
10707
Deep Learning: Spring 2023

Russ Salakhutdinov
Machine Learning Department

rsalakhu@cs.cmu.edu

Lectures 1,2

mailto:rsalakhu@cs.cmu.edu


Evaluation
• 3 Assignments, worth 60%.
• Mid-term Exam 10%
• Projects, 30%: 
- Midway report 5%, Final Project 25%. 

Homework Dates – Check the website for updates!



Evaluation
• 5 late days for all assignments.
• No more than 3 late days per assignment. After 3 late 

days, you will get 0. 

• 3 late days for projects: can be split between project 
proposal and final project. 

• Project: Teams of 2 people per project. 



Project
• The idea of the final project is to give you some experience trying 

to do a piece of original research in machine learning and 
coherently writing up your result. 

•What is expected: A simple but original idea that you describe 
clearly, relate to existing methods, implement and test on 
some real-world problem.

• To do this you will need to write some basic code, run it on 
some data, make some figures, read a few background papers, 
collect some references, and write an 8-page report describing 
your model, algorithm, and results.



Text Books
• Ian Goodfellow, Yoshua Bengio, Aaron Courville (2016) 
Deep Learning Book (available online)

• Christopher M. Bishop (2006) Pattern Recognition and Machine 
Learning, Springer. 

• Kevin Murphy (2013) 
Machine Learning: A Probabilistic Perspective

• Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The 
Elements of Statistical Learning (available online)

• David MacKay (2003) Information Theory, Inference, and Learning 
Algorithms 

•Most of the figures and material will come from these books. 

http://research.microsoft.com/en-us/um/people/cmbishop/PRML/index.htm
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html


Online Resources

• I will be using a number of online resources, including 

• Joan Bruna’s Deep Learning Course
http://joanbruna.github.io/stat212b/

• Hugo Larochelle Neural Network Course
http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html

• Deep Learning Summer School in Montreal 
https://sites.google.com/site/deeplearningsummerschool2016/home

• I will be adding more resources, check the webpage. 

http://joanbruna.github.io/stat212b/
http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html
https://sites.google.com/site/deeplearningsummerschool2016/home


Images & Video

Relational Data/ 
Social Network

Massive increase in both computational power and the amount of 
data available from web, video cameras, laboratory measurements.

Mining for Structure

Speech & AudioText & Language 

Product 
Recommendation

• Develop statistical models that can discover underlying structure, cause, or 
statistical correlation from data. 
•Multiple application domains.

Gene Expression

fMRI Tumor region



Impact of Deep Learning

• Speech Recognition

• Computer Vision

• Language Understanding 

• Recommender Systems 

• Drug Discovery and Medical 
Image Analysis 



Example: Boltzmann Machine

Input data (e.g. pixel 
intensities of an image, 
words from webpages, 
speech signal).

Target variables (response) 
(e.g. class labels, 
categories, phonemes).

Model parameters
Latent (hidden) 
variables

Markov Random Fields, Undirected Graphical Models.



Legal/JudicialLeading          
Economic         
Indicators       

European Community 
Monetary/Economic  

Accounts/
Earnings 

Interbank Markets

Government 
Borrowings 

Disasters and 
Accidents     

Energy Markets

Finding Structure in Data

Vector of word counts 
on a webpage

Latent variables: 
hidden topics

804,414 newswire stories



Important Breakthroughs
• Deep  Belief Networks, 2006 (Unsupervised)

Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets, 
Neural Computation, 2006.

Higher-level 
features:

Low-level 
features:
Edges

Input: Pixels

• Adding additional layers improves 
variational lower-bound. 

• Efficient greedy layer-by-layer 
learning learning algorithm. 

• Inferring the states of  the hidden 
variables in the top most layer is easy. 

Theoretical Breakthrough:

Efficient Learning and Inference 
with multiple layers:



Important Breakthroughs

• Deep Nets for Speech (Supervised) 

• Deep Convolutional Nets for Vision (Supervised) 
Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep 
Convolutional Neural Networks, NIPS, 2012. 

Hinton et. al. Deep Neural Networks for Acoustic Modeling in Speech Recognition: 
The Shared Views of Four Research Groups, IEEE Signal Processing Magazine. 2012. 

1.2 million training images
1000 classes
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Training 
Data(CelebA)

Model Samples (Karras et.al., 
2018)

4 years of progression on Faces

Brundage et al., 
2017

Statistical Generative Models

(Goodfellow 2018)

Generative Modeling: 
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)



• Conditional generative model P(zebra images| horse images)

� Style Transfer

MonetInput Image Van Gogh

Statistical Generative Models

Zhou el al., Cycle GAN 2017



Statistical Generative Models

� Failure Case

• Conditional generative model P(zebra images| horse images)

Zhou el al., Cycle GAN 2017



Course Organization 
• Introduction / Background:

- Linear Algebra, Distributions, Rules of probability.
-Regression, Classification.
-Feedforward neural nets, backpropagation algorithm. 
- Introduction to popular optimization and regularization techniques for 

deep nets. 
-Convolutional models with applications to computer vision.



Course Organization 
•Deep Learning Essentials:

- Graphical Models: Directed and Undirected.
- Linear Factor Models, PPCA, FA, ICA, Sparse Coding and its extensions.
- Autoencoders and its extensions
- Energy-based models, RBMs.
- Monte Carlo Methods.
- Learning and Inference: Contrastive Divergence (CD), Stochastic 

Maximum Likelihood Estimation, Score Matching, Ratio Matching, Pseud-
likelihood Estimation.
- Sequence Modeling: Recurrent Neural Networks, Transformers 
-Deep Generative Models: Diffusion Models, Deep Belief Networks, Deep 

Boltzmann Machines, Helmholtz Machines, Variational Autoencoders, 
Importance-weighted Autoencoders.
-Generative Adversarial Networks (GANs), Generative Moment Matching 

Nets, Neural Autoregressive Density Estimator (NADE).



Course Organization 
•Additional Topics

- More on Regularization and Optimization in Deep Nets.
- Sequence-to-Sequence Architectures, Attention models.
- Some more recent topics in Deep Learning.



Learning Feature Representations
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Learning Feature Representations
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Traditional Approaches

Image vision features Recognition

Object 
detection

Audio 
classification

Audio audio features
Speaker

identification

Data Feature 
extraction

Learning 
algorithm



Computer Vision Features

SIFT

HoG RIFT

Textons

GIST



ZCR

Spectrogram MFCC

RolloffFlux

Audio Features



ZCR

Spectrogram MFCC

RolloffFlux

Representation Learning:
Can we automatically learn 
these representations?

Audio Features



Types of Learning

• Supervised Learning: We are also given target outputs (labels, responses): 
y1,y2,…, and the goal is to predict correct output given a new input. 

Consider observing a series of input vectors:

• Unsupervised Learning: The goal is to build a statistical model of x, which 
can be used for making predictions, decisions.  

• Reinforcement Learning: the model (agent) produces a set of actions:     
a1, a2,…  that affect the state of the world, and received rewards r1, r2…  
The goal is to learn actions that maximize the reward.

• Semi-supervised Learning: We are given only a limited amount of labels, 
but lots of unlabeled data. 



Supervised Learning

Classification: target outputs yi are 
discrete class labels. The goal is to 
correctly classify new inputs.

Regression: target outputs yi are 
continuous. The goal is to predict the 
output given new inputs.



Handwritten Digit Classification



Unsupervised Learning
The goal is to construct statistical model 
that finds useful representation of data:
• Clustering
• Dimensionality reduction
• Modeling the data density 
• Finding hidden causes (useful 

explanation) of the data

Unsupervised Learning can be used for:
• Structure discovery
• Anomaly detection / Outlier detection
• Data compression, Data visualization
• Used to aid classification/regression tasks



DNA Microarray Data

Expression matrix of 6830 genes (rows) and 64
samples (columns) for the human tumor data. 

The display is a heat map ranging from bright 
green (under expressed) to bright red (over 
expressed). 

Questions we may ask:
•Which samples are similar to other samples in 
terms of their expression levels across genes. 

•Which genes are similar to each other in 
terms of their expression levels across samples.



Linear Least Squares
• Given a vector of d-dimensional inputs                                           we want to 
predict the target (response) using the linear model: 

• The term w0 is the intercept, or often called bias term. It will be convenient to 
include the constant variable 1 in x and write:

• Observe a training set consisting of N observations                                      
together with the corresponding target values 
• Note that X is an                    matrix.



Linear Least Squares
One option is to minimize the sum of the squares of the errors between the 
predictions                for each data point xn and the corresponding real-valued  
targets tn.  

Loss function: sum-of-squared error function:

Source: Wikipedia



Linear Least Squares
If is nonsingular, then the unique solution is given by:

• At an arbitrary input , the prediction is                                
• The entire model is characterized by d+1 parameters w*.

Source: Wikipedia

optimal 
weights

the design matrix has one 
input vector per row

vector of 
target values



Example: Polynomial Curve Fitting

Note: the polynomial function is a nonlinear function of x, but it is a linear 
function of the coefficients w! Linear Models. 

Goal: Fit the data using a polynomial function of the form:

Consider observing a training set consisting of N 1-dimensional observations:              
together with corresponding real-valued targets:

• The green plot is the true function
• The training data was generated by taking 
xn spaced uniformly between [0 1]. 
• The target set (blue circles) was obtained 
by first computing the corresponding values 
of the sin function, and then adding  a small 
Gaussian noise. 



Example: Polynomial Curve Fitting
• As for the least squares example:  we can minimize the sum of the squares of 
the errors between the predictions                  for each data point xn and the 
corresponding target values tn.  

• Similar to the linear least squares: Minimizing sum-of-squared error 
function has a unique solution w*. 

Loss function: sum-of-squared error 
function:

• The model is characterized by M+1 parameters w*.
• How do we choose M? !Model Selection.



Some Fits to the Data

For M=9, we have fitted the training data perfectly. 



Overfitting

• For M=9, the training error is zero ! The polynomial contains 10 degrees of 
freedom corresponding to 10 parameters w, and so can be fitted exactly to the 
10 data points.

• Consider a separate test set containing 100 new data points generated using 
the same procedure that was used to generate the training data.

• However, the test error has become very large. Why?



Overfitting

• As M increases, the magnitude of coefficients gets larger.  

• For M=9, the coefficients have become finely tuned to the data.

• Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise on the 
target values.



Varying the Size of the Data

• For a given model complexity, the overfitting problem becomes less severe as 
the size of the dataset increases. 

9th order polynomial

• However, the number of parameters is not necessarily the most appropriate 
measure of the model complexity.



Generalization
• The goal is achieve good generalization by making accurate predictions for 
new test data that is not known during learning. 

• Choosing the values of parameters that minimize the loss function on the 
training data may not be the best option. 

•We would like to model the true regularities in the data and ignore the noise 
in the data: 
- It is hard to know which regularities are real and which are accidental 

due to the particular training examples we happen to pick. 

• Intuition: We expect the model to generalize 
if it explains the data well given the complexity 
of the model. 
• If the model has as many degrees of freedom 
as the data, it can fit the data perfectly. But this 
is not very informative. 
• Some theory on how to control model 
complexity to optimize generalization. 



A Simple Way to Penalize Complexity 
One technique for controlling over-fitting phenomenon is regularization, 
which amounts to adding a penalty term to the error function.

where  and ! is called the regularization term. 
Note that we do not penalize the bias term w0. 

• The idea is to “shrink” estimated parameters 
towards zero (or towards the mean of some other 
weights).
• Shrinking to zero: penalize coefficients based on 
their size.
• For a penalty function which is the sum of the 
squares of the parameters, this is known as “weight 
decay”, or “ridge regression”.    

penalized error 
function

regularization 
parameter

target value



Regularization

Graph of the root-mean-squared training and test errors vs. ln! for the 
M=9 polynomial. 

How to choose !? 



Cross Validation
If the data is plentiful, we can divide the dataset into three subsets:
• Training Data: used to fitting/learning the parameters of the model.
• Validation Data: not used for learning but for selecting the model, 

or choosing the amount of regularization that works best.
• Test Data: used to get performance of the final model. 

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance. 

S fold cross-validation • The data is partitioned into S groups.
• Then S-1 of the groups are used for training 
the model, which is evaluated on the 
remaining group.
• Repeat procedure for all S possible choices 
of the held-out group.
• Performance from the S runs are averaged. 



Probabilistic Perspective
• So far we saw that polynomial curve fitting can be expressed in terms of 
error minimization. We now view it from probabilistic perspective. 

• Suppose that our model arose from a statistical model:

where " is a random error having Gaussian distribution with zero mean, 
and is independent of x. 

where # is a precision parameter, 
corresponding to the inverse variance.  

Thus we have:

I will use probability distribution and 
probability density interchangeably. It 
should be obvious from the context.



Sampling Assumption
• Assume that the training examples are drawn independently from the 
set of all possible examples, or from the same underlying distribution

•We also assume that the training examples are identically distributed!
i.i.d assumption. 

• Assume that the test samples are drawn in exactly the same way -- i.i.d
from the same distribution as the training data.  

• These assumptions make it unlikely that some strong regularity in the 
training data will be absent in the test data. 



Maximum Likelihood
If the data are assumed to be independently and identically distributed 
(i.i.d assumption), the likelihood function takes form:  

It is often convenient to maximize the log of the likelihood function:

•Maximizing log-likelihood with respect to w (under the assumption of a 
Gaussian noise) is equivalent to minimizing the sum-of-squared error function. 

• Determine by maximizing log-likelihood. Then maximizing w.r.t. #: 



Predictive Distribution
Once we determined the parameters w and #, we can make prediction for 
new values of x:  



Statistical Decision Theory

The joint probability distribution provides a complete summary of 
uncertainties associated with these random variables. 

- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.  

Determining            from training data is known as the inference problem.  

•We now develop a small amount of theory that provides a framework 
for developing many of the models we consider. 

• Suppose we have a real-valued input vector x and a corresponding target 
(output) value t with joint probability distribution: 

• Our goal is predict target t given a new value for x:



Example: Classification
Medical diagnosis: Based on the X-ray image, we would like determine 
whether the patient has cancer or not.  

C1: Cancer present

C2: Cancer absent

• The input vector x is the set of pixel intensities, and the output variable t will 
represent the presence of cancer, class C1, or absence of cancer, class C2. 

• Choose t to be binary: t=0 correspond to class C1, and t=1 corresponds to C2.

x -- set of pixel intensities

Inference Problem: Determine the joint distribution , or equivalently           
.  However, in the end, we must make a decision of whether to give 

treatment to the patient or not. 



Example: Classification
Informally: Given a new X-ray image, our goal is to decide which of the two 
classes that image should be assigned to.

probability of observed 
data given Ck

prior probability 
for class Ck

posterior probability of 
Ck given observed data.

• If our goal to minimize the probability of assigning x to the wrong class, then 
we should choose the class having the highest posterior probability. 

Bayes’ Rule

•We could compute conditional probabilities of the two classes, given the input 
image: 



Expected Loss

Consider medical diagnosis example: example of a loss matrix:

• Loss Function: overall measure of loss incurred by taking any of the available 
decisions. 
• Suppose that for x, the true class is Ck, but we assign x to class j
! incur loss of Lkj (k,j element of a loss matrix).   

Expected Loss:

Decision

Tr
ut
h

Goal is to choose decision regions        as to minimize expected loss.



Regression

• The decision step consists of finding an estimate y(x) of t for each input x.   

• The average, or expected, loss is given by:

• To quantify what it means to do well or poorly on a task, we need to 
define a loss (error) function:

Let x " Rd denote a real-valued input vector, and t " R denote a real-
valued random target (output) variable with joint the distribution             

• If we use squared loss, we obtain:



Squared Loss Function
• If we use squared loss, we obtain:

• Our goal is to choose y(x) so as to minimize the expected squared loss. 

• The optimal solution (if we assume a completely flexible function) is the 
conditional average:

The regression function y(x) that 
minimizes the expected squared loss is 
given by the mean of the conditional 
distribution



Squared Loss Function
• If we use squared loss, we obtain:

• Plugging  into expected loss:

expected loss is minimized 
when 

intrinsic variability of the 
target values.

Because it is independent noise, it 
represents an irreducible minimum 
value of expected loss.



Other Loss Function
• Simple generalization of the squared loss, called the Minkowski loss:

• The minimum of          is given by:

- the conditional mean for q=2, 
- the conditional median when q=1, and 
- the conditional mode for q! 0. 



Discriminative vs. Generative

• Generative Approach:

• Discriminative Approach:

Model the joint density:
or joint distribution:

Infer conditional 
density:

Model conditional density              directly.



Linear Basis Function Models
• Remember, the simplest linear model for regression: 

Key property: linear function of the parameters                           . 

• However, it is also a linear function of the input variables. 
Instead consider:

where          are known as basis functions.

• Typically                  , so that w0 acts as a bias (or intercept).

• In the simplest case, we use linear bases functions:
• Using nonlinear basis allows the functions              to be nonlinear functions of 
the input space. 

where                                    is is a d-dimensional input vector (covariates). 



Linear Basis Function Models
Polynomial basis functions: 

Basis functions are global: small 
changes in x affect all basis functions.

Gaussian basis functions:

Basis functions are local: small changes in x
only affect nearby basis functions.
µj and s control location and scale (width).



Linear Basis Function Models
Sigmoidal basis functions

Basis functions are local: small changes 
in x only affect nearby basis functions.
µj and s control location and scale 
(slope).

• Decision boundaries will be linear in the feature space      but would 
correspond to nonlinear boundaries in the original input space x.  

• Classes that are linearly separable in the feature space          need not 
be linearly separable in the original input space. 



Linear Basis Function Models

• We define two Gaussian basis functions with centers shown by green the crosses, 
and with contours shown by the green circles.  

Original input space Corresponding feature space using 
two Gaussian basis functions

• Linear decision boundary (right) is obtained using logistic regression, and
corresponds to nonlinear decision boundary in the input space (left, black curve).  



Maximum Likelihood
• As before, assume observations arise from a deterministic function with an 
additive Gaussian noise:

which we can write as: 

• Given observed inputs                                         , and corresponding target 
values                                 ,  , under i.i.d assumption, we can write down the 
likelihood function:

where



Maximum Likelihood
Taking the logarithm, we obtain:

sum-of-squares error function

Differentiating and setting to zero yields:  



Maximum Likelihood
Differentiating and setting to zero yields:  

Solving for w, we get:
The Moore-
Penrose pseudo-
inverse,       .

where     is known as the design matrix:



Sequential Learning
• The training data examples are presented one at a time, and the model 
parameters are updated after each such presentation (online learning):

• For the case of sum-of-squares error function, we obtain:

• Stochastic gradient descent: The training examples are picked at random 
(dominant technique when learning with very large datasets). 

• Care must be taken when choosing learning rate to ensure convergence.  

learning 
rate

weights after 
seeing training 
case  t+1

vector of derivatives of  the squared 
error w.r.t. the weights on the 
training case presented at time t.



Regularized Least Squares
• Let us consider the following error function: 

Data term + Regularization term

• Using sum-of-squares error function with a quadratic penalization 
term, we obtain: 

which is minimized by setting: 

! is called the 
regularization 
coefficient.

Ridge 
regression

The solution adds a positive constant to the diagonal of              This makes the 
problem nonsingular, even if             is not of full rank (e.g. when the number of 
training examples is less than the number of basis functions).  



Effect of Regularization

• The overall error function is the sum 
of two parabolic bowls. 

• The combined minimum lies on the 
line between the minimum of the 
squared error and the origin.

• The regularizer shrinks model 
parameters to zero. 



Other Regularizers
Using a more general regularizer, we get:

Lasso Quadratic



The Lasso 
• Penalize the absolute value of the weights:

• For sufficiently large !, some of the coefficients will be driven to 
exactly zero, leading to a sparse model. 

• The above formulation is equivalent to:

• The two approaches are related using Lagrange multiplies. 

unregularized sum-of-squares error

• The Lasso solution is a quadratic programming problem: can be 
solved efficiently. 



Lasso vs. Quadratic Penalty
Lasso tends to generate sparser solutions compared to a quadratic 
regualrizer (sometimes called L1 and L2 regularizers).



Bias-Variance Decomposition
• Introducing a regularization term can help us control overfitting. But how 
can we determine a suitable value of the regularization coefficient? 

• Let us examine the expected squared loss function. Remember:

for which the optimal prediction is given 
by the conditional expectation: intrinsic variability of the target 

values: The minimum achievable 
value of expected loss

•We first look at the frequentist perspective. 

• If we model          using a parametric function then from a 
Bayesian perspective, the uncertainly in our model is expressed 
through the posterior distribution over parameters w. 



Bias-Variance Decomposition
• From a frequentist perspective: we make a point estimate of w* based 
on the dataset D.

•We next interpret the uncertainly of this estimate through the 
following thought experiment:

- Suppose we had a large number of datasets, each of size N, 
where each dataset is drawn independently from

• Let us consider the expression:

• Note that this quantity depends on a particular dataset D. 

- For each dataset D, we can obtain a prediction function
- Different datasets will give different prediction functions.
- The performance of a particular learning algorithm is then assessed 

by taking the average over the ensemble of these datasets. 



Bias-Variance Decomposition

• Adding and subtracting the term                       we obtain 

• Taking the expectation over     the last term vanishes, so we get:

• Consider:



Bias-Variance Trade-off

• Trade-off between bias and variance: With very flexible models (high 
complexity) we have low bias and high variance; With relatively rigid models 
(low complexity) we have high bias and low variance.  
• The model with the optimal predictive capabilities has to balance between bias 
and variance. 

Average predictions over all 
datasets differ from the 
optimal regression function.

Solutions for individual datasets 
vary around their averages -- how 
sensitive is the function to the 
particular choice of the dataset. 

Intrinsic variability 
of the target 
values.



Bias-Variance Trade-off
• Consider the sinusoidal dataset. We generate 100 datasets, each containing 
N=25 points, drawn independently from

Low bias High bias

High variance Low variance



Bias-Variance Trade-off

From these plots note that over-regularized model (large !) has high bias, and 
under-regularized model (low !) has high variance. 



Beating the Bias-Variance Trade-off
•We can reduce the variance by averaging over many models trained on 
different datasets: 

- In practice, we only have a single observed dataset. If we had many 
independent training sets, we would be better off combining them into 
one large training dataset. With more data, we have less variance. 

• Given a standard training set D of size N, we could generate new training 
sets, N, by sampling examples from D uniformly and with replacement.  

- This is called bagging and it works quite well in practice. 

• Given enough computation, we could also resort to the Bayesian 
framework:

- Combine the predictions of many models using the posterior 
probability of each parameter vector as the combination weight.  


