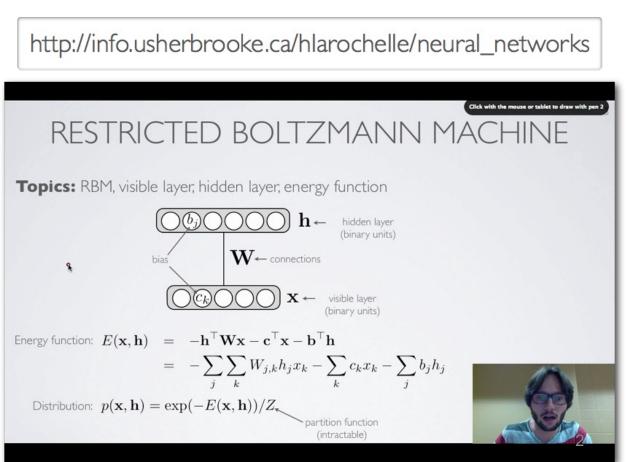
10707 Deep Learning

Russ Salakhutdinov

Machine Learning Department rsalakhu@cs.cmu.edu


Language Modeling

Neural Networks Online Course

• **Disclaimer**: Some of the material and slides for this lecture were borrowed from Hugo Larochelle's class on Neural Networks:

Hugo's class covers many other topics: convolutional networks, neural language model, Boltzmann machines, autoencoders, sparse coding, etc.

• We will use his material for some of the other lectures.

Natural Language Processing

- Natural language processing is concerned with tasks involving language data
 - we will focus on text data NLP
- Much like for computer vision, we can design neural networks specifically adapted to the processing of text data
 - > main issue: text data is inherently high dimensional

Natural Language Processing

- Typical preprocessing steps of text data
 - Form vocabulary of words that maps words to a unique ID
 - Different criteria can be used to select which words are part of the vocabulary
 - Pick most frequent words and ignore uninformative words from a user-defined short list (ex.: " the ", " a ", etc.)
 - All words not in the vocabulary will be mapped to a special "outof-vocabulary"
- Typical vocabulary sizes will vary between 100,000 and 1,000,000

Vocabulary

• Example: Word w"the" 1 " and " $\mathbf{2}$ "the" 1 "dog " 3 "cat" 5"**.** " 4 " and " 2 " 00V " 5"the" 1 " dog " 3 "play" 566 • " 4

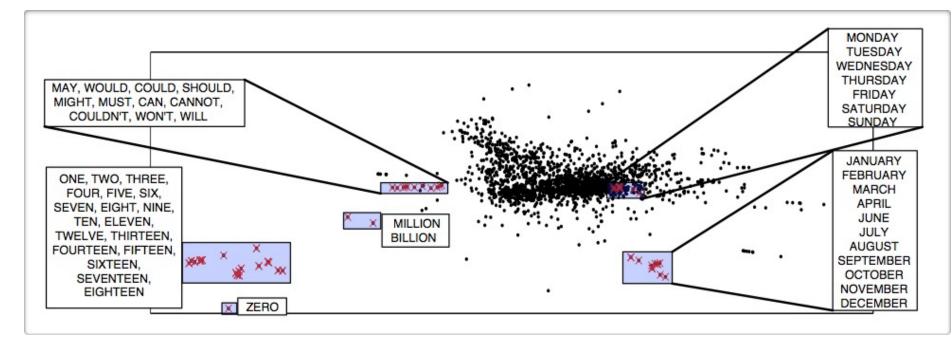
- We will note word IDs with the symbol w
 - > we can think of w as a categorical feature for the original word
 - > we will sometimes refer to w as a word, for simplicity

One-Hot Encoding

• From its word ID, we get a basic representation of a word through the one-hot encoding of the ID

- the one-hot vector of an ID is a vector filled with 0s, except for a 1 at the position associated with the ID
- > For vocabulary size D=10, the one-hot vector of word ID w=4 is: e(w) = [00010000]
- > A one-hot encoding makes no assumption about word similarity
- > This is a natural representation to start with, though a poor one

One-Hot Encoding


• The major problem with the one-hot representation is that it is very high-dimensional

- \succ the dimensionality of e(w) is the size of the vocabulary
- > a typical vocabulary size is ≈100,000
- a window of 10 words would correspond to an input vector of at least 1,000,000 units!
- This has 2 consequences:
 - vulnerability to overfitting (millions of inputs means millions of parameters to train)
 - computationally expensive

• Each word w is associated with a real-valued vector C(w)

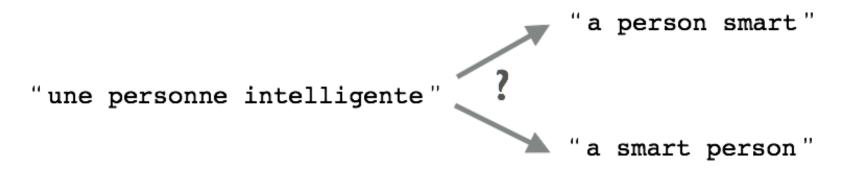
Word	w	C(w)
"the "	1	$[\ 0.6762,\ -0.9607,\ 0.3626,\ -0.2410,\ 0.6636\]$
" a "	2	[0.6859, -0.9266, 0.3777, -0.2140, 0.6711]
"have "	3	[0.1656, -0.1530, 0.0310, -0.3321, -0.1342]
" be "	4	[0.1760, -0.1340, 0.0702, -0.2981, -0.1111]
"cat"	5	[0.5896, 0.9137, 0.0452, 0.7603, -0.6541]
" dog "	6	[0.5965, 0.9143, 0.0899, 0.7702, -0.6392]
"car"	7	[-0.0069, 0.7995, 0.6433, 0.2898, 0.6359]

• We would like the distance ||C(w)-C(w')|| to reflect meaningful similarities between words

(from Blitzer et al. 2004)

- Learn a continuous representation of words
 - we could then use these representations as input to a neural network
- We learn these representations by gradient descent
 - we don't only update the neural network parameters
 - we also update each representation C(w) in the input x with a gradient step:

$$C(w) \longleftarrow C(w) - \alpha \nabla_{C(w)} l$$

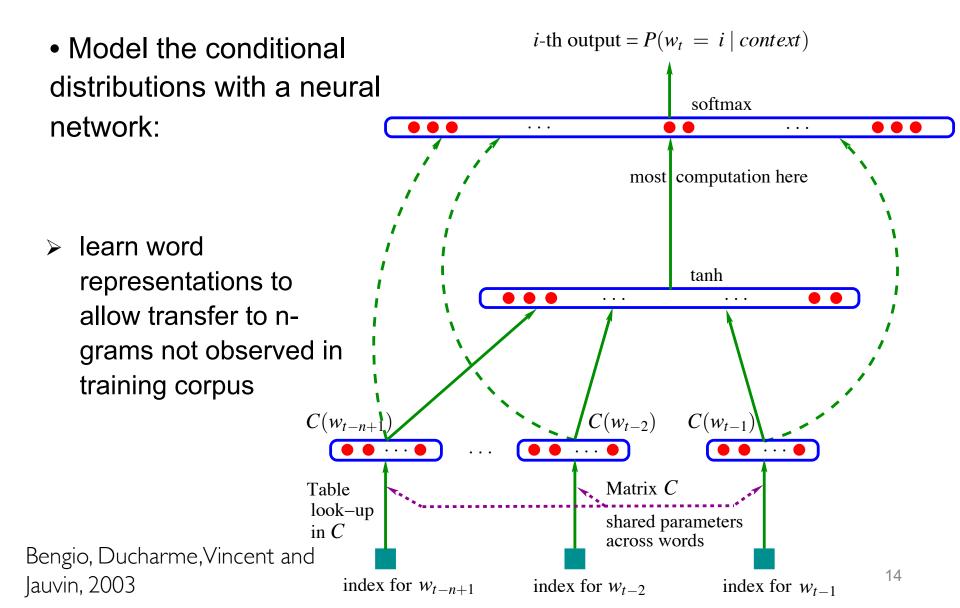

where *I* is the loss function optimized by the neural network

- Let C be a matrix whose rows are the representations C(w)
 - > obtaining C(w) corresponds to the multiplication $e(w)^{T} C$
 - view differently, we are projecting e(w) onto the columns of C
 - this is a continuous transformation, through which we can propagate gradients
- In practice, we implement C(w) with a lookup table, not with a multiplication

Language Modeling

 $p(w_1, ..., w_T)$

- Ianguage modeling is the task of learning a language model that assigns high probabilities to well formed sentences
- plays a crucial role in speech recognition and machine translation systems



Language Modeling

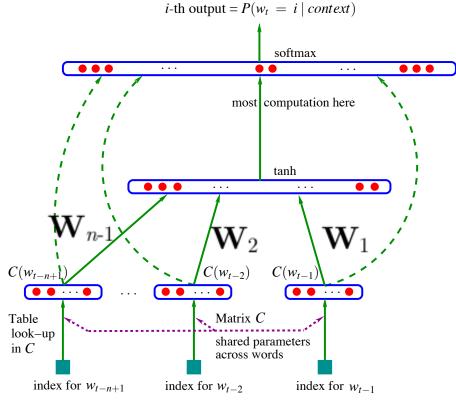
$$p(w_1, \ldots, w_T) = \prod_{t=1}^{T} p(w_t \mid w_{t-(n-1)}, \ldots, w_{t-1})$$

- > the tth word was generated based only on the n-1 previous words
- > we will refer to $w_{t-(n-1)}$, ..., w_{t-1} as the context

Neural Language Model

Neural Language Model

- Can potentially generalize to contexts not seen in training set
 - Example: P(" eating " | " the ", " cat ", " is ")
 - Imagine 4-gram [" the ", " cat ", " is ", " eating "] is not in training corpus, but [" the ", " dog ", " is ", " eating "] is
 - If the word representations of "cat" and "dog" are similar, then the neural network will be able to generalize to the case of "cat"


Neural Language Model

• We know how to propagate gradients in such a network

 $\nabla_{\mathbf{a}(\mathbf{x})}l$

- let's note the submatrix
 connecting w_{t-i} and the hidden
 layer as W_i
- The gradient wrt *C(w)* for any *w* is

$$\nabla_{C(w)} l = \sum_{i=1}^{n-1} \mathbb{1}_{(w_{t-i}=w)} \mathbf{W}_i^\top \nabla_{\mathbf{a}(\mathbf{x})}$$

Performance Evaluation

- In language modeling, a common evaluation metric is the perplexity
 - it is simply the exponential of the average negative loglikelihood
- Evaluation on Brown Corpus
 - n-gram model (Kneser-Ney smoothing): 321
 - neural network language model: 276
 - neural network + n-gram: 252

How About Generating Sentences!

Input

Output

A man skiing down the snow covered mountain with a dark sky in the background.

How About Generating Sentences!

Input

Output

A man skiing down the snow covered mountain with a dark sky in the background.

We want to model:

 $p(w_1, w_2, ..., w_n) =$ $p(w_1)p(w_2|w_1)p(w_3|w_1, w_2)...p(w_n|w_1, w_2, ..., w_{n-1})$

Caption Generation with NLM

a car is parked in the middle of nowhere .

a ferry boat on a marina with a group of people .

a wooden table and chairs arranged in a room .

there is a cat sitting on a shelf .

a little boy with a bunch of friends on the street .

Caption Generation with NLM

the two birds are trying to be seen in the water . (can't count)

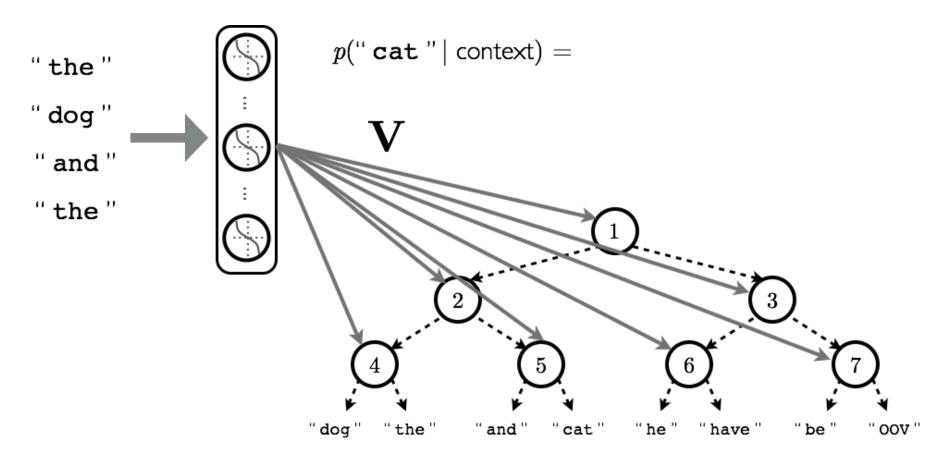
a giraffe is standing next to a fence in a field . (hallucination)

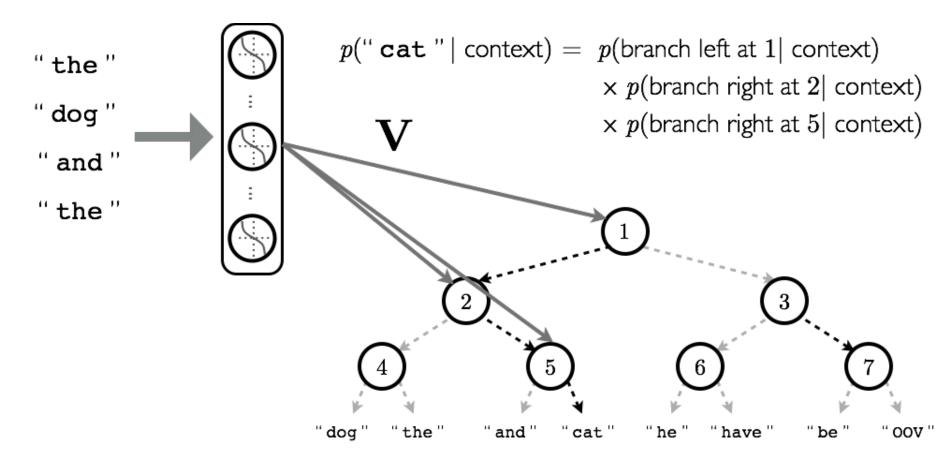
a parked car while driving down the road . (contradiction)

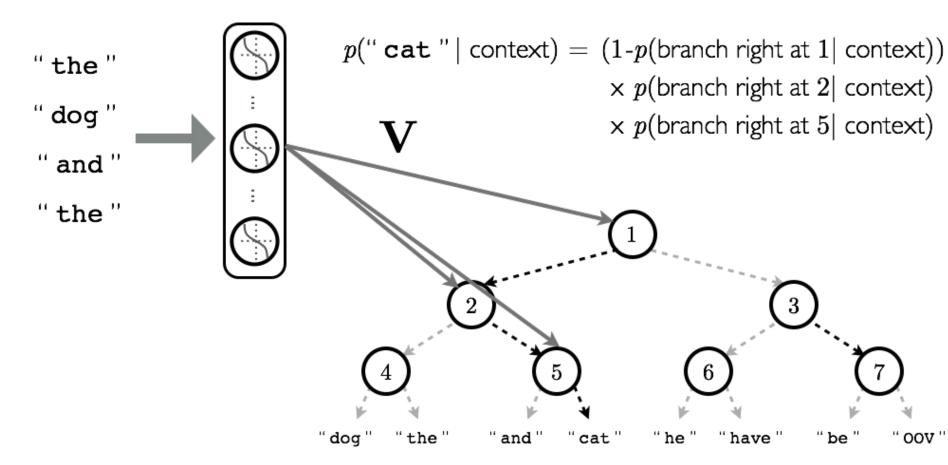
Caption Generation with NLM

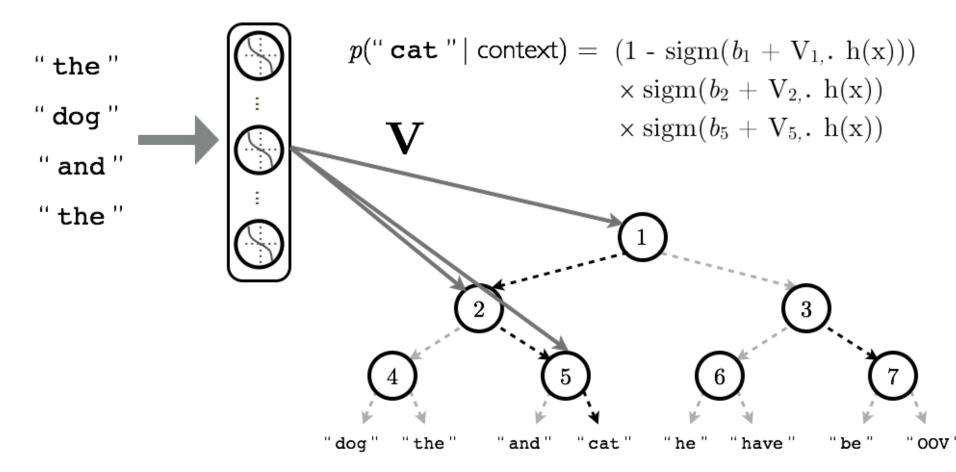
the two birds are trying to be seen in the water . (can't count)

the handlebars are trying to ride a bike rack . (nonsensical)

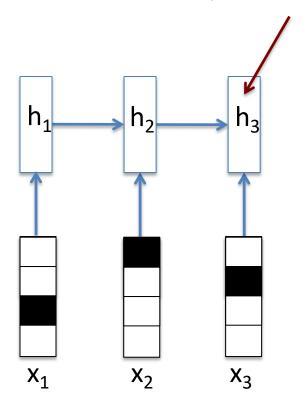

a giraffe is standing next to a fence in a field . (hallucination)






a parked car while driving down the road . (contradiction)

a woman and a bottle of wine in a garden . (gender)

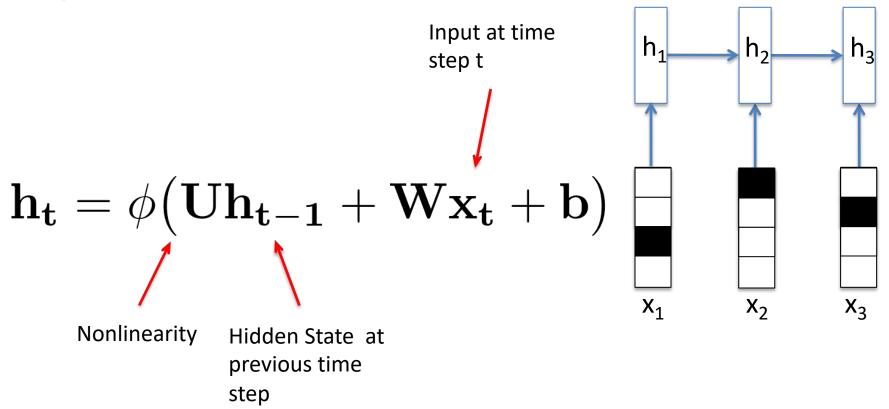

- How to define the word hierarchy?
 - can use a randomly generated tree
 - can use existing linguistic resources, such as WordNet
 - can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model Mnih and Hinton, 2008

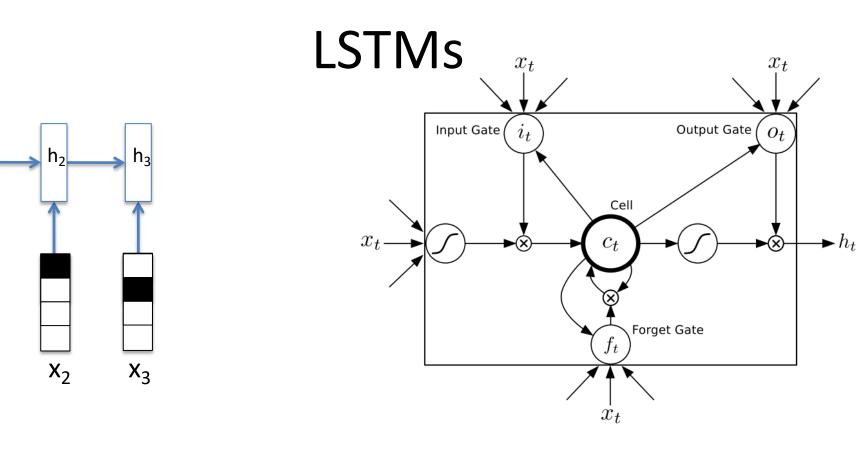
They report a speedup of 100x, without performance decrease

Encoding Sentences via Recurrent Neural Network

Sentence Representation

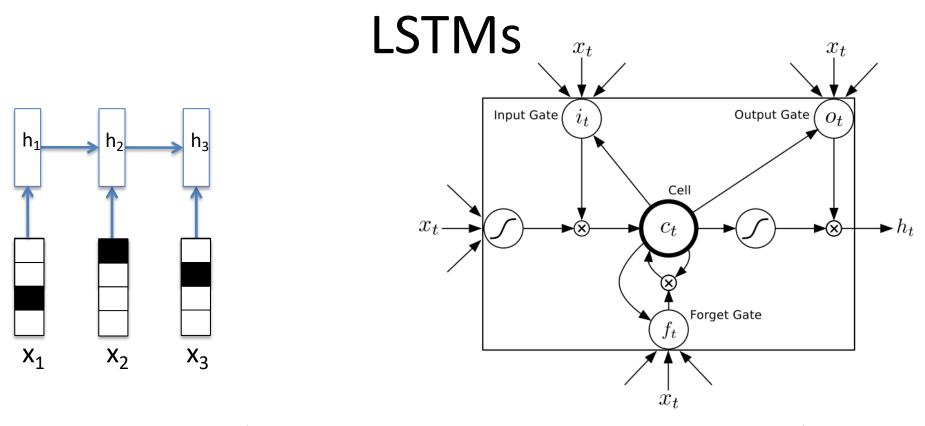


1-of-K encoding of words

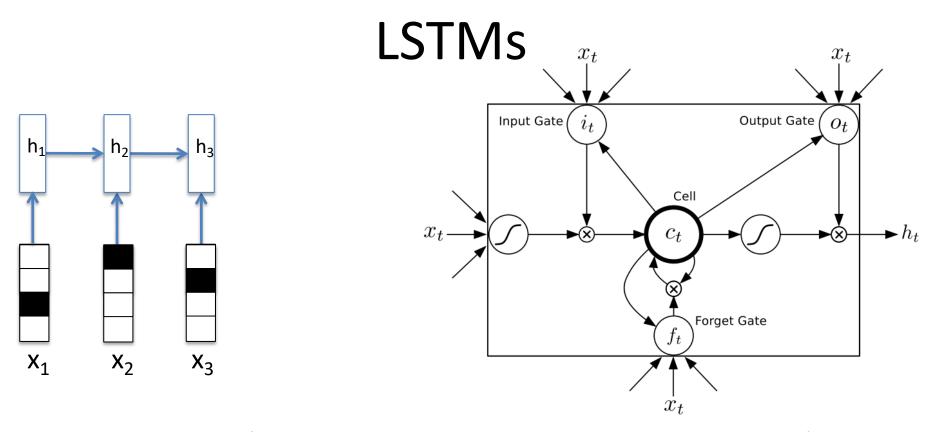

Recurrent Neural Network

Recurrent Neural Network

• Replace

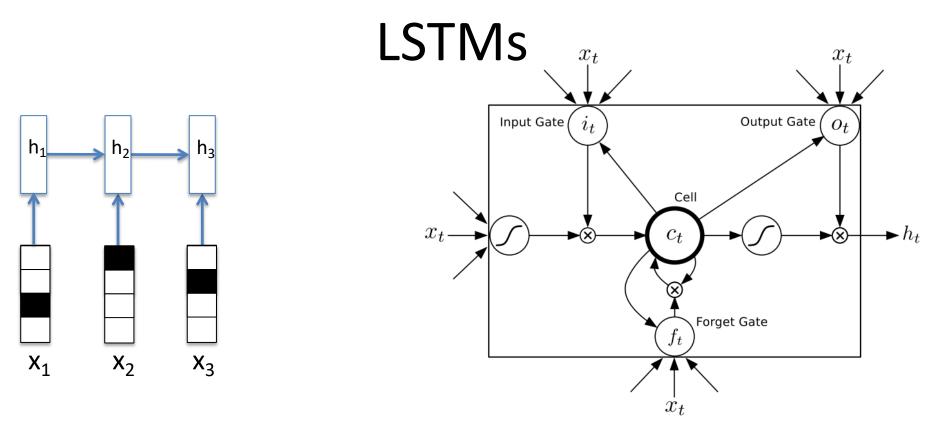


• Can be viewed as a deep neural network with tied weights.



 h_1

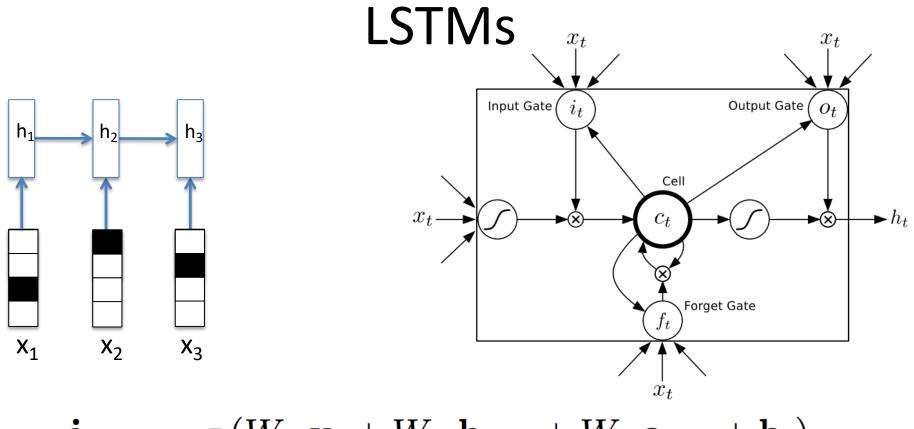
X₁



 $\mathbf{i}_t = \sigma \left(W_{xi} \mathbf{x}_t + W_{hi} \mathbf{h}_{t-1} + W_{ci} \mathbf{c}_{t-1} + \mathbf{b}_i \right),$

$$\mathbf{i}_t = \sigma \left(W_{xi} \mathbf{x}_t + W_{hi} \mathbf{h}_{t-1} + W_{ci} \mathbf{c}_{t-1} + \mathbf{b}_i \right),$$

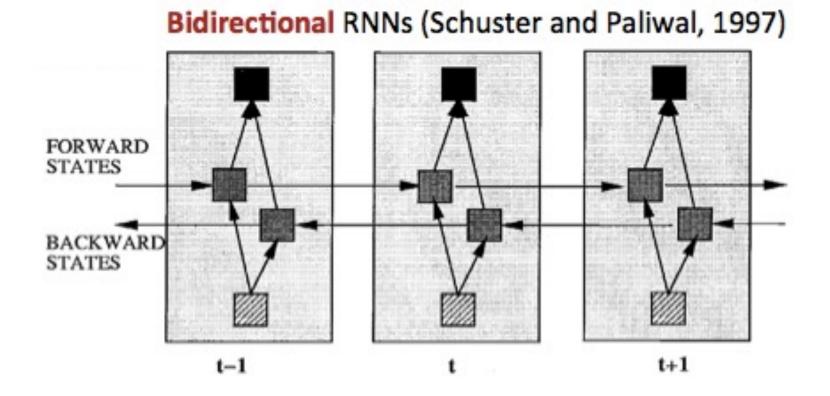
$$\mathbf{f}_t = \sigma \left(W_{xf} \mathbf{x}_t + W_{hf} \mathbf{h}_{t-1} + W_{cf} \mathbf{c}_{t-1} + \mathbf{b}_f \right),$$



$$\mathbf{i}_{t} = \sigma \left(W_{xi} \mathbf{x}_{t} + W_{hi} \mathbf{h}_{t-1} + W_{ci} \mathbf{c}_{t-1} + \mathbf{b}_{i} \right),$$

$$\mathbf{f}_{t} = \sigma \left(W_{xf} \mathbf{x}_{t} + W_{hf} \mathbf{h}_{t-1} + W_{cf} \mathbf{c}_{t-1} + \mathbf{b}_{f} \right),$$

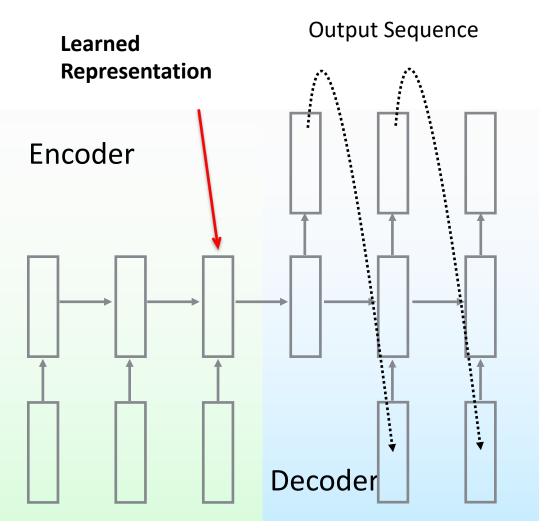
$$\mathbf{c}_{t} = \mathbf{f}_{t} \mathbf{c}_{t-1} + \mathbf{i}_{t} \tanh \left(W_{xc} \mathbf{x}_{t} + W_{hc} \mathbf{h}_{t-1} + \mathbf{b}_{c} \right),$$



$$\mathbf{i}_{t} = \sigma \left(W_{xi} \mathbf{x}_{t} + W_{hi} \mathbf{h}_{t-1} + W_{ci} \mathbf{c}_{t-1} + \mathbf{b}_{i} \right),$$

$$\mathbf{f}_{t} = \sigma \left(W_{xf} \mathbf{x}_{t} + W_{hf} \mathbf{h}_{t-1} + W_{cf} \mathbf{c}_{t-1} + \mathbf{b}_{f} \right),$$

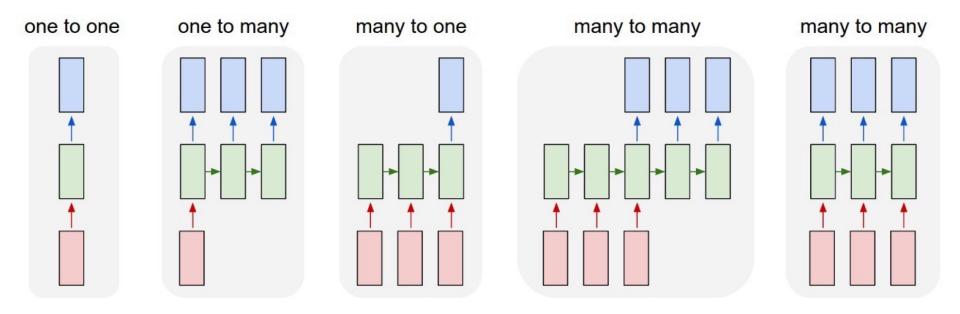
$$\mathbf{c}_t = \mathbf{f}_t \mathbf{c}_{t-1} + \mathbf{i}_t \tanh\left(W_{xc} \mathbf{x}_t + W_{hc} \mathbf{h}_{t-1} + \mathbf{b}_c\right),$$


- $\mathbf{o}_t = \sigma \left(W_{xo} \mathbf{x}_t + W_{ho} \mathbf{h}_{t-1} + W_{co} \mathbf{c}_t + \mathbf{b}_o \right),$
- $\mathbf{h}_t = \mathbf{o}_t \tanh(\mathbf{c}_t).$

Bidirectional RNNs

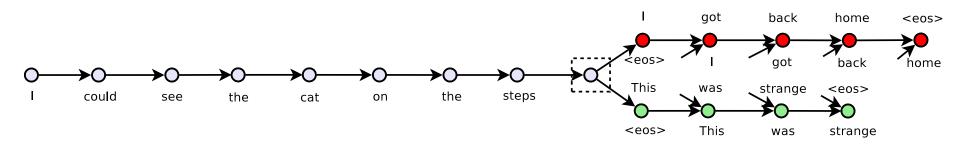
• Heavily used in language modeling.

Sequence to Sequence Learning



Input Sequence

RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

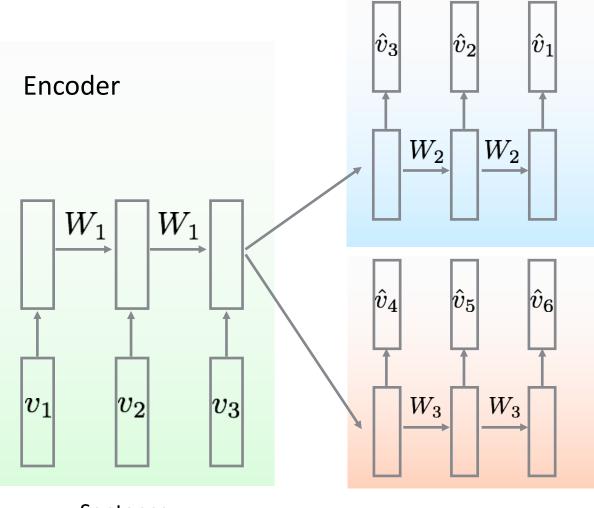

Sequence to Sequence Models

 Natural language processing is concerned with tasks involving language data

Andrej Karpathy. The Unreasonable Effectiveness of Recurrent Neural Networks

Skip-Thought Model

• Given a tuple (s_{i-1}, s_i, s_{i+1}) of contiguous sentences:


– the sentence s_i is encoded using LSTM.

- the sentence s_i attempts to reconstruct the previous sentence and next sentence s_{i+1} .

- The input is the sentence triplet:
 - I got back home.
 - I could see the cat on the steps.
 - This was strange.

Skip-Thought Model

Generate Previous Sentence

Sentence

Generate Forward Sentence

Learning Objective

- We are given a tuple (s_{i-1}, s_i, s_{i+1}) of contiguous sentences.
- Objective: The sum of the log-probabilities for the next and previous sentences conditioned on the encoder representation:

$$\sum_{t} \log P(w_{i+1}^{t} | w_{i+1}^{< t}, \mathbf{h}_{i}) + \sum_{t} \log P(w_{i-1}^{t} | w_{i-1}^{< t}, \mathbf{h}_{i})$$
Forward sentence
Previous sentence
$$\sum_{t \in \mathcal{O} \to \mathcal{O$$

This

was

strange

<eos>

Book 11K corpus

# of books	# of sentences	# of words	# of unique words
11,038	74,004,228	984,846,357	1,316,420

• Query sentence along with its nearest neighbor from 500K sentences using cosine similarity:

 He ran his hand inside his coat, double-checking that the unopened letter was still there.

 He slipped his hand between his coat and his shirt, where the folded copies lay in a brown envelope.

Semantic Relatedness

- SemEval 2014 Task 1: semantic relatedness SICK dataset: Given two sentences, produce a score of how semantically related these sentences are based on human generated scores (1 to 5).
- The dataset comes with a predefined split of 4500 training pairs, 500 development pairs and 4927 testing pairs.

- Using skip-thought vectors for each sentence, we simply train a linear regression to predict semantic relatedness.
 - For pair of sentences, we compute component-wise features between pairs (e.g. |u-v|).

Semantic Relatedness

	Method	r	ρ	MSE
SemEval 2014 sub- missions	Illinois-LH [18] UNAL-NLP [19] Meaning Factory [20] ECNU [21]	0.7993 0.8070 0.8268 0.8414	0.7538 0.7489 0.7721	0.3692 0.3550 0.3224
Results reported by Tai et.al.	Mean vectors [22] DT-RNN [23] SDT-RNN [23] LSTM [22] Bidirectional LSTM [22] Dependency Tree-LSTM [22]	0.7577 0.7923 0.7900 0.8528 0.8567 0.8676	0.6738 0.7319 0.7304 0.7911 0.7966 0.8083	0.4557 0.3822 0.3848 0.2831 0.2736 0.2532
Ours	uni-skip bi-skip combine-skip combine-skip+COCO	$\begin{array}{c} 0.8477 \\ 0.8405 \\ 0.8584 \\ 0.8655 \end{array}$	0.7780 0.7696 0.7916 0.7995	0.2872 0.2995 0.2687 0.2561

• Our models outperform all previous systems from the SemEval 2014 competition. This is remarkable, given the simplicity of our approach and the lack of feature engineering.

Semantic Relatedness

Sentence 1	Sentence 2	GT	pred
A little girl is looking at a woman in costume	A young girl is looking at a woman in costume	4.7	4.5
A little girl is looking at a woman in costume	The little girl is looking at a man in costume	3.8	4.0
A little girl is looking at a woman in costume	A little girl in costume looks like a woman	2.9	3.5
A sea turtle is hunting for fish	A sea turtle is hunting for food	4.5	4.5
A sea turtle is not hunting for fish	A sea turtle is hunting for fish	3.4	3.8
A man is driving a car	The car is being driven by a man	5	4.9
There is no man driving the car	A man is driving a car	3.6	3.5
A large duck is flying over a rocky stream	A duck, which is large, is flying over a rocky stream	4.8	4.9
A large duck is flying over a rocky stream	A large stream is full of rocks, ducks and flies	2.7	3.1
A person is performing acrobatics on a motorcycle	A person is performing tricks on a motorcycle	4.3	4.4
A person is performing tricks on a motorcycle	The performer is tricking a person on a motorcycle	2.6	4.4
Someone is pouring ingredients into a pot	Someone is adding ingredients to a pot	4.4	4.0
Nobody is pouring ingredients into a pot	Someone is pouring ingredients into a pot	3.5	4.2
Someone is pouring ingredients into a pot	A man is removing vegetables from a pot	2.4	3.6

- Example predictions from the SICK test set. GT is the ground truth relatedness, scored between 1 and 5.
- The last few results: slight changes in sentences result in large changes in relatedness that we are unable to score correctly.

Paraphrase Detection

• Microsoft Research Paraphrase Corpus: For two sentences one must predict whether or not they are paraphrases.

Classification Benchmarks

 5 datasets: movie review sentiment (MR), customer product reviews (CR), subjectivity/objectivity classification (SUBJ), opinion polarity (MPQA) and question-type classification (TREC).

-	Method	MR	CR	SUBJ	MPQA	TREC
Bag-of- words	NB-SVM [41] MNB [41] cBoW [6]	79.4 79.0 77.2	<u>81.8</u> 80.0 79.9	93.2 <u>93.6</u> 91.3	86.3 86.3 86.4	87.3
Super- vised	GrConv [6] RNN [6] BRNN [6] CNN [4] AdaSent [6]	76.3 77.2 82.3 81.5 83.1	81.3 82.3 82.6 85.0 86.3	89.5 93.7 94.2 93.4 95.5	84.5 90.1 90.3 89.6 93.3	88.4 90.2 91.0 93.6 92.4
-	Paragraph-vector [7]	74.8	78.1	90.5	74.2	91.8
Ours	uni-skip bi-skip combine-skip combine-skip + NB	75.5 73.9 76.5 <u>80.4</u>	79.3 77.9 80.1 81.3	92.1 92.5 <u>93.6</u> <u>93.6</u>	86.9 83.3 87.1 <u>87.5</u>	91.4 89.4 <u>92.2</u>

Summary

- This model for learning skip-thought vectors only scratches the surface of possible objectives.
- Many variations have yet to be explored, including
 - deep encoders and decoders
 - larger context windows
 - encoding and decoding paragraphs
 - other encoders
- It is likely the case that more exploration of this space will result in even higher quality sentence representations.