10-701: Introduction to Machine Learning Lecture 8 – Bayesian Networks

Henry Chai

9/25/23

Front Matter

Announcements

- HW2 released 9/20, due 10/4 at 11:59 PM
- Recommended Readings
 - Murphy, <u>Chapters 10.1 10.5</u>

Recall: How hard is modelling P(X|Y)?

X ₁ ("hat")	X ₂ ("cat")	X ₃ ("dog")	X ₄ ("fish")	X ₅ ("mom")	X ₆ ("dad")	P(X Y=1)	P(X Y=0)
0	0	0	0	0	0	$ heta_1$	$ heta_{64}$
1	0	0	0	0	0	θ_2	$ heta_{65}$
1	1	0	0	0	0	$ heta_3$	$ heta_{66}$
1	0	1	0	0	0	$ heta_4$	$ heta_{67}$
÷	÷	:	:	:	:	:	:
1	1	1	1	1	1	$1 - \sum_{i=1}^{63} \theta_i$	$1 - \sum_{i=64}^{126} \theta_i$

Recall: Naïve Bayes Assumption • **Assume** features are conditionally independent given the label:

$$P(X|Y) = \prod_{d=1}^{D} P(X_d|Y)$$

- Pros:
 - <u>Significantly</u> reduces computational complexity
 - Also reduces model complexity, combats overfitting

• Cons:

- Is a strong, often illogical assumption
 - We'll see a relaxed version of this next week today when we discuss Bayesian networks

Motivating Example

Hacking Attack Woke Up Dallas With **Emergency Sirens, Officials Say**

Give this article D

started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C. Curry for The New York Times

- "the city's warning system was hacked late on Friday [4/7/2017]"
- "The alarms, which started going off around 11:40 p.m. Friday and lasted until 1:20 a.m. Saturday, ... jarring residents awake and flooding 911 with thousands of calls..."
- "...the sirens, which are meant to alert the public to severe weather or other emergencies, ..."
- "Social media was flooded with complaints."

Constructing a Bayesian Network

S

С

М

- *H* = sirens are <u>h</u>acked
- *W* = extreme <u>w</u>eather
 event occurred
- *S* = <u>s</u>irens go off overnight
- *C* = 911 flooded with phone <u>c</u>alls
- *M* = social <u>m</u>edia flooded with posts

• All variables are binary

Constructing a Bayesian Network

By the chain rule of probability, the full joint distribution is
P(H,W,S,C,M) =

P(M|C,S,H,W)P(C|S,H,W)P(S|H,W)P(H|W)P(W)

Constructing a Bayesian Network

- Directed acyclic graph
 where edges indicate
 conditional dependency
- A variable is conditionally independent of all its nondescendants (i.e., upstream variables) given its parents
- P(H, W, S, C, M) = P(H)P(W)P(S|H, W)P(C|S)P(M|S)

Naïve Bayes as a Bayesian Network • **Assume** features are conditionally independent given the label:

$$P(X,Y) = P(Y)P(X|Y) = P(Y)\prod_{d=1}^{D} P(X_d|Y)$$

Bayesian Network Example: Gene Expression

Bayesian Networks: Outline • How can we learn a Bayesian network?

- Learning the graph structure
- Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

Learning a Network

- 1. Specify the random variables
- 2. Determine the conditional dependencies
 - Prior knowledge
 - Domain expertise
 - Learned from data (model selection)

Learning the Parameters

• P(H, W, S, C, M) = P(H)P(W)P(S|H, W)P(C|S)P(M|S)

 How many parameters do we need to learn?

Learning the Parameters

$$P(H = 1)$$

$$H$$

$$W$$

$$P(W = 1)$$

$$P(S = 1 | H = 1, W = 1)$$

$$P(S = 1 | H = 1, W = 0)$$

$$P(S = 1 | H = 0, W = 1)$$

$$P(S = 1 | H = 0, W = 1)$$

$$P(S = 1 | H = 0, W = 0)$$

$$M$$

$$P(M = 1 | S = 1)$$

$$P(C = 1 | S = 1)$$

$$P(C = 1 | S = 1)$$

$$P(C = 1 | S = 0)$$

Learning the Parameters (Fully-observed)

$$(H) \qquad (W) \qquad \cdot \mathcal{D} = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ \vdots \end{cases}$$

Bayesian Networks: Outline • How can we learn a Bayesian network?

- Learning the graph structure
- Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

Computing Joint Probabilities...

• What is P(H = 1, W = 0, S = 1, C = 1, M = 0)?

Computing Joint Probabilities is easy

W HS С М

P(H = 1, W = 0, S = 1, C = 1, M = 0)= P(H = 1) *(1 - P(W = 1)) *P(S = 1 | H = 1, W = 0) *P(C = 1 | S = 1) * $\left(1 - P(M = 1 | S = 1)\right)$

Computing Marginal Probabilities...

Computing Marginal Probabilities...

 Computing arbitrary marginal (conditional) distributions requires summing over exponentially many possible combinations of the unobserved variables

 Computation can be improved by storing and reusing calculated values (dynamic programming)

• Still exponential in the worst case

Computing Marginal Probabilities is (NP-)hard!

- Claim: 3-SAT reduces to computing marginal probabilities in a Bayesian network
- Proof (sketch): Given a Boolean equation in 3-CNF, e.g.,
 (X₁ ∨ X₂ ∨ X₃) ∧ (¬X₁ ∨ X₄ ∨ ¬X_N) ∧ …, construct the corresponding Bayesian network

• P(Y = 1) > 0 means the 3-CNF is satisfiable!

Sampling for Bayesian Networks

- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - 3. Stop once all variables have been sampled

$$P(S = 1) \approx \frac{\text{\# of samples w}/S = 1}{\text{\# of samples}}$$

Sampling for Bayesian Networks

- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - Stop once all variables have been sampled

$$P(H=1|M=1)$$

 $\approx \frac{\text{\# of samples w}/H = 1 \text{ and } M = 1}{\text{\# of samples w}/M = 1}$

• If the condition is rare, we need lots of samples to get a good estimate

Weighted Sampling for Bayesian Networks

- Initialize $N_{Condition} = N_{Event} = 0$
- Repeatedly
 - Draw a sample from the full joint distribution
 - Set the condition to be true (set M = 1)
 - Compute the joint probability of the adjusted sample, w (easy!)

 $N_{Condition} = N_{Condition} + w$

- If the event occurs in the adjusted sample (H = 1?), update N_{Event} $N_{Event} = N_{Event} + w$
- Desired marginal conditional probability is $\approx \frac{N_{Event}}{N_{Condition}}$

Conditional Independence

- *X* and *Y* are conditionally independent given *Z* ($X \perp Y \mid Z$) if
 - P(X,Y|Z) = P(X|Z)P(Y|Z)
- In a Bayesian network, each variable is conditionally independent of its *non-descendants* given its parents
 - *H* and *M* are not independent but they are conditionally independent given *S*
- What other conditional independencies does a Bayesian network imply?

Markov Blanket

- Let S be the set of all random variables in a Bayesian network
- A Markov blanket of $A \in S$ is any set $B \subseteq S$ s.t. $A \perp S \setminus B \mid B$
 - Contains all the useful
 - information about A
- Trivially, *S* is always a Markov blanket for any
 - random variable in \mathcal{S}

Markov Boundary

 Let S be the set of all random variables in a Bayesian network

 The Markov boundary of A is the smallest possible Markov blanket of A

 The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children) But what if you care about the relationship between two variables?

 Let S be the set of all random variables in a Bayesian network

 The Markov boundary of A is the smallest possible Markov blanket of A

 The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)

D-separation

- Random variables A and B are *d*-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 1: *A* and *B* are d-separated given *Z* iff every *undirected* path between *A* and *B* is *blocked* by *Z*
- An undirected path between A and B is blocked by Z if

29

D-separation

- Random variables A and B are *d*-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 2: A and B are d-separated given Z iff ∄ a path between A and B in the undirected ancestral moral graph with Z removed
 - 1. Keep only *A*, *B*, *Z* and their ancestors (ancestral graph)
 - 2. Add edges between all co-parents (moral graph)
 - 3. Undirected: replace directed edges with undirected ones
 - 4. Delete Z and check if A and B are connected

• Example: $A \perp B \mid \{D, E\}$?

30

Learning the Parameters (Fully-observed)

$$(H) \qquad (W) \qquad \cdot \mathcal{D} = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ \vdots \end{cases}$$

What can we do if some variables are unobserved?

$$H \qquad W \qquad \cdot \mathcal{D} = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ \vdots \end{cases}$$

What can we do if some variables are unobserved?

Latent Variables

- Suppose our dataset consists of observed variables $X^{(n)}$ and hidden or latent variables $Z^{(n)}$
- The log likelihood of the observed variables (assuming iid data) as a function of the conditional probabilities θ is:

$$\ell(\theta) = \sum_{n=1}^{N} \log p(X^{(n)}|\theta) = \sum_{n=1}^{N} \log \left(\sum_{z} p(X^{(n)}, Z^{(n)} = z|\theta)\right)$$

Issues:

- The parameters inside the log are not decoupled
- The sum inside the log contains exponentially many terms

Expectation-Maximization

• Insight: if we knew $Z^{(n)}$, then maximizing the *complete* log likelihood would be easy!

$$\ell_{c}(\theta) = \sum_{n=1}^{N} \log p(X^{(n)}, Z^{(n)}|\theta)$$

• Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ , we can compute a posterior distribution over $Z^{(n)}$

$$q(z) = p(Z^{(n)} = z | X^{(n)}, \theta)$$

Learning the Parameters

36

Expectation-Maximization

• Insight: if we knew $Z^{(n)}$, then maximizing the *complete* log likelihood would be easy!

$$\ell_{c}(\theta) = \sum_{n=1}^{N} \log p(X^{(n)}, Z^{(n)}|\theta)$$

• Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ , we can (relatively) easily compute a posterior distribution over $Z^{(n)}$ $q_{\theta}(z) = p(Z^{(n)} = z | X^{(n)}, \theta)$

• Idea: optimize the *expected* complete log likelihood with respect to the current parameters $\theta^{(t)}$

Expectation-Maximization

- Randomly initialize the parameters $\theta^{(0)}$ and set t = 0
- While NOT CONVERGED
- Expectation or E-step: Express the expected complete log likelihood as a function of the parameters θ using $\theta^{(t-1)}$ $Q_{\theta^{(t)}}(\theta) = \mathbb{E}_{q_{\theta^{(t)}}}[\ell_{c}(\theta)]$ $= \sum_{n=1}^{N} \sum_{z} p(Z^{(n)} = z | X^{(n)}, \theta^{(t)}) \log p(X^{(n)}, z | \theta)$
 - Maximization or M-step: optimize the expected complete log likelihood with respect to the parameters

$$\theta^{(t+1)} = \operatorname*{argmax}_{\theta} Q_{\theta^{(t)}}(\theta)$$

• Increment $t \leftarrow t + 1$

Key Takeaways

- Bayesian networks are flexible models for modelling joint probability distributions
 - Trade-off between expressiveness (full joint distributions) and computational tractability (Naïve Bayes)
- Bayesian networks represent conditional dependence though a directed acyclic graph
 - Graph structure usually specified, can be learned
 - Parameters in the fully-observed case learned via MLE
 - Parameters in the partially-observed case learned via EM
- Computing marginal & conditional distributions is NP-hard
 - Can use sampling for approximate inference
- Markov blanket and d-separation provide notions of conditional independence for single and pairs of variables respectively

39