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Talk objectives

* Introduce Graph Neural Networks (GNNSs)
 Highlight interesting open research questions



What is a graph?

A graph is composed of
B * Nodes (also called vertices)
« Edges connecting a pair of nodes

presented in an adjacency matrix
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What is a graph?

A graph is composed of
* Nodes (also called vertices)

« Edges connecting a pair of nodes
X, Xc x, Presented in an adjacency matrix
Nodes can have feature vectors
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(slide: P. Velickovic)

Graphs are everywhere
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Graph Neural Networks have a large

Impact on...

Deelend > Blog > Traffic prediction with advanced Graph Neural Networks

03 SEP 2020

Traffic prediction with

advanced Graph Neural
Networks

Food Discovery with Uber Eats:
Using Graph Learning to Power

L]
Recommendations
Ankit Jain, Isaac Liu, Ankur Sarda, and Piero Molino December 4, 2019
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Pinterest Engineering
Aug 15,2018 - 8 minread

®

PinSage: A new graph convolutional neural
network for web-scale recommender systems

Ruining He | Pinterest engineer, Pinterest Labs

Web image search gets better with graph neural
networks

amazon | science

PUBLICATION

P-Companion: A principled
framework for diversitied
complementary product
recommendation

By Junheng Hao, Tong Zhao, Jin Li, Xin Luna Dong, Christos Faloutsos, Yizhou Sun, Wei Wang
2020
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1 to image search uses images returned by traditional search

iles in a graph neural network through which similarity signals are

rieving improved ranking in cross-modal retrieval.
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TEXA

The University of Texas at Austin

Graph Neural Networks have a large

Impact on...

Npj | computational materials

Explore content v  About the journal v  Publish with us v

GCN-RL Circuit Designer: Transferable

nature > npj computational materials > articles > article

Transistor Sizing with Graph Neural
Networks and Reinforcement Learning

Hanrui Wang?, Kuan Wang?, Jiacheng Yang?, Linxiao Shen?, Nan Sun?,

Article | Open Access | Published: 03 June 2021

Benchmarking graph neural networks for materials

Hae-Seung Lee?, Song Han? Chemlstry
IMassachusetts Institute of Technology
2UT Austin Victor Fung &, Jiaxin Zhang, Eric Juarez & Bobby G. Sumpter

IIAN I. Al

Hardware, Al and Neural-nets

npj Computational Materials 7, Article number: 84 (2021) ] Cite this article

The next big thing: the use of graph neural
networks to discover particles

September 24, 2020 | Zack Savitsky @ share| | D Tweet ﬁ Email

Machine learning algorithms can beat the world’s hardest video games in minutes and solve complex equations
faster than the collective efforts of generations of physicists. But the conventional algorithms still struggle to
pick out stop signs on a busy street.

Object identification continues to hamper the field of machine learning — especially when the pictures are
multidimensional and complicated, like the ones particle detectors take of collisions in high-energy physics
experiments. However, a new class of neural networks is helping these models boost their pattern recognition
abilities, and the technology may soon be implemented in particle physics experiments to optimize data
analysis.

7807 Accesses | 7 Citations | 41 Altmetric | Metrics

nature View all journals Search Q Login @

Explore content v  About the journal v  Publish with us v

nature > articles > article

Article | Published: 09 June 2021

A graph placement methodology for fast chip design

Azalia Mirhoseini &, Anna Goldie &, Mustafa Yazgan, Joe Wenjie Jiang, Ebrahim Songhori, Shen Wang,

Young-Joon Lee, Eric Johnson, Omkar Pathak, Azade Nazi, Jiwoo Pak, Andy Tong, Kavya Srinivasa, William

Hang, Emre Tuncer, Quoc V. Le, James Laudon, Richard Ho, Roger Carpenter & Jeff Dean
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Graph Neural Networks have a large
Impact on...

nature

Explore content v About the journal v Publish with us v Subscribe

|P M istitute for oure & applied mathematics

nature > news > article Deep Learning and
u o | | u | |
Combinatorial Optimizatio
NEWS | 01 December 2021 m In rl Imlz I n

DeepMind’s Al helps untangle the
mathematics of knots

The machine-learning techniques could

sets. Patterns ¢? CellP’ress

OPEN ACCESS

Neural algorithmic reasoning

Petar Velickovi¢'-* and Charles Blundell’
1DeepMind, London, Greater London, UK
*Correspondence: petarv@google.com
https://doi.org/10.1016/j.patter.2021.100273

We present neural algorithmic reasoning—the art of building neural networks that are able to execute algo-

rithmic computation—and provide our opinion on its transformative potential for running classical algorithms
on inputs previously considered inaccessible to them.
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(slide: P. Velickovic)

A very hot research topic

ICLR 2021 Submission Top 50 Keywords

_ deep learning v ~ .
enocen Ir! h
: U0/ Graph Representation Learning

robustness
neural network
self supervised learning
generalization
unsupervised learning
interpretability
few shot learning
transfer learning
. contrastive learnin
generative adversarial networ
natural language processing
deep reinforcement learning
federated learning
adversarial robustness
neural architecture search
data augmentation
generative models
continual learning
computer vision
optimization
regularization
machine learning
_ " gan
variational inference
adversarial training
) transformers
semi supervised learnin
deep neural networ
. _exploration
disentanglement
adversarial examples
multi task learning
classification
knowledge distillation

Location:West Exhibition Hall A
SU1334 Q143 (O1 17 Subsession

A keyword usage (2020 - 2019)

deep learning
an

optimization
neural network
generative models
unsupervised learning
reinforcement learnin
=5 convolutional neural networ
g recurrent neural network
E, machine learning
o
=

multitask learnin

neural architecture searc
representation learning
adversarial robustness

. tra{'Sf‘%rme‘z robustness
convolutional neural networ! % %
image CIaSS'tftlcaPon selfsupervised learngig
attention
transformer

uncertainty estimation
variational autoencoders
generative model
. bert
deep learning theo
recurrent neural hetworl
pruning

graph neural network
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What is Graph Neural Network?



Problem definition

* Given
Xp * Agraph
* Node attributes
\ X; Xr * (part of nodes are labeled)

* Find
* Node embeddings

* Predict
 Labels for the remaining nodes



Graph Neural Networks

Target Node Xp

l C X Xn
X, ¢

Xg

Xp

“Homophily: connected nodes are
related/informative/similar”



Graph Neural Networks

“Homophily: connected nodes are
related/informative/similar”



Graph Neural Networks

“Homophily: connected nodes are
related/informative/similar”
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Graph Neural Networks
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Graph Neural Networks
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Friend
recommendation

Product
recommendation

Fraud detection

Churn prediction
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Graph Neural Networks

Target Node Xs
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Graph Neural Networks

Target Node Xs
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Graph Neural Networks

X; X
A X

Target Node Xs

oth layer
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Graph Neural Networks

Target Node Xs

1st layer
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Graph Neural Networks

Target Node Xs

2nd layer 1st layer
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Graph Neural Networks

1. Aggregate messages from neighbors

hl(,l): node embedding of v at [-th layer
N (v) : neighboring nodes of v

f(l): aggregation function at [-th layer
ml(,l) : message vector of v at [-th layer

m{ = fO (hP,{hP:u € w@)})
= fO (h[gl), hg)hg>hg>) Neighbors of node A
N(A) ={B,C,D}

22
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Graph Neural Networks

1. Aggregate messages from neighbors Q h(l)
mfll) = f (h(l) {h(l) ueEwN (A)}) (l+1)
10 (2 H0n) o Ed----0
2. Transform messages h(l)
g(l) transformation function at [-th layer
hlng-l) g(l) (m(l))

Neighbors of node A
N(A) =1{B,C,D}
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Graph Neural Networks

In each layer [, D
for each target node v : 13 Gt
h®

1. Aggregate messages Ae <"
ml()l) =f(l) (hg),{hg)u € N(U)}) -« <

2. Transform messages
[+1 l
hy ™ = gOm)

2nd Jayer 1st layer
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Graph Neural Networks T,

In each layer [, D
for each target node v : 13 Gt
h®

1. Aggregate messages A g h(Cl)
my = fO (hP, {hP:u € ¥ @)} Qﬂ: - -«

~
~

2. Transform messages (1)
h1(71+1) _ g(l) (ml(,l)) hD
2nd Jayer 1st layer
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Graph Neural Networks

In each layer [,
for each target node v :

1. Agg regate messages

llllll

------

h(z+1)

'
llllll

Minji Yoon
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2nd Jayer
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Graph Neural Networks

Graph Convolutional Networks!"]

1. Aggregate messages

1
@ _ @
m,’ = E h
’ |N(v) + 1 u €N )u{v} ’

2. Transform messages

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph 2nd Iayer 1 st Iayer Oth Iayer

convolutional networks." o
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Graph Neural Networks

Graph Isomorphism Networksl(?! e
B Gx
1. Aggregate messages /’(’1)
Vg
l h
m® = z h® 7 -
u € Nw)u{v} w
2. Transform messages S
D) _ @ o (D \Q‘
h, 7~ =ocW¥ om;”) h(l)
D

[2] Xu, Keyulu, et al. "How powerful are graph neural networks?." 2nd Iayer 1 st Iayer Oth Iayer
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Graph Neural Networks

Simplified GCN3!

1. Aggregate messages

1
@ _ @
m,’ = E h
’ |N(v) + 1 u €N )u{v} ’

2. Transform messages
h1(71+1) —w® o, mw(yl)

[3] Wu, Felix, et al. "Simplifying graph convolutional networks." 2nd Iayer 1 st Iayer Oth Iayer
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Computation graphs
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Computation graphs

Shared -

parameters SLLLLLLY

eNEEEE W
Qummmnmsn

Shared
parameters
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Batch execution AD = W0 (L 0Dy

u

|V ()+1]




= (I=1)y)

h
U(W(l) ° (U\f(v)+1| Zu EN(w)u{v}tu




[—
Zu € NV (v)u{v} hl(t 1)))

llllll

llllll




Downstream tasks

* Node-level prediction

3

[
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Downstream tasks

* Node-level prediction
» Edge-level prediction

D ----......

D and E are related enough
to be connected?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks

* Node-level prediction
» Edge-level prediction
« Attribute-level prediction

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks

* Node-level prediction

» Edge-level prediction

« Attribute-level prediction
» Graph-level prediction

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Downstream tasks r——————

* Node-level prediction
* Edge-level prediction :
* Attribute-level prediction Q—

. .
----------------------------------------

o Graph-|eve| predictiop‘ ............................................ .

....
lllllllllllllllllllllllllllllllllllllllll
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Downstream tasks

* Node-level prediction
» Edge-level prediction

« Attribute-level prediction
« Graph-level prediction




Node-level prediction tasks

Node
classification

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learn

ing
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Node-level prediction tasks

/

Node
classification

« Classify papers into topics on citation networks

 Cluster posts into subgroups on Reddit networks

« Classify products into categories on Amazon co-
purchase graphs

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 42



Graph-level prediction tasks

Graph classification

(ex) sum, average, min/max pooling
of node embeddings

hg = READOUT(R, A, -, h$P)

Minji Yoon (CMU) - Guest lectue at 07: Introduction to Deep Learning
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Graph-level prediction tasks

Graph classification

hg = READOUT(R?, b, -, (V)

¢

* Predict properties of a
molecule (graph)
where nodes are atoms
and edges are chemical
bonds
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So far, we have talked about..

1. Graph Neural Network
* Problem definition
« Skeleton
« Aggregation operation
» Transformation operation
2. Implementation
« Computation graph
« Batch execution
3. Downstream tasks
* Node-level prediction
« Graph-level prediction



So far, we have talked about..

1. Graph Neural Network
* Problem definition

lllllllllllllllllllllllllllllllllllllllllllllll

i« Skeleton
: - Aggregation operation

*
L

.
-----------------------------------------------

2. Implementation
« Computation graph
« Batch execution

3. Downstream tasks
* Node-level prediction
« Graph-level prediction



Graph Neural Networks

Q

«_-_ ,k
s
" NG

Target Node

I\\

/

N\
0@
\Q
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Graph Neural Networks - Width

Target Node

Should we aggregate

Q all neighbors?
‘ Vlinji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Networks - Depth

Target Node

l B

A

(F
How many hops Il
A

~
~
Q should we explore?
v Mir ji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 49
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Graph Neural Networks - Aggregation

Target Node

h

-

How should we
aggregate
neighbors?

Vinji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Network Architectures

* Width

* Which neighbors should we aggregate messages from?
* Depth

« How many hops should we check?
» Aggregation

« How should we aggregate messages from neighbors?

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning



Graph Neural Network Architectures

* Width

« Which neighbors should we aggregate messages from?
* Depth

« How many hops should we check?
» Aggregation

« How should we aggregate messages from neighbors?
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Aggregation Width in GNNs

* If we aggregate all neighbors, GNNs have scalability issues

» Neighbor explosion >
- In L -layer GNNs, one node aggregates information from 0 (K1)
nodes where K is the average number of neighbors per node
o9
dh &b g
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Aggregation Width in GNNs

* If we aggregate all neighbors, GNNs have scalability issues

* Neighbor explosion
« Hub nodes who are connected to a huge number of nodes
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Aggregation Width in GNNs

* Limit the neighborhood expansion by sampling
a fixed number of neighbors
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Aggregation Width in GNNs

« Random sampling
« Assign same sampling probabilities to all neighbors
« GraphSagel4!

* Importance sampling

 Assign different sampling probabilities to all neighbors
« FastGCNPO) LADIES®], AS-GCN7l, GCN-BS8l, PASSH!

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs

Importance sampling

. assign higher sampling probabilities to neighbors who
* Minimize variance in sampling
« FastGCN®!, LADIES®!, AS-GCN], GCN-BS®!
« Maximize GNN performance
« PASSE

[4] Will Hamilton, et al. “Inductive representation learning on large graphs”

[5] Jie Chen, et al. “Fastgcn: fast learning with graph convolutional networks via importance sampling”

[6] Difan Zou, et al. “Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks”
[7] Wenbing Huang, et al. “Adaptive sampling towards fast graph representation learning”

[8] Ziqi Liu, et al. “Bandit Samplers for Training Graph Neural Networks”

[9] Minji Yoon, et al. “Performance-Adaptive Sampling Strategy Towards Fast and Accurate Graph Neural Networks”



Aggregation Width in GNNs

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics
FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638
AS-GCN 0.462 0.387 0.502 0.419 0.480 0.403 0.516
GraphSage | 0.788 0.698 0.792 0.707 0.787 0.766 0.875
GCN-BS 0.788 0.693 0.809 0.736 0.300 0.780 0.887

; PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 -

Node classification task on 7 different real-world graphs
PASS outperforms all variance-minimizing methods by up to 10.4%

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Width in GNNs

Method Cora Citeseer Pubmed AmazonC AmazonP MsCS MsPhysics
FastGCN 0.582 0.496 0.569 0.480 0.542 0.520 0.638
AS-GCN 0.462 0.387 0.502 0.419 0.480 0.403 0.516
GraphSage | 0.788 0.698 0.792 0.707 0.787 0.766 0.875
GCN-BS 0.788 0.693 0.809 0.736 0.300 0.780 0.887

; PASS 0.821 0.715 0.858 0.757 0.855 0.884 0.934 -

Real-world graphs are noisy!!

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Graph Neural Network Architectures

« Width

* Which neighbors should we aggregate messages
from?

* Depth
 How many hops should we check?
» Aggregation

* How should we aggregate messages from
neighbors?

~
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Aggregation Depth in GNNs

* Informative neighbors could be indirectly connected with a
target node

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Depth in GNNs

* Informative neighbors could be indirectly connected with a
target node

« Can’t we just look multiple hops away from the target node?

8l N

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation Depth in GNNs

 2-layer or 3-layer GNNs are commonly used in real worlds

Wasn’t it Deeeep Learning?




Aggregation Depth in GNNs

 When we increase the depth L more than this, GNNs face

neighbor explosion 0(K") @
« Over-smoothing
« Over-squashing
o9
dh &b g
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Aggregation Depth in GNNs

Over-smoothingl19
 When GNNs become deep, P
nodes share many neighbors 5

* Node embeddings become indistinguishable

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning 65



Aggregation Depth in GNNs

Over-smoothingl19
* Node embeddings of Zachary’s karate club network with GNNs

(a) 1-layer

[10] Qimai Li, et al. “Deeper Insights into Graph Convolutional Networks for Semi-Supervised Learning”

[ ]
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0.30 1
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" 4 ° [ ] oo
e 0° o 0.20 A ° °
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° 0.10 A °
0.05 A o
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- . . r . . - 0.00 -— . ; : . . . .
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(b) 2-layer
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(c) 3-layer

(d) 4-layer
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Aggregation Depth in GNNs

Mitigate over-smoothing
PairNorm!11]

« Keep total pairwise squared distance (TPSD) constant across layers
* Push away pairs that are not connected

Connected pairs Disconnected pairs
TPSD(X) =i Y [lii - x]||2 R x,||2 oy
(l])ES ELJ)EEE

llllllllllllllllllllllllllllllllllllllllllllllllll

[11] Lingxiao Zhao, et al. “PAIRNORM: TACKLING OVERSMOOTHING IN GNNS”



Aggregation Depth in GNNs

Mitigate over-smoothing
Paerorm[11] cora-GCN

1.0 - —— PairNorm(SlI)

-=-- Original

>

O
© 0.6-
>
O

< 0.4-

0.2 -

0.0

[11] Lingxiao Zhao, et al. “PAIRNORM: TACKLING OVERSMOOTHING IN GNNS”
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Aggregation Depth in GNNs

Over-squashingl'2l

* A node’s exponentially-growing neighborhood is compressed
Into a fixed-size vector

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”



Aggregation Depth in GNNs

Over-squashingl'2l

O—=0

Acc —m— GGNN (train) |

—@— GAT (train)
—— GIN (train) :
—A— GCN (train) | : :

2 3 4 5 § 7 8

r (the problem radius)

OO0
ORI T 00O

[12] Uri Alon, et al. “ON THE BOTTLENECK OF GRAPH NEURAL NETWORKS AND ITS PRACTICAL IMPLICATIONS”
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Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!
* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”



Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!
* Depth-1: neighborhood that each node aggregates information from
* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

Gs = SAMPLE(G)

[13] Hanqing Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”



Aggregation Depth in GNNs

Decoupling the two concepts of depths in GNNs!13!

* Depth-1: neighborhood that each node aggregates information from

* Depth-2: number of layers in GNNs

Depth of neighborhood
(Depth-1)

Gs = SAMPLE(G)

[13] Hanging Zeng, et al. “Decoupling the Depth and Scope of Graph Neural Networks”
Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning

Depth of GNN
(Depth-2)
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Graph Neural Network Architectures

« Width
« Which neighbors should we aggregate messages from?
* Depth
« How many hops should we check?
» Aggregation
 How should we aggregate messages from neighbors?




Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors

-----

lllll

Transform messages
l -
hy = g (my ™)




Aggregation strategy in GNNs

« GCNDI

» Average embeddings of neighboring nodes

[1] Kipf, Thomas N., et al. "Semi-supervised classification with graph convolutional networks."



Aggregation strategy in GNNs

« GAT4]
« Different weights to different nodes in a neighborhood
« Multi-nead attention

exp (LeakyReLU (5T (Wh, ||Wﬁj]))
Oéij =

< 0
e €Xp (LeakyReLU (5T[wiii||wﬁk])) v S
o8

[14] Petar Velickovic., et al. "GRAPH ATTENTION NETWORKS."

concat/avg
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Aggregation strategy in GNNs

In each layer [ :

Aggregate over neighbors

mg_l) =§f(1)§(h§l_1),{hg_1):u € N(v)})
.C.c;r.e part of GNNs

Transforrp messages

h$ =ig®im{ ™)

Any neural network module can fit in
1-layer MLP is commonly used

Minji Yoon (CMU) - Guest lecture at 10707: Introduction to Deep Learning
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Aggregation strategy in GNNs

Power of GNNs

Power of aggregation strategies



Aggregation strategy in GNNs

* By measuring the power of GNNs, we can find the best
aggregation strategy!!

B )
‘\\\ \ ‘\ |
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Aggregation strategy in GNNs

* By measuring the expressive power of GNNs, we can find the
best aggregation strategy!!

* But.. what is the power of GNNs and how can we measure it?

® 9
-



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

SR

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!

* Metric
« Graph-level prediction task
« Can a GNN model distinguish two non-isomorphic graphs?

-t R

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
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Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
« Any aggregation-based GNN is at most as powerful as the WL test!®]
« Maximum power = aggregation strategy is injective

f(x1) = f(x2) = x1 = X2

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”



Aggregation strategy in GNNs

« How powerful are Graph Neural Networks?!2!
« Any aggregation-based GNN is at most as powerful as the WL test!®]
« Maximum power = aggregation strategy is injective
* (ex) summation

T ¢ T T
T A 7.9¢79

Mean and Max both fail, while Sum can distinguish them!!

[2] Keyulu Xu., et al. "HOW POWERFUL ARE GRAPH NEURAL NETWORKS?”
[15] Boris Weisfeiler and AA Leman. “A reduction of a graph to a canonical form and an algebra arising during this reduction”
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Aggregation strategy in GNNs

« Can we make more powerful GNNs?
* Very active area, with many open problems



Aggregation strategy in GNNs

« Can we make more powerful GNNs?
« Augment nodes with randomized/positional featuresl1°]
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(a) Identical Features. (b) Random Features.

[16] Ryoma Sato, et al. "Random Features Strengthen Graph Neural Networks”
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Aggregation strategy in GNNs

« Can we make more powerful GNNs?
« Augment nodes with handcrafted subgraph-based features!'’]

[17] Giorgos Bouritsas, et al. "Improving Graph Neural Network Expressivity via Subgraph Isomorphism Counting”



Aggregation strategy in GNNs

« Can we make more powerful GNNs?

* Directly aggregates k-hop information by using adjacency
matrix powers!18]

g iAH(l)
(©)

Wi
' Ag@w (i pli+l) _ (AOHZ Z|A1Hz Z|

1
(a) Traditional graph convolution. (b) Our mixed feature model

[18] Sami Abu-El-Haija, et al. "MixHop: Higher-Order Graph Convolutional Architectures via Sparsified Neighborhood Mixing”



Aggregation strategy in GNNs

« Can we make more powerful GNNs?

« Extending local aggregation in GNNs from star patterns to
general subgraph patternsl’®]

1 2 3 1 1 2 3 1
N N N w e
] ) 0 | | L/l
/ 6\ /7\ r /6 7\ */(6) =
AN | AN K
8 9 10 8 8 9 10 (8 9
A A's Subgraph 8

B B's Subgraph 8

[19] Lingxiao Zhao, et al. "FROM STARS TO SUBGRAPHS: UPLIFTING ANY GNN WITH LOCAL STRUCTURE AWARENESS”



Aggregation strategy in GNNs

* [20] proves that there isn't a clear single “winner” aggregator

Theorem 1 (Number of aggregators needed). In order to discriminate between multisets of size n
whose underlying set is R, at least n aggregators are needed.

[20] Gabriele Corso, et al. "Principal Neighbourhood Aggregation for Graph Nets”



Aggregation strategy in GNNs

* Homophily assumption
 Connected nodes are similar/related/informative



Aggregation strategy in GNNs

* Homophily assumption
 Connected nodes are similar/related/informative

- How can we deal with heterophilous networks ?!212]
 Connected nodes have different class labels and dissimilar features

[21] Jiong Zhu., et al. "Beyond Homophily in Graph Neural Networks: Current Limitations and Effective Designs”
[22] Yao Ma, et al. “IS HOMOPHILY A NECESSITY FOR GRAPH NEURAL NETWORKS?”



Graph Neural Network Architectures

* Width

* Which neighbors should we aggregate messages from?
* Depth

« How many hops should we check?
» Aggregation

« How should we aggregate messages from neighbors?
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Neural Architecture Search for GNNs

* Which width, depth, and aggregation strategy are proper for a
given graph and task?

06 |

Dimension d 01 gi o
Width? HiE 04 o3 5
| |04 ’ = 04 s 0:3
Depth? e 2 @ ol e o
=5 0.1 0.5 ;
Aggregation? o Q5 o 07
; s @,
k gz L I Aggregation @
‘ ‘ 0.4 ‘ I .
. /_ - 8.; ' , Width W - - -
- | @ =~ = -7 01 o1 0
Length k-~ = ¢|: o1 /e (o2 g o :I
0.6 0.7

Nonlinearity l
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Neural Architecture Search for GNNs

* Finding proper width, depth, and aggregation strategy for a
given graph and task automatically!!.2S]

Here is the GNN you requested

[23] Minji Yoon., et al. "Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off” @/ @
[24] Kaixiong Zhou, et al. “Auto-GNN: Neural Architecture Search of Graph Neural Networks”
[25] Yang Gao, et al. “GraphNAS: Graph Neural Architecture Search with Reinforcement Learning”



Neural Architecture Search for GNNs

e AutoGMI[23]

- . V)
X : 0.6 1
Dlmezilonocj 8; Fz - 0.69 - :.AutoGl\/I—Z : AutoGM-3 :
I 04 05 0.1 - : I
| Jos ’07 04 D = AutoGM-1 l Eie | Constraint 3
08 01 h a7 0.66 - I GraphSage !
I 07 05| 0.1 96 g'i > P 1 1 (t<0'1)
o R z 8. o . i |
»‘ 05 <N =2 | L4 5 0.63 l I I Constraint 2
i @) @ 3 : : ' (t<0.01)
‘ gz I ‘ Aggregation A < 0.60 - : : :
04 I I I Constraint 1
0.7 Width W
Feme o '\— 3 | 2] [EE 057- : , (t<0.004)
lengthk  ~ =+ "’I: o1 e |03 'l' 04 :l Rl ' '
0.5 K X
oa]  [os] |7 0.005 0,609 0.013 0d17
Nonlinearity I Inference Time (s)
Step 1: define a hyperparameter space Step 2: explore the space efficiently

[23] Minji Yoon., et al. "Autonomous Graph Mining Algorithm Search with Best Speed/Accuracy Trade-off”
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So far, we have talked about..

1. Graph Neural Network

* Problem definition
« Skeleton: aggregation, transformation operations

2. Open research questions in GNN architectures
- Width
* Depth
« Aggregation

3. GNN training strategy



How to train GNNs

« Semi-supervised learning
* Input node features are given for all nodes in a graph
* Only a subset of nodes have labels



How to train GNNs

» Unsupervised learning!2°]
 Contrastive learning

Original graph (X,A) (H,A)

FY R EEBRBEEDRE

Corrupted graph (X,A) (H,A)

[26] Petar Velickovi¢., et al. "DEEP GRAPH INFOMAX"
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How to train GNNs

* Transfer learning
» Transfer a pre-trained GNN model between graphs!?]

Pre-trained GNN f

K <

Facebook network

[27] Jiezhong Qiu, et al. "GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training"
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How to train GNNs

* Transfer learning
» Transfer between different node types across a heterogeneous graph!2e]

[28] Minji Yoon, et al. "Zero-shot Domain Adaptation of Heterogeneous Graphs via Knowledge Transfer Networks "



So far, we have talked about..

Graph Neural Network
Open research questions in GNN architectures

GNN training strategy
Application

=l S\



(slide: P. Velickovic)
Impactful applications in science

* GNNs for molecule classification

* Molecule
* Node: atoms
* Edge: bonds
* Input features: atom type, charge, bond type

e

O

HO
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(slide: P. Velickovic)
Impactful applications in science

» Graph-level prediction: whether the molecule is a potent drug!?°]
 Binary classification on whether the drug will inhibit certain bacteria

H
N [
/O/ \’(_) GNN —
O
HO
Molecule Inhibits E.coli?

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)
Impactful applications in science

« Graph-level prediction: whether the molecule is a potent drugl°]
« Execute on a large dataset of known candidate molecules
« Select the ~ top-100 candidates from the GNN model
* Have chemists thoroughly investigate those

H

i QNT—’ _>

Molecule Inhibits E.coli?

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)
Impactful applications in science

* Discover a previously overlooked compound that is a highly
potent antibioticl?°]

H,N N
W

Halicin

S

[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery”



(slide: P. Velickovic)

Impactful applications in science

- nature

A Deep Learning Approach to Antibiotic Discovery

Graphical Abstract Authors NEWS - 20 FEBRUARY 2020
Jonathan M. Stokes, Kevin Yang, o o ° o °
A — e swansan,... onmis. sz, POWEFfUl antibiotics discovered using Al
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s 2, g . . . ‘ ’ :
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s 8 LS regina@csail.mit.edu (R.B.), bacteria.
R lning st jimjc@mit.edu (J.J.C.)
o v

f Deep learnin, g
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}\) SY\N o‘g,xsh
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Scientists discover powerful antibiotic =~ At imeigence
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[29] Jonathan M.Stokes, et al. "A Deep Learning Approach to Antibiotic Discovery Machine learning uncovers potent new drug able to kill 35 powerful bacteria
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Still many open problems..

* And many more chances to do groundbreaking research

* (ex) other graph formats
« 3-dimensional graphs
« Temporal graphs



Thank youl!

Questions?

minjiy@cs.cmu.edu | https://minjiyoon.xyz



