
10707
Deep Learning
Russ Salakhutdinov

Machine Learning Department
rsalakhu@cs.cmu.edu

Language Modeling

mailto:rsalakhu@cs.cmu.edu

Neural Networks Online Course

• Hugo’s class covers
many other topics:
convolutional networks,
neural language model,
Boltzmann machines,
autoencoders, sparse
coding, etc.

• We will use his
material for some of the
other lectures.

• Disclaimer: Some of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:

2

Natural Language Processing
• Natural language processing is concerned with tasks involving
language data

Ø we will focus on text data NLP

3

• Much like for computer vision, we can design neural networks
specifically adapted to the processing of text data

Ø main issue: text data is inherently high dimensional

Natural Language Processing
• Typical preprocessing steps of text data

Ø Form vocabulary of words that maps words to a unique ID
Ø Different criteria can be used to select which words are part of the

vocabulary
Ø Pick most frequent words and ignore uninformative words from a

user-defined short list (ex.: ‘‘ the ’’, ‘‘ a ’’, etc.)
Ø All words not in the vocabulary will be mapped to a special ‘‘out-

of-vocabulary’

4

• Typical vocabulary sizes will vary between 100,000 and 1,000,000

Vocabulary
• Example:

5

• We will note word IDs with the symbol w

Ø we can think of w as a categorical feature for the original word
Ø we will sometimes refer to w as a word, for simplicity

One-Hot Encoding
• From its word ID, we get a basic representation of a word
through the one-hot encoding of the ID

Ø the one-hot vector of an ID is a vector filled with 0s, except for a 1
at the position associated with the ID

Ø For vocabulary size D=10, the one-hot vector of word ID w=4 is:
e(w) = [0 0 0 1 0 0 0 0 0 0]

6

Ø A one-hot encoding makes no assumption about word similarity
Ø This is a natural representation to start with, though a poor one

One-Hot Encoding
• The major problem with the one-hot representation is that it is
very high-dimensional

Ø the dimensionality of e(w) is the size of the vocabulary
Ø a typical vocabulary size is ≈100,000
Ø a window of 10 words would correspond to an input vector of at

least 1,000,000 units!

7

• This has 2 consequences:

Ø vulnerability to overfitting (millions of inputs means millions of
parameters to train)

Ø computationally expensive

Continuous Representation of Words
• Each word w is associated with a real-valued vector C(w)

8

Continuous Representation of Words
• We would like the distance ||C(w)-C(w’)|| to reflect meaningful
similarities between words

9

(from Blitzer et al. 2004)

• Learn a continuous representation of words

Ø we could then use these representations as input to a neural
network

10

Continuous Representation of Words

• We learn these representations by gradient descent

Ø we don’t only update the neural network parameters
Ø we also update each representation C(w) in the input x with a

gradient step:

where l is the loss function optimized by the neural network

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 12, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

1

Continuous Representation of Words
• Let C be a matrix whose rows are the representations C(w)

Ø obtaining C(w) corresponds to the multiplication e(w)⊤ C
Ø view differently, we are projecting e(w) onto the columns of C
Ø this is a continuous transformation, through which we can

propagate gradients

11

• In practice, we implement C(w) with a lookup table, not with a
multiplication

Language Modeling

12

p(w1, ... ,wT)

Ø language modeling is the task of learning a language model that
assigns high probabilities to well formed sentences

Ø plays a crucial role in speech recognition and machine translation
systems

Language Modeling

13

Ø the tth word was generated based only on the n−1 previous words
Ø we will refer to wt−(n−1) , ... ,wt−1 as the context

p(w1, ... ,wT) = ∏ p(wt | wt−(n−1) , ... ,wt−1)

Neural Language Model
• Model the conditional
distributions with a neural
network:

14

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Ø learn word
representations to
allow transfer to n-
grams not observed in
training corpus

Bengio, Ducharme,Vincent and
Jauvin, 2003

Neural Language Model
• Can potentially generalize to contexts not seen in training set

15

Ø Example: P(‘‘ eating ’’ | ‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’)

Ø Imagine 4-gram [‘‘ the ’’, ‘‘ cat ’’, ‘‘ is ’’, ‘‘ eating ’’] is not in training
corpus, but [‘‘ the ’’, ‘‘ dog ’’, ‘‘ is ’’, ‘‘ eating ’’] is

Ø If the word representations of ‘‘ cat ’’ and ‘‘ dog ’’ are similar, then
the neural network will be able to generalize to the case of ‘‘ cat ’’

Neural Language Model
• We know how to propagate gradients in such a network

16

BENGIO, DUCHARME, VINCENT AND JAUVIN

softmax

tanh

.

.

.

across words

most computation here

index for index for index for

shared parameters

Matrix

in
look−up
Table

. . .

C

C

wt�1wt�2

C(wt�2) C(wt�1)C(wt�n+1)

wt�n+1

i-th output = P(wt = i | context)

Figure 1: Neural architecture: f (i,wt�1, · · · ,wt�n+1) = g(i,C(wt�1), · · · ,C(wt�n+1)) where g is the
neural network andC(i) is the i-th word feature vector.

parameters of the mapping C are simply the feature vectors themselves, represented by a |V |⇥m
matrixC whose row i is the feature vectorC(i) for word i. The function g may be implemented by a
feed-forward or recurrent neural network or another parametrized function, with parameters ω. The
overall parameter set is θ= (C,ω).

Training is achieved by looking for θ that maximizes the training corpus penalized log-likelihood:

L=
1
T ∑t

log f (wt ,wt�1, · · · ,wt�n+1;θ)+R(θ),

where R(θ) is a regularization term. For example, in our experiments, R is a weight decay penalty
applied only to the weights of the neural network and to theC matrix, not to the biases.3

In the above model, the number of free parameters only scales linearly with V , the number of
words in the vocabulary. It also only scales linearly with the order n : the scaling factor could
be reduced to sub-linear if more sharing structure were introduced, e.g. using a time-delay neural
network or a recurrent neural network (or a combination of both).

In most experiments below, the neural network has one hidden layer beyond the word features
mapping, and optionally, direct connections from the word features to the output. Therefore there
are really two hidden layers: the shared word features layer C, which has no non-linearity (it would
not add anything useful), and the ordinary hyperbolic tangent hidden layer. More precisely, the
neural network computes the following function, with a softmax output layer, which guarantees
positive probabilities summing to 1:

P̂(wt |wt�1, · · ·wt�n+1) =
eywt
∑i eyi

.

3. The biases are the additive parameters of the neural network, such as b and d in equation 1 below.

1142

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

•

rC(w)l =
n�1X

i=1

1(wt�i=w) W
>
i ra(x)l

• W1 W2 Wn�1

1

Ø let’s note the submatrix
connecting wt−i and the hidden
layer as Wi

• The gradient wrt C(w) for any w is

Natural language processing

Hugo Larochelle

Département d’informatique
Université de Sherbrooke

hugo.larochelle@usherbrooke.ca

November 13, 2012

Abstract

Math for my slides “Natural language processing”.

•
C(w) (= C(w)� ↵rC(w)l

•

rC(w)l =
n�1X

i=1

1(wt�i=w) W
>
i ra(x)l

• W1 W2 Wn�1

1

Performance Evaluation
• In language modeling, a common evaluation metric is the
perplexity

17

Ø it is simply the exponential of the average negative log-
likelihood

• Evaluation on Brown Corpus

Ø n-gram model (Kneser-Ney smoothing): 321

Ø neural network language model: 276

Ø neural network + n-gram: 252

How About Generating Sentences!

Input

A man skiing down the snow
covered mountain with a dark
sky in the background.

Output

How About Generating Sentences!

Input

A man skiing down the snow
covered mountain with a dark
sky in the background.

Output

We want to model:

Caption Generation with NLM

Caption Generation with NLM

Caption Generation with NLM

Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

23

Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

24

Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

25

Hierarchical Output Layer
• Example: [‘‘ the ’’, ‘‘ dog ’’, ‘‘ and ’’, ‘‘ the ’’, ‘‘ cat ’’]

26

Hierarchical Output Layer
• How to define the word hierarchy?

27

Ø can use a randomly generated tree

Ø can use existing linguistic resources, such as WordNet

Ø can learn the hierarchy using a recursive partitioning strategy

A Scalable Hierarchical Distributed Language Model Mnih and
Hinton, 2008

They report a speedup of 100x, without performance
decrease

Encoding Sentences via Recurrent
Neural Network

Recurrent Neural Network

1-of-K encoding of words

x1 x2 x3

Sentence
Representation

h1 h2 h3

Recurrent Neural Network

x1 x2 x3

h1 h2 h3

• Replace

Nonlinearity Hidden State at
previous time
step

Input at time
step t

• Can be viewed as a deep neural network with tied weights.

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

LSTMs

x1 x2 x3

h1 h2 h3

Bidirectional RNNs

35

• Heavily used in language modeling.

Decoder

Sequence to Sequence Learning

• RNN Encoder-Decoders
for Machine Translation
(Sutskever et al. 2014;
Cho et al. 2014;
Kalchbrenner et al. 2013,
Srivastava et.al., 2015)

Input Sequence

Encoder

Learned
Representation

Output Sequence

Sequence to Sequence Models
• Natural language processing is concerned with tasks involving
language data

37
Andrej Karpathy. The Unreasonable
Effectiveness of Recurrent Neural Networks

Skip-Thought Model

• Given a tuple of contiguous sentences:
- the sentence is encoded using LSTM.
- the sentence attempts to reconstruct the previous
sentence and next sentence .

• The input is the sentence triplet:
- I got back home.
- I could see the cat on the steps.
- This was strange.

Encoder

Sentence Generate Forward Sentence

Generate Previous Sentence

Skip-Thought Model

Learning Objective
• We are given a tuple of contiguous sentences.

• Objective: The sum of the log-probabilities for the next and
previous sentences conditioned on the encoder representation:

representation of
encoder

Forward sentence Previous sentence

Book 11K corpus

• Query sentence along with its nearest neighbor from 500K sentences
using cosine similarity:

- He ran his hand inside his coat, double-checking that the unopened
letter was still there.

- He slipped his hand between his coat and his shirt, where the folded
copies lay in a brown envelope.

Semantic Relatedness
• SemEval 2014 Task 1: semantic relatedness SICK dataset:

Given two sentences, produce a score of how semantically
related these sentences are based on human generated
scores (1 to 5).

• The dataset comes with a predefined split of 4500 training
pairs, 500 development pairs and 4927 testing pairs.

• Using skip-thought vectors for each sentence, we simply train
a linear regression to predict semantic relatedness.
- For pair of sentences, we compute component-wise

features between pairs (e.g. |u-v|).

Semantic Relatedness

• Our models outperform all previous systems from the SemEval
2014 competition. This is remarkable, given the simplicity of our
approach and the lack of feature engineering.

SemEval
2014 sub-
missions

Results
reported
by Tai et.al.

Ours

Semantic Relatedness

• Example predictions from the SICK test set. GT is the ground
truth relatedness, scored between 1 and 5.

• The last few results: slight changes in sentences result in large
changes in relatedness that we are unable to score correctly.

Paraphrase Detection
• Microsoft Research Paraphrase Corpus: For two sentences one

must predict whether or not they are paraphrases.

• The training set
contains 4076 sentence
pairs (2753 are positive)

• The test set contains
1725 pairs (1147 are
positive).

Recursive
Auto-
encoders

Best
published
results

Ours

Classification Benchmarks
• 5 datasets: movie review sentiment (MR), customer product

reviews (CR), subjectivity/objectivity classification (SUBJ), opinion
polarity (MPQA) and question-type classification (TREC).

Bag-of-
words

Super-
vised

Ours

Summary
• This model for learning skip-thought vectors only scratches the

surface of possible objectives.

• Many variations have yet to be explored, including
- deep encoders and decoders
- larger context windows
- encoding and decoding paragraphs
- other encoders

• It is likely the case that more exploration of this space will result
in even higher quality sentence representations.

