10-701: Introduction to Machine Learning Lecture 8 – Bayesian Networks

Henry Chai

9/25/23

Front Matter

• Announcements

- HW2 released 9/20, due 10/4 at 11:59 PM
- Recommended Readings
 - Murphy, <u>Chapters 10.1 10.5</u>

Recall: How hard is modelling P(X|Y)?

X ₁ ("hat")	X ₂ ("cat")	X ₃ ("dog")	X ₄ ("fish")	X ₅ ("mom")	X ₆ ("dad")	P(X Y=1)	P(X Y=0)
0	0	0	0	0	0	$ heta_1$	$ heta_{64}$
1	0	0	0	0	0	θ_2	$ heta_{65}$
1	1	0	0	0	0	$ heta_3$	$ heta_{66}$
1	0	1	0	0	0	$ heta_4$	θ_{67}
÷	:	÷	÷	÷	÷	÷	:
1	1	1	1	1	1	$1 - \sum_{i=1}^{63} \theta_i$	$1 - \sum_{i=64}^{126} \theta_i$

Recall: Naïve Bayes Assumption • **Assume** features are conditionally independent given the label:

$$P(X|Y) = \prod_{d=1}^{D} P(X_d|Y)$$

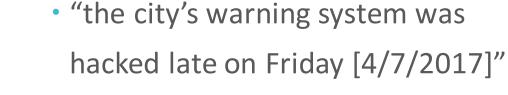
- Pros:
 - <u>Significantly</u> reduces computational complexity
 - Also reduces model complexity, combats overfitting
- Cons:
 - Is a strong, often illogical assumption
 - We'll see a relaxed version of this next week today when we discuss Bayesian networks

Motivating Example

9/25/23

Hacking Attack Woke Up Dallas With Emergency Sirens, Officials Say

🛱 Give this article 🔗 🗍



- "The alarms, which started going off around 11:40 p.m. Friday and lasted until 1:20 a.m. Saturday, ... jarring residents awake and flooding 911 with thousands of calls..."
- "...the sirens, which are meant to alert the public to severe weather or other emergencies, …"
- "Social media was flooded with complaints."

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather, started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C.

Constructing a Bayesian Network

S

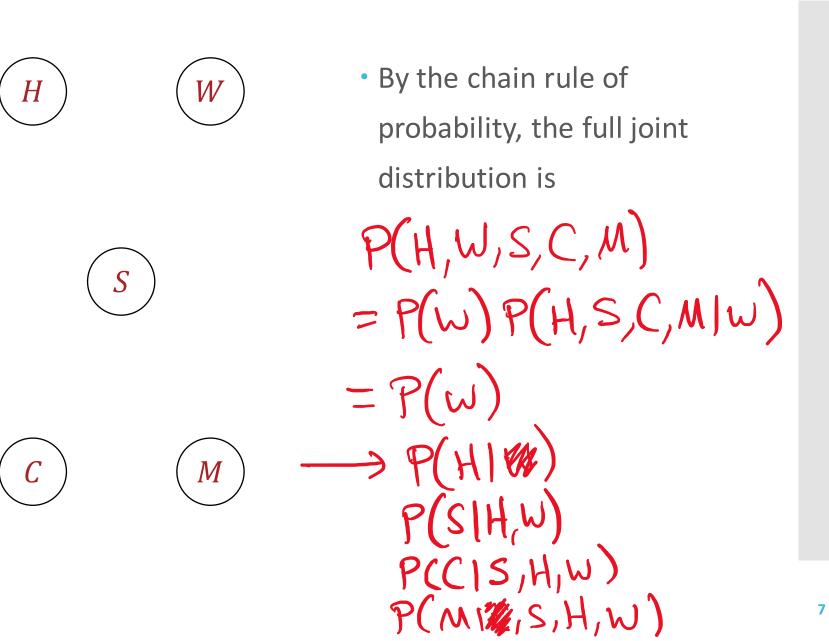
М

С

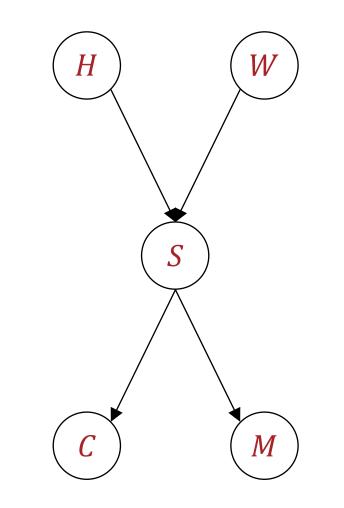
- *H* = sirens are <u>h</u>acked
- *W* = extreme <u>w</u>eather
 event occurred
- $S = \underline{s}$ irens go off overnight
- *C* = 911 flooded with phone <u>c</u>alls
- *M* = social <u>m</u>edia flooded
 with posts

• All variables are binary

Constructing a Bayesian Network



Constructing a Bayesian Network



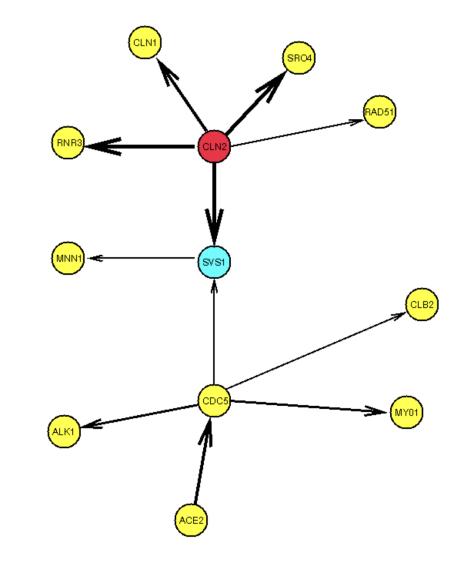
- Directed acyclic graph
 where edges indicate
 conditional dependency
- A variable is conditionally independent of all its nondescendants (i.e., upstream variables) given its parents

P(H, W, S, C, M)= P(W)P(H)P(S|H,V)P(CIS) P(MIS)

Naïve Bayes as a Bayesian Network • Assume features are conditionally independent given the label:

$$P(X,Y) = P(Y)P(X|Y) = P(Y)\prod_{d=1}^{n} P(X_d|Y)$$

Bayesian Network Example: Gene Expression



10

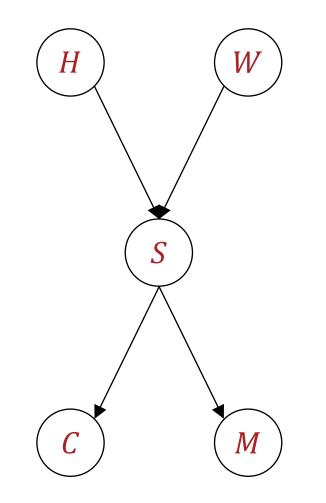
Bayesian Networks: Outline

- How can we learn a Bayesian network?
 - Learning the graph structure
 - Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

Learning a Network

- 1. Specify the random variables
- 2. Determine the conditional dependencies
 - Prior knowledge
 - Domain expertise
 - Learned from data (model selection)

Learning the Parameters



• P(H, W, S, C, M) = P(H)P(W)P(S|H,W)P(C|S)P(M|S)

• How many parameters do we need to learn?

Learning the Parameters

$$P(H = 1)$$

$$W P(W = 1)$$

$$P(S = 1 | H = 1, W = 1]$$

$$P(S = 1 | H = 1, W = 0]$$

$$P(S = 1 | H = 1, W = 0]$$

$$P(S = 1 | H = 0, W = 1]$$

$$P(S = 1 | H = 0, W = 0]$$

$$P(S = 1 | H = 0, W = 0]$$

$$P(C = 1 | S = 1)$$

$$P(C = 1 | S = 1)$$

$$P(C = 1 | S = 0)$$

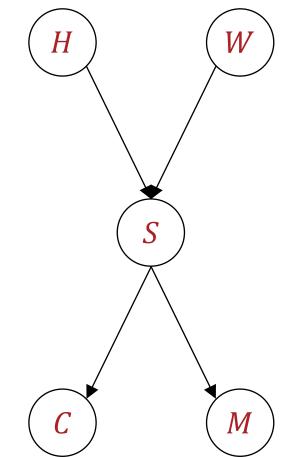
Learning the Parameters (Fully-observed)

$$H \qquad W \qquad D = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ M \qquad P(S = 0| \mathbb{N} = 1) \\ = 1 - P(S = 1| \mathbb{N} = 1) \\ = 1 - P(S = 1| \mathbb{N} = 1)$$

Bayesian Networks: Outline

- How can we learn a Bayesian network?
 - Learning the graph structure
 - Learning the conditional probabilities
- What inference questions can we answer with a Bayesian network?
 - Computing (or estimating) marginal (conditional) probabilities
 - Implied (conditional) independencies

Computing Joint Probabilities...

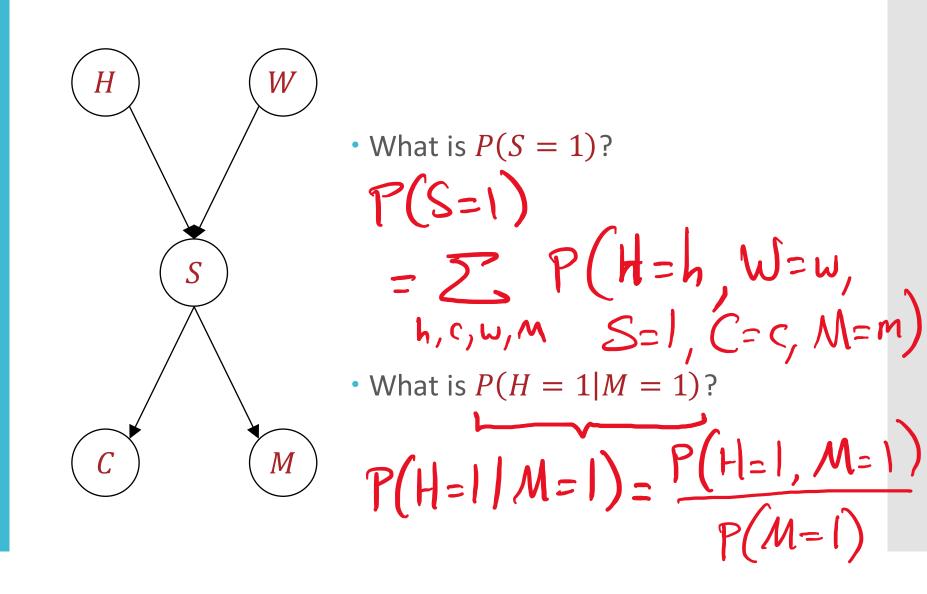


• What is P(H = 1, W = 0, S = 1, C = 1, M = 0)?

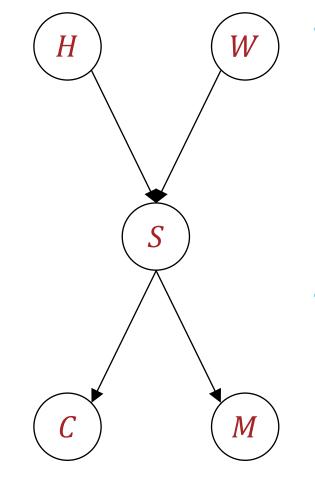
Computing Joint Probabilities is easy

W Η P(H = 1, W = 0, S = 1, C = 1, M = 0)P(H=1)(1-P(w=1)) S (P(S=1|H=1,W=0))(P(C=1|S=1))M (1 - P(M = | | S = 1))

Computing Marginal Probabilities...



Computing Marginal Probabilities...



 Computing arbitrary marginal (conditional) distributions requires summing over exponentially many possible combinations of the unobserved variables

- Computation can be improved by storing and reusing calculated values (dynamic programming)
 - Still exponential in the worst case

Computing Marginal Probabilities is (NP-)hard!

- Claim: 3-SAT reduces to computing marginal probabilities in a Bayesian network
- Proof (sketch): Given a Boolean equation in 3-CNF, e.g., $(X_1 \lor X_2 \lor X_3) \land (\neg X_1 \lor X_4 \lor \neg X_N) \land \cdots$, construct the corresponding Bayesian network

$$X_{1} \qquad X_{2} \qquad X_{3} \qquad X_{4} \qquad \cdots \qquad X_{N} \qquad P(X_{i} = 1) = 0.5$$

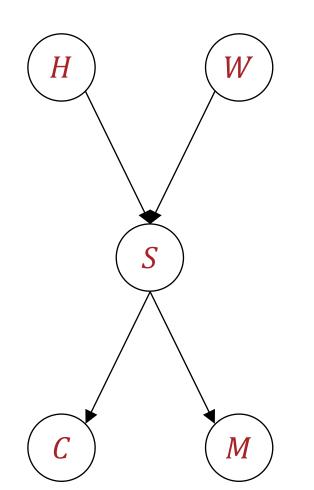
$$P(C_{i} = 1 | X_{1}, \dots, X_{N})$$

$$= \begin{cases} 1 \text{ if clause } i \text{ is TRUE} \\ 0 \text{ otherwise} \end{cases}$$

$$P(Y = 1 | C_{1}, \dots) = \begin{cases} 1 \text{ if all } C_{i} = 1 \\ 0 \text{ otherwise} \end{cases}$$

• P(Y = 1) > 0 means the 3-CNF is satisfiable!

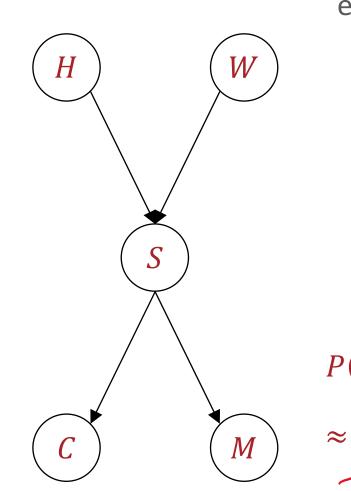
Sampling for Bayesian Networks



- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - Stop once all variables have been sampled

 $P(S = 1) \approx \frac{\text{\# of samples w}/S = 1}{\text{\# of samples}}$

Sampling for Bayesian Networks



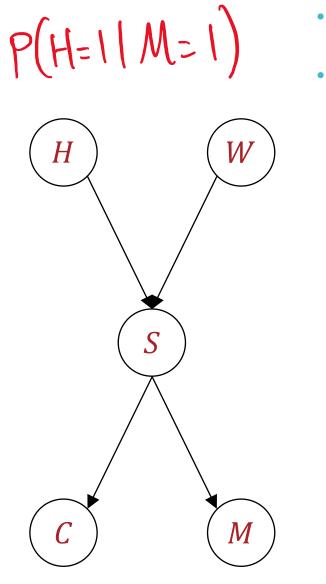
- Sampling from a Bayesian network is easy!
 - Sample all free variables
 (*H* and *W*)
 - Sample any variable whose parents have already been sampled
 - Stop once all variables have been sampled

$$P(H=1|M=1)$$

of samples w/H = 1 and M = 1

- \rightarrow # of samples w/ M = 1
- If the condition is rare, we need lots of samples to get a good estimate

Weighted Sampling for Bayesian Networks

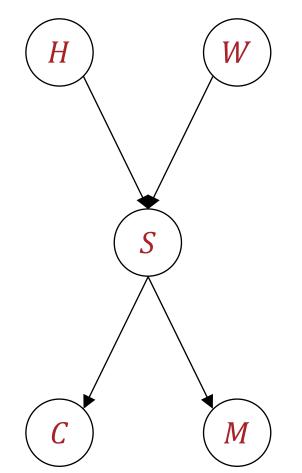


- Initialize $N_{Condition} = N_{Event} = 0$
- Repeatedly
 - Draw a sample from the full joint distribution
 - Set the condition to be true (set M = 1)
 - Compute the joint probability of the adjusted sample, w (easy!)

 $N_{Condition} = N_{Condition} + w$

- If the event occurs in the adjusted sample (H = 1?), update N_{Event} $N_{Event} = N_{Event} + w$
- Desired marginal conditional probability is $\approx \frac{N_{Event}}{N_{Condition}}$

Conditional Independence

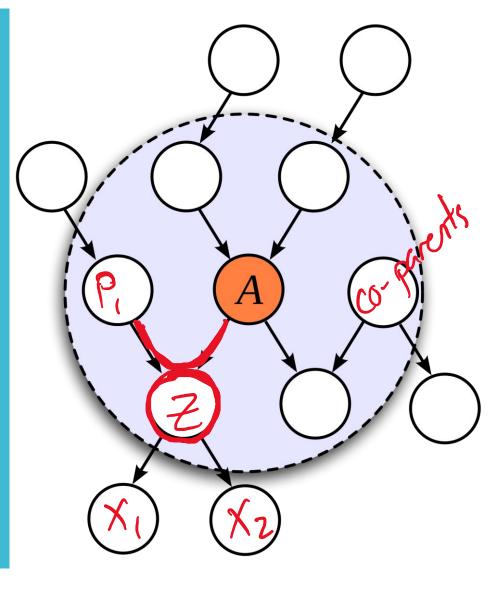


- X and Y are conditionally independent given $Z (X \perp Y \mid Z)$ if P(X,Y|Z) = P(X|Z)P(Y|Z)
- In a Bayesian network, each variable is conditionally independent of its *non-descendants* given its parents
 - *H* and *M* are not independent but they are conditionally independent given *S*
- What other conditional independencies does a Bayesian network imply?

Markov Blanket

- Let S be the set of all random variables in a Bayesian network
- A Markov blanket of $A \in S$
 - is any set $B \subseteq S$ s.t. $A \perp S \setminus B \mid B$
 - Contains all the useful
 - information about A
- Trivially, *S* is always a Markov blanket for any
 - random variable in S

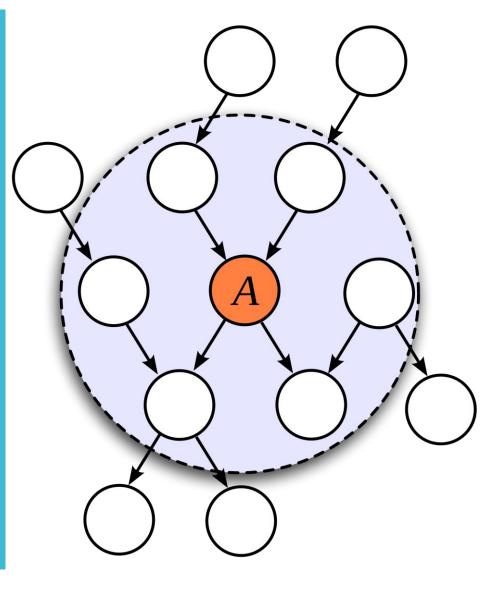
Markov Boundary



 Let S be the set of all random variables in a Bayesian network

 The Markov boundary of A is the smallest possible Markov blanket of A

 The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children) But what if you care about the relationship between two variables?



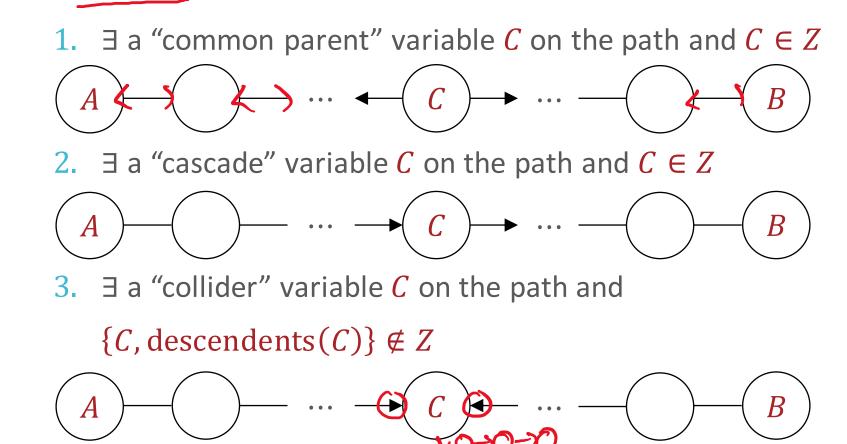
 Let S be the set of all random variables in a Bayesian network

 The Markov boundary of A is the smallest possible Markov blanket of A

 The Markov boundary consists of a variable's children, parents and coparents (the other parents of its children)

D-separation

- Random variables A and B are *d*-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 1: *A* and *B* are d-separated given *Z* iff every *undirected* path between *A* and *B* is *blocked* by *Z*
- An undirected path between A and B is blocked by Z if

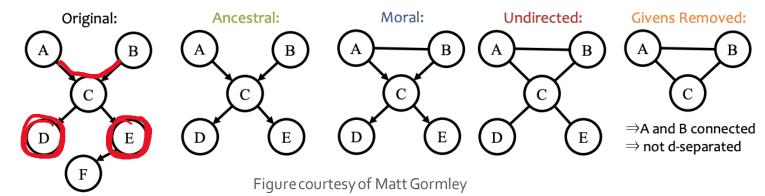


29

D-separation

- Random variables A and B are *d*-separated given evidence variables Z if $A \perp B \mid Z$
- Definition 2: A and B are d-separated given Z iff \nexists a path between A and B in the undirected ancestral moral graph with Z removed
 - 1. Keep only *A*, *B*, *Z* and their ancestors (ancestral graph)
 - 2. Add edges between all co-parents (moral graph)
 - 3. Undirected: replace directed edges with undirected ones
 - 4. Delete Z and check if A and B are connected

• Example: $A \perp B \mid \{D, E\}$?



30

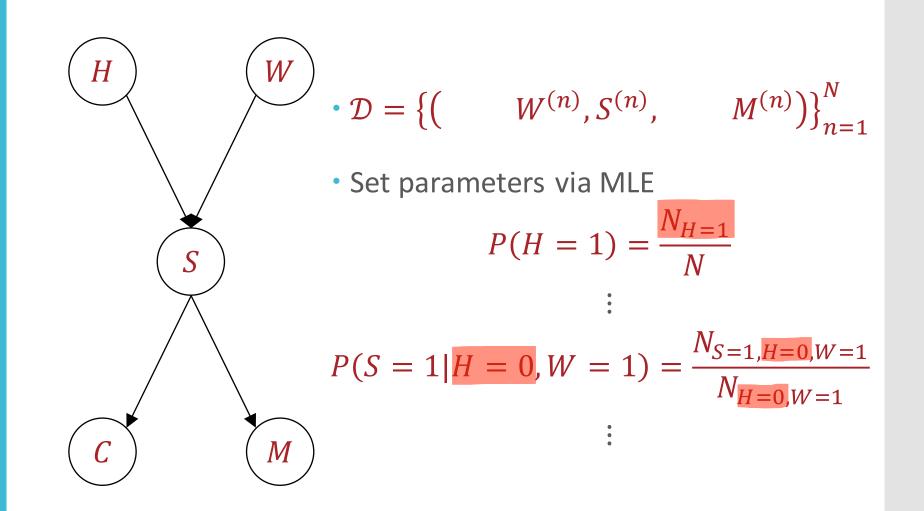
Learning the Parameters (Fully-observed)

$$H \qquad W \qquad \cdot D = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ \vdots \end{cases}$$

What can we do if some variables are unobserved?

$$H \qquad W \qquad \cdot \mathcal{D} = \{(H^{(n)}, W^{(n)}, S^{(n)}, C^{(n)}, M^{(n)})\}_{n=1}^{N} \\ \cdot \text{ Set parameters via MLE} \\ P(H = 1) = \frac{N_{H=1}}{N} \\ \vdots \\ P(S = 1|H = 0, W = 1) = \frac{N_{S=1,H=0,W=1}}{N_{H=0,W=1}} \\ \vdots \end{cases}$$

What can we do if some variables are unobserved?



Latent Variables

- Suppose our dataset consists of observed variables $X^{(n)}$ and hidden or latent variables $Z^{(n)}$
- The log likelihood of the observed variables (assuming iid data) as a function of the conditional probabilities θ is:

$$\ell(\theta) = \sum_{n=1}^{N} \log p(X^{(n)}|\theta) = \sum_{n=1}^{N} \log \left(\sum_{z} p(X^{(n)}, Z^{(n)} = z|\theta) \right)$$

• Issues:

- The parameters inside the log are not decoupled
- The sum inside the log contains exponentially many terms

Expectation-Maximization

• Insight: if we knew $Z^{(n)}$, then maximizing the *complete* log likelihood would be easy!

$$\ell_{c}(\theta) = \sum_{n=1}^{N} \log p(X^{(n)}, Z^{(n)}|\theta)$$

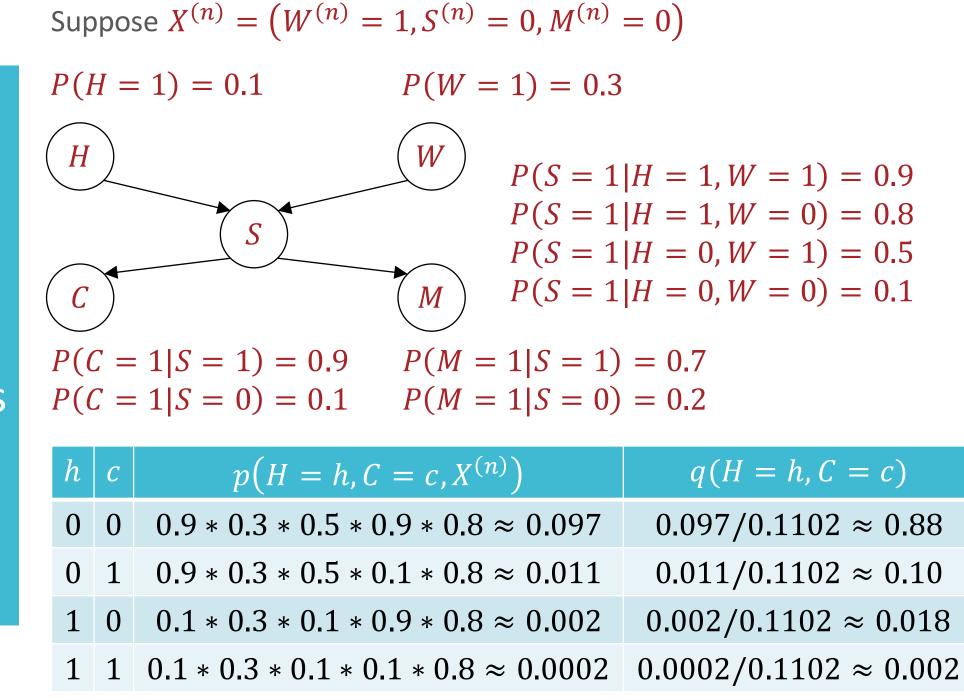
• Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ , we can compute a posterior distribution over $Z^{(n)}$

 $q(z) = p(Z^{(n)} = z | X^{(n)}, \theta)$

Suppose $X^{(n)} = (W^{(n)} = 1, S^{(n)} = 0, M^{(n)} = 0)$ P(H = 1) = 0.1P(W = 1) = 0.3W HP(S = 1 | H = 1, W = 1) = 0.9P(S = 1 | H = 1, W = 0) = 0.8S P(S = 1 | H = 0, W = 1) = 0.5P(S = 1 | H = 0, W = 0) = 0.1М P(C = 1|S = 1) = 0.9 P(M = 1|S = 1) = 0.7P(C = 1|S = 0) = 0.1 P(M = 1|S = 0) = 0.2 $h \mid c$ $p(H = h, C = c, X^{(n)})$ q(H = h, C = c)0 0 $(1-0.1)(0.3)(1-0.5)(1-0.1)(1-0.2) \simeq 0.097$ 0.097 0.002 ≈ 0.087 0 ≈ 0.01 1 0.10 1 0 ~0.002 0.018 1 1 $\approx 0.000 L$ 0.002

Learning the Parameters

36



Learning the Parameters

Expectation-Maximization

• Insight: if we knew $Z^{(n)}$, then maximizing the *complete* log likelihood would be easy!

$$\ell_c(\theta) = \sum_{n=1}^N \log p(X^{(n)}, Z^{(n)}|\theta)$$

• Insight: Given the observed variables $X^{(n)}$ and some setting of the parameters θ , we can (relatively) easily compute a posterior distribution over $Z^{(n)}$ $q_{\theta}(z) = p(Z^{(n)} = z | X^{(n)}, \theta)$

• Idea: optimize the *expected* complete log likelihood with respect to the current parameters $\theta^{(t)}$

Expectation-Maximization

- Randomly initialize the parameters $\theta^{(0)}$ and set t = 0
- While NOT CONVERGED
- Expectation or E-step: Express the expected complete log likelihood as a function of the parameters θ using $\theta^{(t-1)}$ $Q_{\theta^{(t)}}(\theta) = \mathbb{E}_{q_{\theta^{(t)}}}[\ell_{c}(\theta)]$ $\longrightarrow = \sum_{n=1}^{N} \sum_{z} p(Z^{(n)} = z | X^{(n)}, \theta^{(t)}) \log p(X^{(n)}, z | \theta)$

• Maximization or M-step: optimize the expected complete log likelihood with respect to the parameters

$$\theta^{(t+1)} = \operatorname*{argmax}_{\theta} Q_{\theta^{(t)}}(\theta)$$

• Increment $t \leftarrow t + 1$

Key Takeaways

- Bayesian networks are flexible models for modelling joint probability distributions
 - Trade-off between expressiveness (full joint distributions) and computational tractability (Naïve Bayes)
- Bayesian networks represent conditional dependence though a directed acyclic graph
 - Graph structure usually specified, can be learned
 - Parameters in the fully-observed case learned via MLE
 - Parameters in the partially-observed case learned via EM
- Computing marginal & conditional distributions is NP-hard
 - Can use sampling for approximate inference
- Markov blanket and d-separation provide notions of conditional independence for single and pairs of variables respectively

40