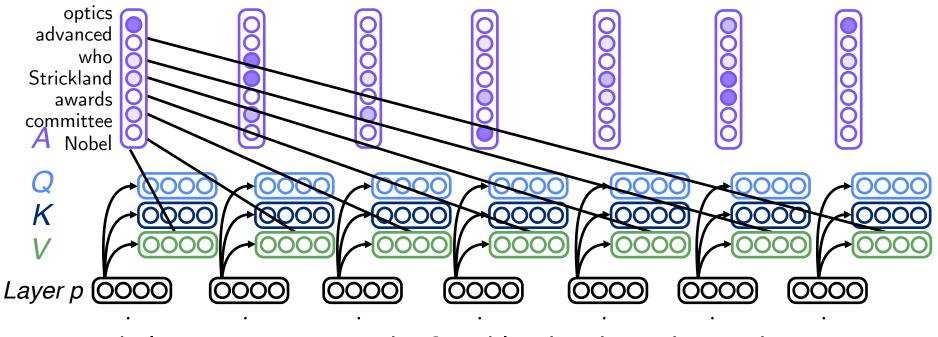
Self Attention



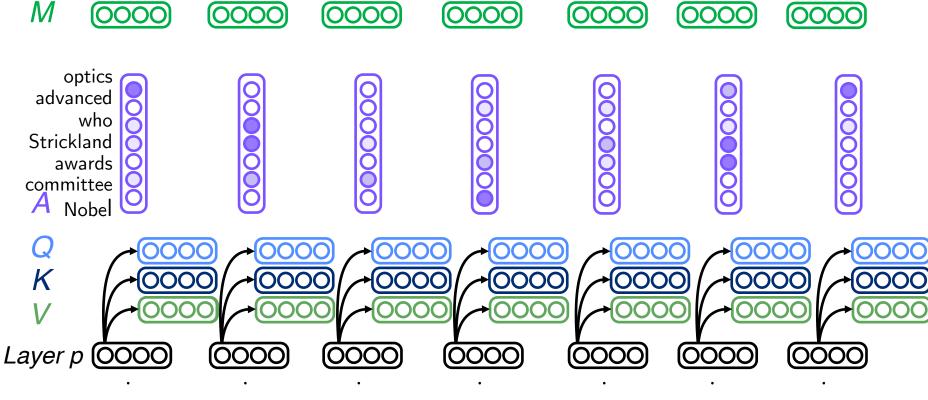
Self Attention



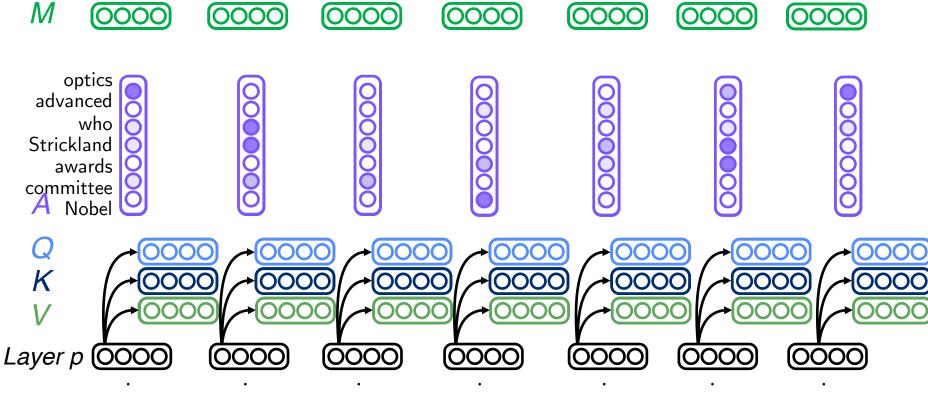
Self Attention



Self Attention

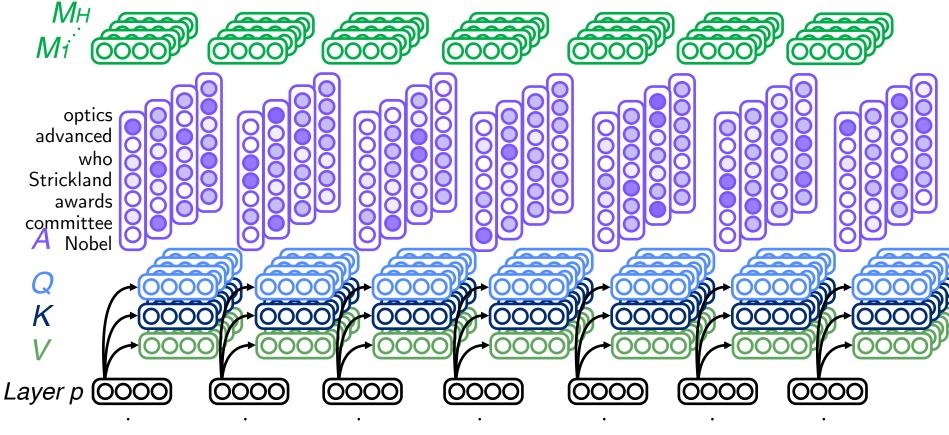


Self Attention



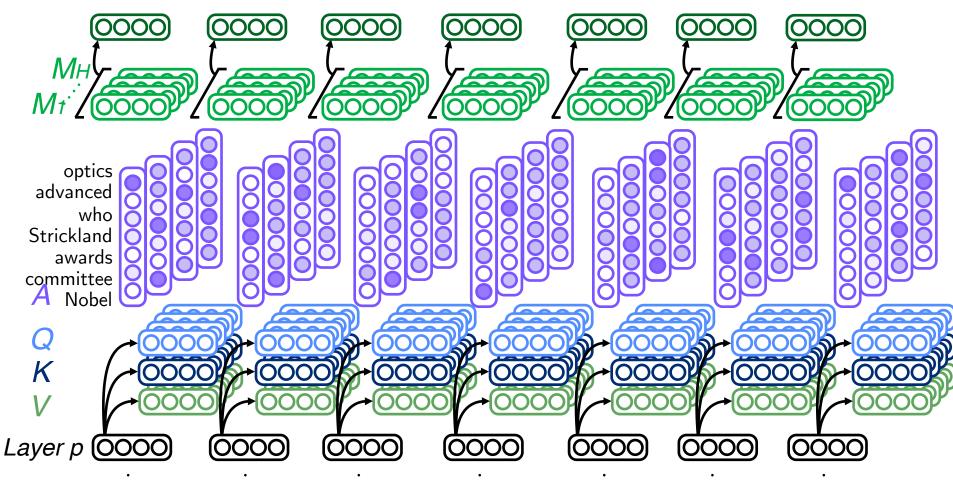
Multi-Head Self Attention

[Vaswani et al. 2017], Slides borrowed form Emma Strubell



Multi-Head Self Attention

[Vaswani et al. 2017], Slides borrowed form Emma Strubell



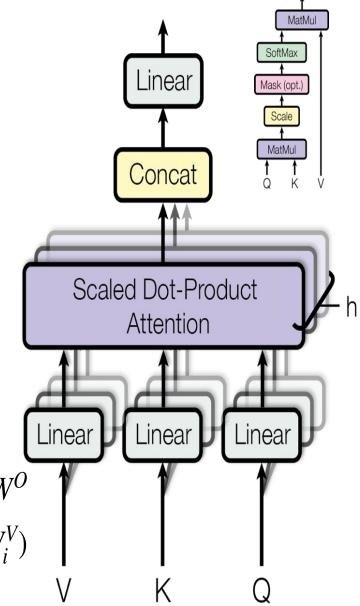
Transformer Networks

- Core: Scaled Dot-Product Attention Mechanism
 - Also called Single-Head Attention

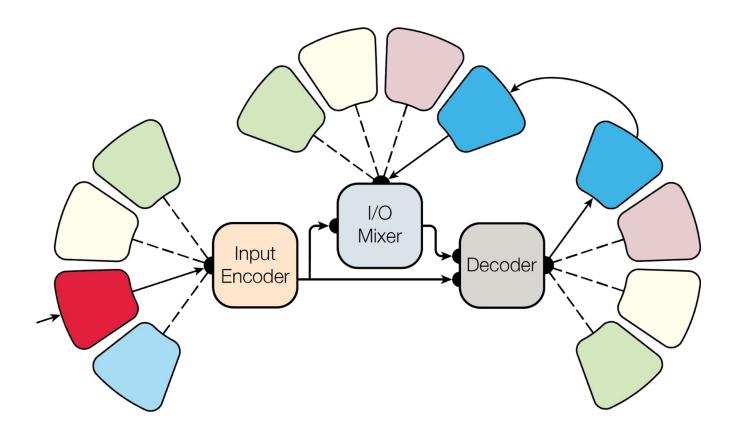
Attention(Q, K, V) = softmax($\frac{QK^{\top}}{\sqrt{d_k}}$)V

- Multi-Head Attention
 - Consider multiple attention hypothesis

MutliHead(Q, K, V) = Concat(head₁, ..., head_h) W^{O} where head_i = Attention($QW_{i}^{Q}, KW_{i}^{K}, VW_{i}^{V}$)



MultiModel



Kaiser, L., et al. "One Model To Learn Them All." arxiv (2017).

MultiModel

Kaiser, L., et al. "One Model To Learn Them All." arxiv (2017).