
10707
Deep Learning: Spring 2023

Russ Salakhutdinov
Machine Learning Department

rsalakhu@cs.cmu.edu

Lectures 1,2

mailto:rsalakhu@cs.cmu.edu

Evaluation
• 3 Assignments, worth 60%.
• Mid-term Exam 10%
• Projects, 30%:
- Midway report 5%, Final Project 25%.

Homework Dates – Check the website for updates!

Evaluation
• 5 late days for all assignments.
• No more than 3 late days per assignment. After 3 late

days, you will get 0.

• 3 late days for projects: can be split between project
proposal and final project.

• Project: Teams of 2 people per project.

Project
• The idea of the final project is to give you some experience trying

to do a piece of original research in machine learning and
coherently writing up your result.

•What is expected: A simple but original idea that you describe
clearly, relate to existing methods, implement and test on
some real-world problem.

• To do this you will need to write some basic code, run it on
some data, make some figures, read a few background papers,
collect some references, and write an 8-page report describing
your model, algorithm, and results.

Text Books
• Ian Goodfellow, Yoshua Bengio, Aaron Courville (2016)
Deep Learning Book (available online)

• Christopher M. Bishop (2006) Pattern Recognition and Machine
Learning, Springer.

• Kevin Murphy (2013)
Machine Learning: A Probabilistic Perspective

• Trevor Hastie, Robert Tibshirani, Jerome Friedman (2009) The
Elements of Statistical Learning (available online)

• David MacKay (2003) Information Theory, Inference, and Learning
Algorithms

•Most of the figures and material will come from these books.

http://research.microsoft.com/en-us/um/people/cmbishop/PRML/index.htm
http://www-stat.stanford.edu/~tibs/ElemStatLearn/
http://www.inference.phy.cam.ac.uk/mackay/itila/book.html

Online Resources

• I will be using a number of online resources, including

• Joan Bruna’s Deep Learning Course
http://joanbruna.github.io/stat212b/

• Hugo Larochelle Neural Network Course
http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html

• Deep Learning Summer School in Montreal
https://sites.google.com/site/deeplearningsummerschool2016/home

• I will be adding more resources, check the webpage.

http://joanbruna.github.io/stat212b/
http://info.usherbrooke.ca/hlarochelle/neural_networks/description.html
https://sites.google.com/site/deeplearningsummerschool2016/home

Images & Video

Relational Data/
Social Network

Massive increase in both computational power and the amount of
data available from web, video cameras, laboratory measurements.

Mining for Structure

Speech & AudioText & Language

Product
Recommendation

• Develop statistical models that can discover underlying structure, cause, or
statistical correlation from data.
•Multiple application domains.

Gene Expression

fMRI Tumor region

Impact of Deep Learning

• Speech Recognition

• Computer Vision

• Language Understanding

• Recommender Systems

• Drug Discovery and Medical
Image Analysis

Example: Boltzmann Machine

Input data (e.g. pixel
intensities of an image,
words from webpages,
speech signal).

Target variables (response)
(e.g. class labels,
categories, phonemes).

Model parameters
Latent (hidden)
variables

Markov Random Fields, Undirected Graphical Models.

Legal/JudicialLeading
Economic
Indicators

European Community
Monetary/Economic

Accounts/
Earnings

Interbank Markets

Government
Borrowings

Disasters and
Accidents

Energy Markets

Finding Structure in Data

Vector of word counts
on a webpage

Latent variables:
hidden topics

804,414 newswire stories

Important Breakthroughs
• Deep Belief Networks, 2006 (Unsupervised)

Hinton, G. E., Osindero, S. and Teh, Y., A fast learning algorithm for deep belief nets,
Neural Computation, 2006.

Higher-level
features:

Low-level
features:
Edges

Input: Pixels

• Adding additional layers improves
variational lower-bound.

• Efficient greedy layer-by-layer
learning learning algorithm.

• Inferring the states of the hidden
variables in the top most layer is easy.

Theoretical Breakthrough:

Efficient Learning and Inference
with multiple layers:

Important Breakthroughs

• Deep Nets for Speech (Supervised)

• Deep Convolutional Nets for Vision (Supervised)
Krizhevsky, A., Sutskever, I. and Hinton, G. E., ImageNet Classification with Deep
Convolutional Neural Networks, NIPS, 2012.

Hinton et. al. Deep Neural Networks for Acoustic Modeling in Speech Recognition:
The Shared Views of Four Research Groups, IEEE Signal Processing Magazine. 2012.

1.2 million training images
1000 classes

13

Training
Data(CelebA)

Model Samples (Karras et.al.,
2018)

4 years of progression on Faces

Brundage et al.,
2017

Statistical Generative Models

(Goodfellow 2018)

Generative Modeling:
Sample Generation

Training Data Sample Generator
(CelebA) (Karras et al, 2017)

(Goodfellow 2018)

3.5 Years of Progress on Faces

2014 2015 2016 2017

(Brundage et al, 2018)

• Conditional generative model P(zebra images| horse images)

� Style Transfer

MonetInput Image Van Gogh

Statistical Generative Models

Zhou el al., Cycle GAN 2017

Statistical Generative Models

� Failure Case

• Conditional generative model P(zebra images| horse images)

Zhou el al., Cycle GAN 2017

Course Organization
• Introduction / Background:

- Linear Algebra, Distributions, Rules of probability.
-Regression, Classification.
-Feedforward neural nets, backpropagation algorithm.
- Introduction to popular optimization and regularization techniques for

deep nets.
-Convolutional models with applications to computer vision.

Course Organization
•Deep Learning Essentials:

- Graphical Models: Directed and Undirected.
- Linear Factor Models, PPCA, FA, ICA, Sparse Coding and its extensions.
- Autoencoders and its extensions
- Energy-based models, RBMs.
- Monte Carlo Methods.
- Learning and Inference: Contrastive Divergence (CD), Stochastic

Maximum Likelihood Estimation, Score Matching, Ratio Matching, Pseud-
likelihood Estimation.
- Sequence Modeling: Recurrent Neural Networks, Transformers
-Deep Generative Models: Diffusion Models, Deep Belief Networks, Deep

Boltzmann Machines, Helmholtz Machines, Variational Autoencoders,
Importance-weighted Autoencoders.
-Generative Adversarial Networks (GANs), Generative Moment Matching

Nets, Neural Autoregressive Density Estimator (NADE).

Course Organization
•Additional Topics

- More on Regularization and Optimization in Deep Nets.
- Sequence-to-Sequence Architectures, Attention models.
- Some more recent topics in Deep Learning.

Learning Feature Representations

pixel 1

pixel 2
Learning
Algorith

m

pixel 2

pi
xe

l 1

Segway
Non-SegwayInput Space

Learning Feature Representations

pixel 2

pi
xe

l 1

Segway
Non-SegwayInput Space

Handle

Wheel

Learning
Algorithm

Feature
Representation

Handle

W
he

el

Feature Space

Traditional Approaches

Image vision features Recognition

Object
detection

Audio
classification

Audio audio features
Speaker

identification

Data Feature
extraction

Learning
algorithm

Computer Vision Features

SIFT

HoG RIFT

Textons

GIST

ZCR

Spectrogram MFCC

RolloffFlux

Audio Features

ZCR

Spectrogram MFCC

RolloffFlux

Representation Learning:
Can we automatically learn
these representations?

Audio Features

Types of Learning

• Supervised Learning: We are also given target outputs (labels, responses):
y1,y2,…, and the goal is to predict correct output given a new input.

Consider observing a series of input vectors:

• Unsupervised Learning: The goal is to build a statistical model of x, which
can be used for making predictions, decisions.

• Reinforcement Learning: the model (agent) produces a set of actions:
a1, a2,… that affect the state of the world, and received rewards r1, r2…
The goal is to learn actions that maximize the reward.

• Semi-supervised Learning: We are given only a limited amount of labels,
but lots of unlabeled data.

Supervised Learning

Classification: target outputs yi are
discrete class labels. The goal is to
correctly classify new inputs.

Regression: target outputs yi are
continuous. The goal is to predict the
output given new inputs.

Handwritten Digit Classification

Unsupervised Learning
The goal is to construct statistical model
that finds useful representation of data:
• Clustering
• Dimensionality reduction
• Modeling the data density
• Finding hidden causes (useful

explanation) of the data

Unsupervised Learning can be used for:
• Structure discovery
• Anomaly detection / Outlier detection
• Data compression, Data visualization
• Used to aid classification/regression tasks

DNA Microarray Data

Expression matrix of 6830 genes (rows) and 64
samples (columns) for the human tumor data.

The display is a heat map ranging from bright
green (under expressed) to bright red (over
expressed).

Questions we may ask:
•Which samples are similar to other samples in
terms of their expression levels across genes.

•Which genes are similar to each other in
terms of their expression levels across samples.

Linear Least Squares
• Given a vector of d-dimensional inputs we want to
predict the target (response) using the linear model:

• The term w0 is the intercept, or often called bias term. It will be convenient to
include the constant variable 1 in x and write:

• Observe a training set consisting of N observations
together with the corresponding target values
• Note that X is an matrix.

Linear Least Squares
One option is to minimize the sum of the squares of the errors between the
predictions for each data point xn and the corresponding real-valued
targets tn.

Loss function: sum-of-squared error function:

Source: Wikipedia

Linear Least Squares
If is nonsingular, then the unique solution is given by:

• At an arbitrary input , the prediction is
• The entire model is characterized by d+1 parameters w*.

Source: Wikipedia

optimal
weights

the design matrix has one
input vector per row

vector of
target values

Example: Polynomial Curve Fitting

Note: the polynomial function is a nonlinear function of x, but it is a linear
function of the coefficients w! Linear Models.

Goal: Fit the data using a polynomial function of the form:

Consider observing a training set consisting of N 1-dimensional observations:
together with corresponding real-valued targets:

• The green plot is the true function
• The training data was generated by taking
xn spaced uniformly between [0 1].
• The target set (blue circles) was obtained
by first computing the corresponding values
of the sin function, and then adding a small
Gaussian noise.

Example: Polynomial Curve Fitting
• As for the least squares example: we can minimize the sum of the squares of
the errors between the predictions for each data point xn and the
corresponding target values tn.

• Similar to the linear least squares: Minimizing sum-of-squared error
function has a unique solution w*.

Loss function: sum-of-squared error
function:

• The model is characterized by M+1 parameters w*.
• How do we choose M? !Model Selection.

Some Fits to the Data

For M=9, we have fitted the training data perfectly.

Overfitting

• For M=9, the training error is zero ! The polynomial contains 10 degrees of
freedom corresponding to 10 parameters w, and so can be fitted exactly to the
10 data points.

• Consider a separate test set containing 100 new data points generated using
the same procedure that was used to generate the training data.

• However, the test error has become very large. Why?

Overfitting

• As M increases, the magnitude of coefficients gets larger.

• For M=9, the coefficients have become finely tuned to the data.

• Between data points, the function exhibits large oscillations.

More flexible polynomials with larger M tune to the random noise on the
target values.

Varying the Size of the Data

• For a given model complexity, the overfitting problem becomes less severe as
the size of the dataset increases.

9th order polynomial

• However, the number of parameters is not necessarily the most appropriate
measure of the model complexity.

Generalization
• The goal is achieve good generalization by making accurate predictions for
new test data that is not known during learning.

• Choosing the values of parameters that minimize the loss function on the
training data may not be the best option.

•We would like to model the true regularities in the data and ignore the noise
in the data:
- It is hard to know which regularities are real and which are accidental

due to the particular training examples we happen to pick.

• Intuition: We expect the model to generalize
if it explains the data well given the complexity
of the model.
• If the model has as many degrees of freedom
as the data, it can fit the data perfectly. But this
is not very informative.
• Some theory on how to control model
complexity to optimize generalization.

A Simple Way to Penalize Complexity
One technique for controlling over-fitting phenomenon is regularization,
which amounts to adding a penalty term to the error function.

where and ! is called the regularization term.
Note that we do not penalize the bias term w0.

• The idea is to “shrink” estimated parameters
towards zero (or towards the mean of some other
weights).
• Shrinking to zero: penalize coefficients based on
their size.
• For a penalty function which is the sum of the
squares of the parameters, this is known as “weight
decay”, or “ridge regression”.

penalized error
function

regularization
parameter

target value

Regularization

Graph of the root-mean-squared training and test errors vs. ln! for the
M=9 polynomial.

How to choose !?

Cross Validation
If the data is plentiful, we can divide the dataset into three subsets:
• Training Data: used to fitting/learning the parameters of the model.
• Validation Data: not used for learning but for selecting the model,

or choosing the amount of regularization that works best.
• Test Data: used to get performance of the final model.

For many applications, the supply of data for training and testing is limited.
To build good models, we may want to use as much training data as possible.
If the validation set is small, we get noisy estimate of the predictive performance.

S fold cross-validation • The data is partitioned into S groups.
• Then S-1 of the groups are used for training
the model, which is evaluated on the
remaining group.
• Repeat procedure for all S possible choices
of the held-out group.
• Performance from the S runs are averaged.

Probabilistic Perspective
• So far we saw that polynomial curve fitting can be expressed in terms of
error minimization. We now view it from probabilistic perspective.

• Suppose that our model arose from a statistical model:

where " is a random error having Gaussian distribution with zero mean,
and is independent of x.

where # is a precision parameter,
corresponding to the inverse variance.

Thus we have:

I will use probability distribution and
probability density interchangeably. It
should be obvious from the context.

Sampling Assumption
• Assume that the training examples are drawn independently from the
set of all possible examples, or from the same underlying distribution

•We also assume that the training examples are identically distributed!
i.i.d assumption.

• Assume that the test samples are drawn in exactly the same way -- i.i.d
from the same distribution as the training data.

• These assumptions make it unlikely that some strong regularity in the
training data will be absent in the test data.

Maximum Likelihood
If the data are assumed to be independently and identically distributed
(i.i.d assumption), the likelihood function takes form:

It is often convenient to maximize the log of the likelihood function:

•Maximizing log-likelihood with respect to w (under the assumption of a
Gaussian noise) is equivalent to minimizing the sum-of-squared error function.

• Determine by maximizing log-likelihood. Then maximizing w.r.t. #:

Predictive Distribution
Once we determined the parameters w and #, we can make prediction for
new values of x:

Statistical Decision Theory

The joint probability distribution provides a complete summary of
uncertainties associated with these random variables.

- for regression: t is a real-valued continuous target.
- for classification: t a categorical variable representing class labels.

Determining from training data is known as the inference problem.

•We now develop a small amount of theory that provides a framework
for developing many of the models we consider.

• Suppose we have a real-valued input vector x and a corresponding target
(output) value t with joint probability distribution:

• Our goal is predict target t given a new value for x:

Example: Classification
Medical diagnosis: Based on the X-ray image, we would like determine
whether the patient has cancer or not.

C1: Cancer present

C2: Cancer absent

• The input vector x is the set of pixel intensities, and the output variable t will
represent the presence of cancer, class C1, or absence of cancer, class C2.

• Choose t to be binary: t=0 correspond to class C1, and t=1 corresponds to C2.

x -- set of pixel intensities

Inference Problem: Determine the joint distribution , or equivalently
. However, in the end, we must make a decision of whether to give

treatment to the patient or not.

Example: Classification
Informally: Given a new X-ray image, our goal is to decide which of the two
classes that image should be assigned to.

probability of observed
data given Ck

prior probability
for class Ck

posterior probability of
Ck given observed data.

• If our goal to minimize the probability of assigning x to the wrong class, then
we should choose the class having the highest posterior probability.

Bayes’ Rule

•We could compute conditional probabilities of the two classes, given the input
image:

Expected Loss

Consider medical diagnosis example: example of a loss matrix:

• Loss Function: overall measure of loss incurred by taking any of the available
decisions.
• Suppose that for x, the true class is Ck, but we assign x to class j
! incur loss of Lkj (k,j element of a loss matrix).

Expected Loss:

Decision

Tr
ut
h

Goal is to choose decision regions as to minimize expected loss.

Regression

• The decision step consists of finding an estimate y(x) of t for each input x.

• The average, or expected, loss is given by:

• To quantify what it means to do well or poorly on a task, we need to
define a loss (error) function:

Let x " Rd denote a real-valued input vector, and t " R denote a real-
valued random target (output) variable with joint the distribution

• If we use squared loss, we obtain:

Squared Loss Function
• If we use squared loss, we obtain:

• Our goal is to choose y(x) so as to minimize the expected squared loss.

• The optimal solution (if we assume a completely flexible function) is the
conditional average:

The regression function y(x) that
minimizes the expected squared loss is
given by the mean of the conditional
distribution

Squared Loss Function
• If we use squared loss, we obtain:

• Plugging into expected loss:

expected loss is minimized
when

intrinsic variability of the
target values.

Because it is independent noise, it
represents an irreducible minimum
value of expected loss.

Other Loss Function
• Simple generalization of the squared loss, called the Minkowski loss:

• The minimum of is given by:

- the conditional mean for q=2,
- the conditional median when q=1, and
- the conditional mode for q! 0.

Discriminative vs. Generative

• Generative Approach:

• Discriminative Approach:

Model the joint density:
or joint distribution:

Infer conditional
density:

Model conditional density directly.

Linear Basis Function Models
• Remember, the simplest linear model for regression:

Key property: linear function of the parameters .

• However, it is also a linear function of the input variables.
Instead consider:

where are known as basis functions.

• Typically , so that w0 acts as a bias (or intercept).

• In the simplest case, we use linear bases functions:
• Using nonlinear basis allows the functions to be nonlinear functions of
the input space.

where is is a d-dimensional input vector (covariates).

Linear Basis Function Models
Polynomial basis functions:

Basis functions are global: small
changes in x affect all basis functions.

Gaussian basis functions:

Basis functions are local: small changes in x
only affect nearby basis functions.
µj and s control location and scale (width).

Linear Basis Function Models
Sigmoidal basis functions

Basis functions are local: small changes
in x only affect nearby basis functions.
µj and s control location and scale
(slope).

• Decision boundaries will be linear in the feature space but would
correspond to nonlinear boundaries in the original input space x.

• Classes that are linearly separable in the feature space need not
be linearly separable in the original input space.

Linear Basis Function Models

• We define two Gaussian basis functions with centers shown by green the crosses,
and with contours shown by the green circles.

Original input space Corresponding feature space using
two Gaussian basis functions

• Linear decision boundary (right) is obtained using logistic regression, and
corresponds to nonlinear decision boundary in the input space (left, black curve).

Maximum Likelihood
• As before, assume observations arise from a deterministic function with an
additive Gaussian noise:

which we can write as:

• Given observed inputs , and corresponding target
values , , under i.i.d assumption, we can write down the
likelihood function:

where

Maximum Likelihood
Taking the logarithm, we obtain:

sum-of-squares error function

Differentiating and setting to zero yields:

Maximum Likelihood
Differentiating and setting to zero yields:

Solving for w, we get:
The Moore-
Penrose pseudo-
inverse, .

where is known as the design matrix:

Sequential Learning
• The training data examples are presented one at a time, and the model
parameters are updated after each such presentation (online learning):

• For the case of sum-of-squares error function, we obtain:

• Stochastic gradient descent: The training examples are picked at random
(dominant technique when learning with very large datasets).

• Care must be taken when choosing learning rate to ensure convergence.

learning
rate

weights after
seeing training
case t+1

vector of derivatives of the squared
error w.r.t. the weights on the
training case presented at time t.

Regularized Least Squares
• Let us consider the following error function:

Data term + Regularization term

• Using sum-of-squares error function with a quadratic penalization
term, we obtain:

which is minimized by setting:

! is called the
regularization
coefficient.

Ridge
regression

The solution adds a positive constant to the diagonal of This makes the
problem nonsingular, even if is not of full rank (e.g. when the number of
training examples is less than the number of basis functions).

Effect of Regularization

• The overall error function is the sum
of two parabolic bowls.

• The combined minimum lies on the
line between the minimum of the
squared error and the origin.

• The regularizer shrinks model
parameters to zero.

Other Regularizers
Using a more general regularizer, we get:

Lasso Quadratic

The Lasso
• Penalize the absolute value of the weights:

• For sufficiently large !, some of the coefficients will be driven to
exactly zero, leading to a sparse model.

• The above formulation is equivalent to:

• The two approaches are related using Lagrange multiplies.

unregularized sum-of-squares error

• The Lasso solution is a quadratic programming problem: can be
solved efficiently.

Lasso vs. Quadratic Penalty
Lasso tends to generate sparser solutions compared to a quadratic
regualrizer (sometimes called L1 and L2 regularizers).

Bias-Variance Decomposition
• Introducing a regularization term can help us control overfitting. But how
can we determine a suitable value of the regularization coefficient?

• Let us examine the expected squared loss function. Remember:

for which the optimal prediction is given
by the conditional expectation: intrinsic variability of the target

values: The minimum achievable
value of expected loss

•We first look at the frequentist perspective.

• If we model using a parametric function then from a
Bayesian perspective, the uncertainly in our model is expressed
through the posterior distribution over parameters w.

Bias-Variance Decomposition
• From a frequentist perspective: we make a point estimate of w* based
on the dataset D.

•We next interpret the uncertainly of this estimate through the
following thought experiment:

- Suppose we had a large number of datasets, each of size N,
where each dataset is drawn independently from

• Let us consider the expression:

• Note that this quantity depends on a particular dataset D.

- For each dataset D, we can obtain a prediction function
- Different datasets will give different prediction functions.
- The performance of a particular learning algorithm is then assessed

by taking the average over the ensemble of these datasets.

Bias-Variance Decomposition

• Adding and subtracting the term we obtain

• Taking the expectation over the last term vanishes, so we get:

• Consider:

Bias-Variance Trade-off

• Trade-off between bias and variance: With very flexible models (high
complexity) we have low bias and high variance; With relatively rigid models
(low complexity) we have high bias and low variance.
• The model with the optimal predictive capabilities has to balance between bias
and variance.

Average predictions over all
datasets differ from the
optimal regression function.

Solutions for individual datasets
vary around their averages -- how
sensitive is the function to the
particular choice of the dataset.

Intrinsic variability
of the target
values.

Bias-Variance Trade-off
• Consider the sinusoidal dataset. We generate 100 datasets, each containing
N=25 points, drawn independently from

Low bias High bias

High variance Low variance

Bias-Variance Trade-off

From these plots note that over-regularized model (large !) has high bias, and
under-regularized model (low !) has high variance.

Beating the Bias-Variance Trade-off
•We can reduce the variance by averaging over many models trained on
different datasets:

- In practice, we only have a single observed dataset. If we had many
independent training sets, we would be better off combining them into
one large training dataset. With more data, we have less variance.

• Given a standard training set D of size N, we could generate new training
sets, N, by sampling examples from D uniformly and with replacement.

- This is called bagging and it works quite well in practice.

• Given enough computation, we could also resort to the Bayesian
framework:

- Combine the predictions of many models using the posterior
probability of each parameter vector as the combination weight.

