10-701: Introduction to Machine Learning Lecture 8 - Bayesian Networks

Henry Chai
9/25/23

- Announcements
- HW2 released 9/20, due 10/4 at 11:59 PM

Front Matter

- Recommended Readings
- Murphy, Chapters 10.1-10.5

Recall:
How hard is modelling $P(X \mid Y)$?

X_{1} ("hat")	X_{2} ("cat")	X_{3} ("dog")	X_{4} ("fish")	X_{5} ("mom")	X_{6} ("dad")	$P(X \mid Y=1)$	$P(X \mid Y=0)$
0	0	0	0	0	0	θ_{1}	θ_{64}
1	0	0	0	0	0	θ_{2}	θ_{65}
1	1	0	0	0	0	θ_{3}	θ_{66}
1	0	1	0	0	0	θ_{4}	θ_{67}
\vdots							
1	1	1	1	1	1	$1-\sum_{i=1}^{63} \theta_{i}$	$1-\sum_{i=64}^{126} \theta_{i}$

- Assume features are conditionally independent given the label:

$$
P(X \mid Y)=\prod_{d=1}^{D} P\left(X_{d} \mid Y\right)
$$

Recall:

Naïve Bayes Assumption

- Pros:
- Significantly reduces computational complexity
- Also reduces model complexity, combats overfitting
- Cons:
- Is a strong, often illogical assumption
- We'll see a relaxed version of this next week today when we discuss Bayesian networks
- "the city's warning system was hacked late on Friday [4/7/2017]"

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

苗 Give this article

Motivating Example

- "The alarms, which started going off around 11:40 p.m. Friday and lasted until 1:20 a.m. Saturday, ... jarring residents awake and flooding 911 with thousands of calls..."
- "...the sirens, which are meant to alert the public to severe weather or other emergencies, ..."
- "Social media was flooded with complaints."
- $H=$ sirens are $\underline{\text { hacked }}$

Constructing
 a Bayesian Network

- W = extreme weather event occurred

$S=$ sirens go off overnight
- $C=911$ flooded with phone calls
- $M=$ social media flooded with posts
- All variables are binary

- By the chain rule of probability, the full joint distribution is
- $P(H, W, S, C, M)=$

$$
P(M \mid C, S, H, W)
$$

$$
P(C \mid S, H, W)
$$

$$
P(S \mid H, W)
$$

$$
P(H \mid W)
$$

$$
P(W)
$$

Constructing a Bayesian Network

Constructing
 a Bayesian Network

- Directed acyclic graph where edges indicate conditional dependency
- A variable is conditionally independent of all its nondescendants (i.e., upstream variables) given its parents
- $P(H, W, S, C, M)=$ $P(H) P(W) P(S \mid H, W)$ $P(C \mid S) P(M \mid S)$
- Assume features are conditionally independent given the label:

$$
P(X, Y)=P(Y) P(X \mid Y)=P(Y) \prod_{d=1}^{D} P\left(X_{d} \mid Y\right)
$$

Naïve Bayes as
 a Bayesian Network

Bayesian Network Example: Gene

 Expression

- How can we learn a Bayesian network?
- Learning the graph structure
- Learning the conditional probabilities

Bayesian Networks: Outline

- What inference questions can we answer with a Bayesian network?
- Computing (or estimating) marginal (conditional) probabilities
- Implied (conditional) independencies

1. Specify the random variables

Learning a Network
2. Determine the conditional dependencies

- Prior knowledge
- Domain expertise
- Learned from data (model selection)

Learning the Parameters

- $P(H, W, S, C, M)=$ $P(H) P(W) P(S \mid H, W)$ $P(C \mid S) P(M \mid S)$
- How many parameters do we need to learn?

$$
P(H=1)
$$

Learning the Parameters

Learning the Parameters
 (Fully-observed)

- How can we learn a Bayesian network?
- Learning the graph structure
- Learning the conditional probabilities

Bayesian Networks: Outline

- What inference questions can we answer with a Bayesian network?
- Computing (or estimating) marginal (conditional) probabilities
- Implied (conditional) independencies

Computing

Joint
Probabilities...

Computing Joint
 Probabilities is easy

Computing
Marginal
Probabilities...

Computing Marginal Probabilities

- Computing arbitrary marginal (conditional) distributions requires summing over exponentially many possible combinations of the unobserved variables
- Computation can be improved by storing and reusing calculated values (dynamic programming)
- Still exponential in the worst case
- Claim: 3-SAT reduces to computing marginal probabilities in a Bayesian network
- Proof (sketch): Given a Boolean equation in 3-CNF, e.g., $\left(X_{1} \vee X_{2} \vee X_{3}\right) \wedge\left(\neg X_{1} \vee X_{4} \vee \neg X_{N}\right) \wedge \cdots$, construct the corresponding Bayesian network

- $P(Y=1)>0$ means the 3-CNF is satisfiable!
- Sampling from a Bayesian network is easy!

1. Sample all free variables (H and W)
2. Sample any variable whose parents have already been sampled
3. Stop once all variables have been sampled

$$
P(S=1) \approx \frac{\# \text { of samples w/ } S=1}{\# \text { of samples }}
$$

Sampling for Bayesian Networks

- Sampling from a Bayesian network is easy!

Sampling for Bayesian Networks

1. Sample all free variables (H and W)
2. Sample any variable whose parents have already been sampled
3. Stop once all variables have been sampled
$P(H=1 \mid M=1)$
$\approx \frac{\# \text { of samples } \mathrm{w} / H=1 \text { and } M=1}{\# \text { of samples } \mathrm{w} / M=1}$

- If the condition is rare, we need lots of samples to get a good estimate
- Initialize $N_{\text {Condition }}=N_{\text {Event }}=0$

Weighted Sampling for Bayesian Networks

- Draw a sample from the full joint distribution
- Set the condition to be true (set $M=1$)
- Compute the joint probability of the adjusted sample, w (easy!)

$$
N_{\text {Condition }}=N_{\text {Condition }}+w
$$

- If the event occurs in the adjusted sample ($H=1$?), update $N_{\text {Event }}$

$$
N_{\text {Event }}=N_{\text {Event }}+w
$$

- Desired marginal conditional probability is $\approx \frac{N_{\text {Event }}}{N_{\text {Condition }}}$

Conditional Independence

- X and Y are conditionally independent given $Z(X \perp Y \mid Z)$ if $P(X, Y \mid Z)=P(X \mid Z) P(Y \mid Z)$
- In a Bayesian network, each variable is conditionally independent of its non-descendants given its parents
- H and M are not independent but they are conditionally independent given S
- What other conditional
independencies does a Bayesian network imply?
- Let \mathcal{S} be the set of all random variables in a Bayesian network
- A Markov blanket of $A \in \mathcal{S}$ is any set $B \subseteq \mathcal{S}$ s.t.

$$
A \perp \mathcal{S} \backslash B \mid B
$$

- Contains all the useful information about A
- Trivially, \mathcal{S} is always a Markov blanket for any random variable in \mathcal{S}

Markov

Boundary

- Let \mathcal{S} be the set of all random variables in a Bayesian network
- The Markov boundary of A is the smallest possible Markov blanket of A
- The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)

But what if you care about the relationship between two variables?

- Let \mathcal{S} be the set of all random variables in a Bayesian network
- The Markov boundary of A is the smallest possible Markov blanket of A
- The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)
- Random variables A and B are d-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 1: A and B are d-separated given Z iff every undirected path between A and B is blocked by Z
- An undirected path between A and B is blocked by Z if

1. \exists a "common parent" variable C on the path and $C \in Z$

D-separation

2. \exists a "cascade" variable C on the path and $C \in Z$

3. \exists a "collider" variable C on the path and
$\{C$, descendents $(C)\} \notin Z$

- Random variables A and B are d-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 2: A and B are d-separated given Z iff \nexists a path between A and B in the undirected ancestral moral graph with Z removed

1. Keep only A, B, Z and their ancestors (ancestral graph)
2. Add edges between all co-parents (moral graph)
3. Undirected: replace directed edges with undirected ones
4. Delete Z and check if A and B are connected

- Example: $A \perp B \mid\{D, E\}$?

Learning the Parameters
 (Fully-observed)

What can we do if some variables are unobserved?

What can we do if some variables are unobserved?

- Suppose our dataset consists of observed variables $X^{(n)}$ and hidden or latent variables $Z^{(n)}$
- The log likelihood of the observed variables (assuming iid data) as a function of the conditional probabilities θ is:

$$
\ell(\theta)=\sum_{n=1}^{N} \log p\left(X^{(n)} \mid \theta\right)=\sum_{n=1}^{N} \log \left(\sum_{Z} p\left(X^{(n)}, Z^{(n)}=z \mid \theta\right)\right)
$$

- Issues:
- The parameters inside the log are not decoupled
- The sum inside the log contains exponentially many terms
- Insight: if we knew $Z^{(n)}$, then maximizing the complete log likelihood would be easy!

$$
\ell_{c}(\theta)=\sum_{n=1}^{N} \log p\left(X^{(n)}, Z^{(n)} \mid \theta\right)
$$

ExpectationMaximization

- Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ, we can compute a posterior distribution over $Z^{(n)}$

$$
q(z)=p\left(Z^{(n)}=z \mid X^{(n)}, \theta\right)
$$

Suppose $X^{(n)}=\left(W^{(n)}=1, S^{(n)}=0, M^{(n)}=0\right)$

$$
P(H=1)=0.1 \quad P(W=1)=0.3
$$

Learning the
Parameters

$$
\begin{aligned}
& P(S=1 \mid H=1, W=1)=0.9 \\
& P(S=1 \mid H=1, W=0)=0.8 \\
& P(S=1 \mid H=0, W=1)=0.5 \\
& P(S=1 \mid H=0, W=0)=0.1
\end{aligned}
$$

$$
P(C=1 \mid S=1)=0.9 \quad P(M=1 \mid S=1)=0.7
$$

$$
P(C=1 \mid S=0)=0.1 \quad P(M=1 \mid S=0)=0.2
$$

h	c	$p\left(H=h, C=c, X^{(n)}\right)$	$q(H=h, C=c)$
0	0	$0.9 * 0.3 * 0.5 * 0.9 * 0.8 \approx 0.097$	$0.097 / 0.1102 \approx 0.88$
0	1	$0.9 * 0.3 * 0.5 * 0.1 * 0.8 \approx 0.011$	$0.011 / 0.1102 \approx 0.10$
1	0	$0.1 * 0.3 * 0.1 * 0.9 * 0.8 \approx 0.002$	$0.002 / 0.1102 \approx 0.018$
1	1	$0.1 * 0.3 * 0.1 * 0.1 * 0.8 \approx 0.0002$	$0.0002 / 0.1102 \approx 0.002$

- Insight: if we knew $Z^{(n)}$, then maximizing the complete log likelihood would be easy!

$$
\ell_{c}(\theta)=\sum_{n=1}^{N} \log p\left(X^{(n)}, Z^{(n)} \mid \theta\right)
$$

ExpectationMaximization

- Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ, we can (relatively) easily compute a posterior distribution over $Z^{(n)}$

$$
q_{\theta}(z)=p\left(Z^{(n)}=z \mid X^{(n)}, \theta\right)
$$

- Idea: optimize the expected complete log likelihood with respect to the current parameters $\theta^{(t)}$
- Randomly initialize the parameters $\theta^{(0)}$ and set $t=0$
- While NOT CONVERGED
- Expectation or E-step: Express the expected complete log likelihood as a function of the parameters θ using $\theta^{(t-1)}$

$$
Q_{\theta^{(t)}}(\theta)=\mathbb{E}_{q_{\theta^{(t)}}}\left[\ell_{c}(\theta)\right]
$$

$$
=\sum_{n=1}^{N} \sum_{z} p\left(Z^{(n)}=z \mid X^{(n)}, \theta^{(t)}\right) \log p\left(X^{(n)}, z \mid \theta\right)
$$

- Maximization or M-step: optimize the expected complete log likelihood with respect to the parameters

$$
\theta^{(t+1)}=\underset{\theta}{\operatorname{argmax}} Q_{\theta^{(t)}}(\theta)
$$

ExpectationMaximization

- Increment $t \leftarrow t+1$
- Bayesian networks are flexible models for modelling joint probability distributions
- Trade-off between expressiveness (full joint distributions) and computational tractability (Naïve Bayes)
- Bayesian networks represent conditional dependence though a directed acyclic graph
- Graph structure usually specified, can be learned
- Parameters in the fully-observed case learned via MLE
- Parameters in the partially-observed case learned via EM
- Computing marginal \& conditional distributions is NP-hard
- Can use sampling for approximate inference
- Markov blanket and d-separation provide notions of conditional independence for single and pairs of variables respectively

