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Neural Networks Online Course

e Disclaimer: Much of the material and slides for this lecture were
borrowed from Hugo Larochelle’s class on Neural Networks:
https://sites.google.com/site/deeplearningsummerschool2016/

http://info.usherbrooke.ca/hlarochelle/neural _networks
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Multilayer Neural Net

e Consider a network with L hidden layers.

- layer pre-activation for k>0
a(k)(x) — bk L W(k)h(k—l)(x)

- hidden layer activation

| - (2)
from 1 to L: w® g b

h(®) (x) = g(a® (x)) il
- output layer activation (k=L+1):

h(E+1) (x) = o(a D (x)) = f(x) (h(®(x) = x)



Learning Distributed Representations

e Deep learning is research on learning models with multilayer
representations

> multilayer (feed-forward) neural networks
> multilayer graphical model (deep belief network, deep Boltzmann

machine)

e Each layer learns “distributed representation”

> Units in a layer are not mutually exclusive
each unit is a separate feature of the input
two units can be “active” at the same time
>  Units do not correspond to a partitioning (clustering) of the inputs

in clustering, an input can only belong to a single cluster



Inspiration from Visual Cortex

Categorical judgments,
decision making Simple visual forms
; edges, cormners

To spinal cord
——"160-220 ms

er muscle
0-260 ms

[picture from Simon Thorpe]




Success Story. Speech Recognition

Word error rate on Switchboard
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According to Microsoft’s
speech group:
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Success Story: Image Recognition

* Deep Convolutional Nets for Vision (Supervised)
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Why Training is Hard

 First hypothesis: Hard optimization
problem (underfitting)

> vanishing gradient problem
> saturated units block gradient

propagation

*This is a well known problem in
recurrent neural networks




Why Training is Hard

e Second hypothesis: Overfitting

> we are exploring a space of complex functions

> deep nets usually have lots of parameters

e Might be in a high variance / low bias situation

~n
*

@ ¢

possible f

possible f

low variance/

high bias good trade-off




Why Training is Hard

 First hypothesis (underfitting): better optimize

>  Use better optimization tools (e.g. batch-normalization, second
order methods, such as KFAC)
> Use GPUs, distributed computing.

e Second hypothesis (overfitting): use better regularization

> Unsupervised pre-training

>  Stochastic drop-out training

e For many large-scale practical problems, you will need to use both:
better optimization and better regularization!



Unsupervised Pre-training

e |nitialize hidden layers using unsupervised learning

>  Force network to represent latent structure of input distribution
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Encourage hidden layers to encode that structure



Unsupervised Pre-training

e |nitialize hidden layers using unsupervised learning

> This is a harder task than supervised learning (classification)
Why is one

a character
and the other

Is not ?
1 /

character image random image

> Hence we expect less overfitting



Pre-training

* We will use a greedy, layer-wise procedure

> Train one layer at a time with unsupervised criterion

> Fix the parameters of previous hidden layers

> Previous layers viewed as feature extraction




Pre-training
e Unsupervsed Pre-training

> first layer: find hidden unit features that are more common in
training inputs than in random inputs

> second layer: find combinations of hidden unit features that are
more common than random hidden unit features

>  third layer: find combinations of combinations of ...

e Pre-training initializes the parameters in a region such that the
near local optima overfit less the data



Fine-tuning

e Once all layers are pre-trained

> add output layer
> train the whole network using
supervised learning

e Supervised learning is performed as
In a regular network

> forward propagation,
backpropagation and update

e We call this last phase fine-tuning

> all parameters are “tuned” for the
supervised task at hand

> representation is adjusted to be more
discriminative



Stacking RBMs, Autoencoders

e Stacked Restricted Boltzmann Machines:

> Hinton, Teh and Osindero suggested this procedure with RBMs,:
A fast learning algorithm for deep belief nets.

> To recognize shapes, first learn to generate images. Hinton,
2006.

e Stacked autoencoders, sparse-coding models, etc.

> Bengio, Lamblin, Popovici and Larochelle (stacked autoencoders)
> Ranzato, Poultney, Chopra and LeCun (stacked sparse coding

models)

o |ots of others started stacking models together.



Example

e Datasets generated with varying number of factors of variations

Variations on MNIST Tall or wide?

MNIST-rotation .... E.Eu
MNIST-random- E g‘ﬂ-lsh_.

background
Convex shape or not?
. b
r-
1y \

An Empirical Evaluation of Deep Architectures on Problems with Many Factors 17
of Variation, Larochelle, Erhan, Courville, Bergstra and Bengio, 2007

MNIST-image-
background

MNIST-
background-
rotation




Impact of Initialization

Network MNIST-small MNIST-rotation

Type Depth || classif. test error || classif. test error
Nenral netwanrk 1 4.14 % + 0.17 15.22 % +0.31
2 4.03 % + 0.17 10.63 % +0.27
Deep net 3 4.24 % +0.18 11.98 % +0.28
4 4.47 % +0.18 11.73 % +0.29
1 3.87 % +0.17 11.43% + 0.28
Deep net + 2 3.38 % < 0.16 0.88 % + 0.26
autoencoder 3 3.37 % + 0.16 9.22 % +0.25
4 3.39 % +0.16 9.20 % +0.25
T~ i 1 3.17 % + 0.15 10.47 % +0.27
Deep net + 2 274 % +0.14 0.54 % + 026
RBM 3 2.71 % +0.14 8.80 % +0.25
4 2.72 % +0.14 8.83 % +0.24
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Test error

74— 1-layer denoising AE

Impact of Pretraining

==1-layer RBM

—e—1 layers w/o pre-training

Number of hidden units

AR R
10’ 10° 10°

Test error

= =2-layer DBN
—2-layer SDAE

[|=—e=—2la

1 i
10’

yers w/o pre-training

10°
Number of hidden units

Test error

- =3-layer DBN

7 | ——3-layer SDAE

—&—3 layers w/o pre-training

1 Lol ;
10 10°

10°

Number of hidden units

Acts as a regularizer: overfits less with large
capacity, underfits with small capacity
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Performance on Different Datasets

Stacked Stacked Stacked
Autoencoders RBMS Denoising Autoencoders

SAA-3 DBN-3 SdA-3 (v

)
3.46+£0.16 | 3.11£0.15 | 2.80+0.14 (10%)
10.30+£0.27 | 10.30+0.27 | 10.29£0.27 (10%)
11.2840.28 | 6.7310.22 | 10.38+0.27 (40%)
23.00£0.37 | 16.31+0.32 | 16.68+0.33 (25%)
(25%)
(10%)
(25%)
(10%)

51.93+0.44 47.394+0.44 | 44.49+0.44 (25%
2.414+0.13 2.60£0.14 1.994+0.12 (10%
24.05+0.37 22.504+0.37 | 21.59+0.36 (25%
18.41+0.34 | 18.63+0.34 | 19.06+0.34 (10%

Extracting and Composing Robust Features with Denoising Autoencoders,
Vincent, Larochelle, Bengio and Manzagol, 2008.



Deep Autoencoder

e Pre-training can be used to initialize a deep autoencoder

| | i Decoder § =
Pre-training initializes the . ' ’
.. . . § y 4 T0p§ | i
optimization problem ina 21 mwm |

T Wf+ss

2000

region with better local optima | I 20 _ |
of the training objective | o

Each RBM used to initialize &= ———
parameters both in encoder :

and decoder (“unrolling”)

T
W, +eq

1000

W§+86
T

T WI+£5
[s0]
T W,+ey

[ 500 ]

%
Wi+es

1000
7Y

W, +e,

2000

Better optimization algorithms
can also help: Deep learning
via Hessian-free optimization.
Martens, 2010

Pretraining Unrolling

TW1+81

Fine—tuning
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Deep Belief Network

Low-level features:
Edges

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Internal representations capture
u higher-order statistical structure

Higher-level features:
‘ Combination of edges

| ) Low-level features:
Edges

4,
X

/A A

Built from unlabeled inputs.

Input: Pixels

(Hinton et.al. Neural Computation 2006)



Deep Belief Network

Visible Layer VvV )



Deep Belief Network

e Deep Belief Networks:

> it is a generative model that mixes
undirected and directed connections
between variables

> top 2 layers’ distribution p(h(?), h(3))
is an RBM!

> other layers form a Bayesian network
with conditional distributions:

P(h§1) = 1|h®)) = sigm(bM) + W(Q)Th(2))

p(z; = 1/h(M) = sigm(b(®) 4 W(l)Th(l))

> This is not a feed-forward neural network o5



Deep Belief Network

Deep Belief Network > top 2 layers’ distribution p(h(?), h(3))
iIs an RBM

> RBM .

> other layers form a Bayesian
network with conditional
distributions:

> "B p(h{Y = 1In®) = sigm(b® + W) 'h®)
Network plz; = 1\h(1)) — sigm(b(o) + W(l)Th(D)




Deep Belief Network

e The joint distribution of a DBN is as follows

p(x,h() h) 1) = p(h® h®)) p(hM|h?)) p(x[hD)
where

p(h® h®)) = exp (h<2>TW<3>h<3> L b@ h®@ o b<3>Th<3>) /7
1
p(hD[h®) = [T, p(h{"[h®)

p(x/hM)) =T, p(a; D)

e As in a deep feed-forward network, training a DBN is hard



Layer-wise Pretraining

 This is where the RBM stacking procedure comes from:
> idea: improve prior on last layer by adding another hidden layer

p(h™, h®)) = p(h™W b)) 37y o) p(h®), h®))




Concavity

log(}_; wi a;) > ), w;log(a;)

(where Y w; =1 and w; > 0)

log(wy a1 + ws as)

wy log(ay) + ws log(as):

-3 _ _ L . . 29



Variational Bound

» For any model p(x, h'')) with latent variables h(!) we can write:

log p(x)

[V

> q(h™Mx)log p(x,h")
h(1)

~ 3" 4(hDx) log g(h M |x)
h(1)

where ¢(h(D|x) is any approximation to p(h(l)]X)



Variational Bound

e This is called a variational bound

logp(x) > » q(h'V[x)logp(x,h")
h(1)

~ 3" 4(hDx) log (b x)
h(1)

> if ¢(hW|x) is equal to the true conditional p(h(!)|x), then we
have an equality — the bound is tight!
> the more ¢(h(V)|x) is different from p(h(M)|x)the less tight the

bound is.



Variational Bound

e This is called a variational bound

logp(x) > Y qhM|x)logp(x,h)
h(1)

~ 3" 4(hDx) log (b x)
h(1)

> In fact, difference between the left and right terms is the KL

divergence between ¢(h(!)|x) and p(h(!)|x):

hD|x
KL(qllp) = > ¢(h™Mx) log (nguixi)



Variational Bound

e This is called a variational bound

logp(x) > > q(h}x) (logp(x|h®) + log p(h™)))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

> for a single hidden layer DBN (i.e. an RBM), both the likelihood
p(x/h})) and the prior p(h(1)) depend on the parameters of the

first layer.

» we can now improve the model by building a better prior p(h(l))



Variational Bound

adding 2nd layer means
 This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

 When adding a second layer, we model p(h(l)) using a separate
set of parameters

> they are the parameters of the RBM involving h(Y)and h(2)

> p(h(l)) is now the marginalization of the second hidden layer

p(hV) =37 p(h), b))



Variational Bound

adding 2nd layer means
e This is called a variational bound untying the parameters

S\
logp(x) > Zq(h(l)\x) <logp(x\h(1)) + logp(h(l)))
h(1)

~ 3" 4(hDx) log g(h M |x)
h(1)

[L : traini )
> we can train the parameters ¢ dyErwise pretraining g
the bound. This is equivalent| improves variational

other terms are constant: |OW€F bou nd y
~>_a(hW[x)log p(h™)
h(1)

» this is like training an RBM on data generated from q(h(l) x)!
35



Variational Bound

adding 2nd layer means
 This is called a variational bound untying the parameters

/N
logp(x) > > q(bM[x) (log p(x/hV) + log p(h"))
h(1)

~ 3" 4(hDx) log g(hM[x)
h(1)

» for q(h(l) ]X) we use the posterior of the first layer RBM. This is

equivalent to a feed-forward (sigmoidal) layer, followed by sampling

> by initializing the weights of the second layer RBM as the transpose
of the first layer weights, the bound is initially tight!
> a 2-layer DBN with tied weights is equivalent to a 1-layer RBM



Layer-wise Pretraining

 This is where the RBM stacking procedure comes from:
> idea: improve prior on last layer by adding another hidden layer

p(h™, h®)) = p(h™W b)) 37y o) p(h®), h®))




Deep Belief Network

Approximate Generative
Inference ) 4 Process
Q(h3h?) P(h* h®)
v
AN
Q(hZ|h!) P(h'|h?)
v
t 1
P(v|h?)
hl
Q(h*[v) |




DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h.




DBN Layer-wise Training

* Learn an RBM with an input
layer v=x and a hidden layer h.

* Treat inferred values

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

* Learn and freeze 2" layer ' b2 Q)
RBM. '

————————————




* Treat inferred values

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

P = = == == == o= = =

* Learn and freeze 2" layer

A
o Q')

* Proceed to the next layer.

Q(h'|v)




* Treat inferred values

* Proc

DBN Layer-wise Training

* Learn an RBM with an input

layer v=x and a hidden layer h. Unsupervised Feature Learning.

Q(h'|v) = P(h'|v) asthe data
for training 2"9-layer RBM.

f o ==

* Learn and freeze 2" layer
RBIV'rLayerwise pretraining
improves variational
_lower bound




Deep Belief Networks

e This process of adding layers can be repeated recursively

> we obtain the greedy layer-wise pre-training procedure for neural

networks

* \We now see that this procedure corresponds to maximizing a
bound on the likelihood of the data in a DBN
> in theory, if our approximation q(h(l) |x) is very far from the true
posterior, the bound might be very loose
> this only means we might not be improving the true likelihood

>  we might still be extracting better features!

e Fine-tuning is done by the Up-Down algorithm
> Afast learning algorithm for deep belief nets. Hinton, Teh,

Osindero, 2006.



Supervised Learning with DBNs

* |If we have access to label information, we can train the joint

e Discriminative fine-tuning:

generative model by maximizing the joint log-likelihood of data
and labels

log P(y, V)

* Use DBN to initialize a
multilayer neural network.

e Maximize the conditional
distribution:

log P(y|v)




Sampling from DBNs

* To sample from the DBN model:
P(v,h' h* h*)= P(v|h')P(h'|h?)P(h?, h?)

* Sample h? using alternating Gibbs sampling from RBM.

* Sample lower layers using sigmoid belief network.

Gibbs chain




Learned Features

1%t-layer features 2n4_]ayer features




Learning Part-based Representation

, Faces
Convolutional DBN

Groups of parts.

Object Parts

Trained on face images.

Lee et.al., ICML 2009



Learning Part-based Representation

Elephants Chairs

Lee et.al., ICML 2009



Learning Part-based Representation

Groups of parts.

Class-specific object
parts

Trained from multiple
classes (cars, faces,

motorbikes, airplanes).
Lee et.al., ICML 2009




DBNs for Classification

| 2000 |

v W3 I
| 500 | RBME Softmax Output
O 500 | § IRA T wiie,

! w, | 2000_ | 2000 |
LW 1 rem . | SOOW“‘* |
1 W, 1 W+e)

| 500 | } | 500 | 500

I W, T Wl T Wl +€1

77777777777777777777777777777777777 RBM . .
Pretraining Unrolling Fine—tuning

* After layer-by-layer unsupervised pretraining, discriminative fine-tuning
by backpropagation achieves an error rate of 1.2% on MNIST. SVM’s get
1.4% and randomly initialized backprop gets 1.6%.

* Clearly unsupervised learning helps generalization. It ensures that most of
the information in the weights comes from modeling the input data.

(Hinton and Salakhutdinov, Science 2006)



DBNs for Regression

Predicting the orientation of a face patch

Training Data
-22.07 3299 -41.15 6638 2749

LIRSS AR TR e L

Training Data: 1000 face patches of Test Data: 1000 face patches of
30 training people. 10 new people.

Test Data

Regression Task: predict orientation of a new face.

Gaussian Processes with spherical Gaussian kernel achieves a RMSE
(root mean squared error) of 16.33 degree.

(Salakhutdinov and Hinton, NIPS 2007)



DBNs for Regression

Training Data
-22.07 3299 -41.15 6638 2749 Unlabeled

™.l W T ®2
LIRS 89

Additional Unlabeled Training Data: 12000 face patches from
30 training people.

* Pretrain a stack of RBMs: 784-1000-1000-1000.

* Features were extracted with no idea of the final task.

The same GP on the top-level features: RMSE: 11.22
GP with fine-tuned covariance Gaussian kernel: RMSE: 6.42

Standard GP without using DBNs: RMSE: 16.33



Deep Autoencoders

Decoder

,,,,,,,,,,,,,,,,,,,,,

Encoder

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

Pretraining Unrolling Fine—tuning



Deep Autoencoders

* We used 25x25 — 2000 — 1000 — 500 — 30 autoencoder to extract
30-D real-valued codes for Olivetti face patches.

20 R

* Top: Random samples from the test dataset.

* Middle: Reconstructions by the 30-dimensional deep autoencoder.

* Bottom: Reconstructions by the 30-dimentinoal PCA.



Information Retrieval

European Community 2-D LSA space

Interbank Markets Monetary/Economic

4

~ .. Disasters and
v Accidents

Leading
Economic
Indicators

L)
“¢

g Government
Accounts/ e )
Earnings k5 Borrowings

* The Reuters Corpus Volume Il contains 804,414 newswire stories
(randomly split into 402,207 training and 402,207 test).

» “Bag-of-words” representation: each article is represented as a vector
containing the counts of the most frequently used 2000 words in the

training set. _ _ _
(Hinton and Salakhutdinov, Science 2006)



