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Neural Networks Online Course

• Hugo’s class covers 
many other topics: 
convolutional networks, 
neural language model, 
Boltzmann machines, 
autoencoders, sparse 
coding, etc.

• We will use his 
material for some of the 
other lectures. 

• Disclaimer: Some of the material and slides for this lecture were 
borrowed from Hugo Larochelle’s class on Neural Networks:
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Natural Language Processing
• Natural language processing is concerned with tasks involving 
language data 

Ø we will focus on text data NLP
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• Much like for computer vision, we can design neural networks 
specifically adapted to the processing of text data

Ø main issue: text data is inherently high dimensional



Natural Language Processing
• Typical preprocessing steps of text data

Ø Form vocabulary of words that maps words to a unique ID 
Ø Different criteria can be used to select which words are part of the 

vocabulary
Ø Pick most frequent words and ignore uninformative words from a 

user-defined short list (ex.: ‘‘ the ’’, ‘‘ a ’’, etc.)
Ø All words not in the vocabulary will be mapped to a special ‘‘out-

of-vocabulary’
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• Typical vocabulary sizes will vary between 100,000 and 1,000,000



Vocabulary
• Example:
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• We will note word IDs with the symbol w

Ø we can think of w as a categorical feature for the original word
Ø we will sometimes refer to w as a word, for simplicity



One-Hot Encoding 
• From its word ID, we get a basic representation of a word 
through the one-hot encoding of the ID

Ø the one-hot vector of an ID is a vector filled with 0s, except for a 1 
at the position associated with the ID

Ø For vocabulary size D=10, the one-hot vector of word ID w=4 is: 
e(w) = [ 0 0 0 1 0 0 0 0 0 0 ]
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Ø A one-hot encoding makes no assumption about word similarity
Ø This is a natural representation to start with, though a poor one



One-Hot Encoding 
• The major problem with the one-hot representation is that it is 
very high-dimensional

Ø the dimensionality of e(w) is the size of the vocabulary
Ø a typical vocabulary size is ≈100,000
Ø a window of 10 words would correspond to an input vector of at 

least 1,000,000 units!
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• This has 2 consequences:

Ø vulnerability to overfitting (millions of inputs means millions of 
parameters to train)

Ø computationally expensive



Continuous Representation of Words
• Each word w is associated with a real-valued vector C(w)
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Continuous Representation of Words
• We would like the distance ||C(w)-C(w’)|| to reflect meaningful 
similarities between words
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(from Blitzer et al. 2004)



• Learn a continuous representation of words

Ø we could then use these representations as input to a neural 
network
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Continuous Representation of Words

• We learn these representations by gradient descent

Ø we don’t only update the neural network parameters
Ø we also update each representation C(w) in the input x with a 

gradient step:

where l is the loss function optimized by the neural network
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•
C(w) (= C(w)� ↵rC(w)l
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Continuous Representation of Words
• Let C be a matrix whose rows are the representations C(w)

Ø obtaining C(w) corresponds to the multiplication e(w)⊤ C
Ø view differently, we are projecting e(w) onto the columns of C
Ø this is a continuous transformation, through which we can 

propagate gradients
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• In practice, we implement C(w) with a lookup table, not with a 
multiplication



Language Modeling 
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p(w1, ... ,wT)

Ø language modeling is the task of learning a language model that 
assigns high probabilities to well formed sentences

Ø plays a crucial role in speech recognition and machine translation 
systems



Language Modeling 

13

Ø the tth word was generated based only on the n−1 previous words
Ø we will refer to wt−(n−1) , ... ,wt−1 as the context

p(w1, ... ,wT) = ∏ p(wt | wt−(n−1) , ... ,wt−1)



Neural Language Model
• Model the conditional 
distributions with a neural 
network:
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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Ø learn word 
representations to 
allow transfer to n-
grams not observed in 
training corpus 

Bengio, Ducharme,Vincent and 
Jauvin, 2003



Neural Language Model
• Can potentially generalize to contexts not seen in training set
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Ø Example: P(‘‘ eating ’’ | ‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’)

Ø Imagine 4-gram [‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’,  ‘‘ eating ’’ ] is not in training 
corpus, but [‘‘ the ’’, ‘‘ dog ’’, ‘‘ is ’’,  ‘‘ eating ’’ ] is

Ø If the word representations of ‘‘ cat ’’ and ‘‘ dog ’’ are similar, then 
the neural network will be able to generalize to the case of ‘‘ cat ’’ 



Neural Language Model
• We know how to propagate gradients in such a network
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Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.
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Ø let’s note the submatrix
connecting wt−i and the hidden 
layer as Wi

• The gradient wrt C(w) for any w is
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Performance Evaluation
• In language modeling, a common evaluation metric is the 
perplexity
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Ø it is simply the exponential of the average negative log-
likelihood

• Evaluation on Brown Corpus

Ø n-gram model (Kneser-Ney smoothing): 321

Ø neural network language model: 276

Ø neural network + n-gram: 252



How About Generating Sentences!

Input

A man skiing down the snow 
covered mountain with a dark 
sky in the background.  

Output



How About Generating Sentences!

Input

A man skiing down the snow 
covered mountain with a dark 
sky in the background.  

Output

We want to model:



Caption Generation with NLM



Caption Generation with NLM



Caption Generation with NLM



Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’,  ‘‘ the ’’,  ‘‘ cat ’’ ]
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Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’,  ‘‘ the ’’,  ‘‘ cat ’’ ]
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Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’,  ‘‘ the ’’,  ‘‘ cat ’’ ]
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Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’,  ‘‘ the ’’,  ‘‘ cat ’’ ]
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Hierarchical Output Layer
• How to define the word hierarchy?
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Ø can use a randomly generated tree

Ø can use existing linguistic resources, such as WordNet

Ø can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model Mnih and 
Hinton, 2008

They report a speedup of 100x, without performance 
decrease



Encoding Sentences via Recurrent 
Neural Network 

Recurrent Neural Network 

1-of-K encoding of words

x1 x2 x3

Sentence 
Representation 

h1 h2 h3



Recurrent Neural Network 

x1 x2 x3

h1 h2 h3

• Replace 

Nonlinearity Hidden State  at 
previous time 
step

Input at time 
step t

• Can be viewed as a deep neural network with tied weights. 



LSTMs

x1 x2 x3

h1 h2 h3



LSTMs

x1 x2 x3

h1 h2 h3



LSTMs

x1 x2 x3
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LSTMs

x1 x2 x3

h1 h2 h3



LSTMs

x1 x2 x3

h1 h2 h3



Bidirectional RNNs

35

• Heavily used in language modeling. 



Decoder

Sequence to Sequence Learning

• RNN Encoder-Decoders 
for Machine Translation 
(Sutskever et al. 2014; 
Cho et al. 2014; 
Kalchbrenner et al. 2013, 
Srivastava et.al., 2015)

Input Sequence

Encoder

Learned
Representation

Output Sequence



Sequence to Sequence Models
• Natural language processing is concerned with tasks involving 
language data 

37
Andrej Karpathy. The Unreasonable 
Effectiveness of Recurrent Neural Networks 



Skip-Thought Model 

• Given a tuple of contiguous sentences:
- the sentence       is encoded using LSTM. 
- the sentence       attempts to reconstruct the previous 
sentence and next sentence         . 

• The input is the sentence triplet:
- I got back home. 
- I could see the cat on the steps. 
- This was strange.



Encoder

Sentence Generate Forward Sentence

Generate Previous Sentence

Skip-Thought Model 



Learning Objective
• We are given a tuple of contiguous sentences. 

• Objective: The sum of the log-probabilities for the next and 
previous sentences conditioned on the encoder representation:

representation of 
encoder

Forward sentence Previous sentence 



Book 11K corpus

• Query sentence along with its nearest neighbor from 500K sentences 
using cosine similarity:

- He ran his hand inside his coat, double-checking that the unopened 
letter was still there.

- He slipped his hand between his coat and his shirt, where the folded 
copies lay in a brown envelope.



Semantic Relatedness 
• SemEval 2014 Task 1: semantic relatedness SICK dataset:  

Given two sentences, produce a score of how semantically 
related these sentences are based on human generated 
scores (1 to 5). 

• The dataset comes with a predefined split of 4500 training 
pairs, 500 development pairs and 4927 testing pairs.

• Using skip-thought vectors for each sentence, we simply train 
a linear regression to predict semantic relatedness. 
- For pair of sentences, we compute component-wise 

features between pairs (e.g. |u-v|).   



Semantic Relatedness 

• Our models outperform all previous systems from the SemEval
2014 competition. This is remarkable, given the simplicity of our 
approach and the lack of feature engineering.

SemEval
2014 sub-
missions

Results 
reported 
by Tai et.al.

Ours



Semantic Relatedness 

• Example predictions from the SICK test set. GT is the ground 
truth relatedness, scored between 1 and 5. 

• The last few results: slight changes in sentences result in large 
changes in relatedness that we are unable to score correctly.



Paraphrase Detection
• Microsoft Research Paraphrase Corpus: For two sentences one 

must predict whether or not they are paraphrases. 

• The training set 
contains 4076 sentence 
pairs (2753 are positive) 

• The test set contains 
1725 pairs (1147 are 
positive).

Recursive 
Auto-
encoders

Best 
published 
results

Ours



Classification Benchmarks
• 5 datasets: movie review sentiment (MR), customer product 

reviews (CR), subjectivity/objectivity classification (SUBJ), opinion 
polarity (MPQA) and question-type classification (TREC). 

Bag-of-
words

Super-
vised

Ours



Summary
• This model for learning skip-thought vectors only scratches the 

surface of possible objectives.

• Many variations have yet to be explored, including 
- deep encoders and decoders
- larger context windows
- encoding and decoding paragraphs
- other encoders

• It is likely the case that more exploration of this space will result 
in even higher quality sentence representations.


