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- Announcements

* HW2 released 9/20, due 10/4 at 11:59 PM

Front Matter

- Recommended Readings

* Murphy, Chapters 10.1 - 10.5

9/25/23


https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338
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Recall:

NENVEREEIWES
Assumption
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- Assume features are conditionally independent given the

label:

D
Pexiv) =] [ P(xal?)
d=1

* Pros:

* Significantly reduces computational complexity

* Also reduces model complexity, combats overfitting

* Cons:

* Is a strong, often illogical assumption

- We'll see a relaxed version of this rext-week
today when we discuss Bayesian networks



* “the city’s warning system was
hacked late on Friday [4/7/2017]”

Hacking Attack Woke Up Dallas With

Emergency Sirens, Officials Say * “The alarms, which started going off

around 11:40 p.m. Friday and lasted

% Give this article ~ [

until 1:20 a.m. Saturday, ... jarring

residents awake and flooding 911

Motivating

with thousands of calls...”

Example

- “...the sirens, which are meant to
alert the public to severe weather

or other emergencies, ...”

Warning sirens in Dallas, meant to alert the public to emergencies like severe weather,
started sounding around 11:40 p.m. Friday, and were not shut off until 1:20 a.m. Rex C.

ol ool e * “Social media was flooded with

complaints.”

9/25/23 Source: https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.htm]|



https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html

Constructing

a Bayesian
Network

9/25/23

- H = sirens are hacked

* W = extreme weather

event occurred

* § = sirens go off overnight

* C =911 flooded with

phone calls

* M = social media flooded

with posts

- All variables are binary



@ @ * By the chain rule of

probability, the full joint

distribution is
Constructing P(H W, S,C /V\\

. / / =7
a Bayesian @ = P(w) ?O_\/s C /leB

Network
g ?(N)

©) () — ANW)
P(SIH W)
PCCIS MW

0/25/3 ?(M\%I SIHI\'\) 3




* Directed acyclic graph

G @ where edges indicate

conditional dependency

* A variable is conditionally

Constructing
. independent of all its non-
a Bayesian e

descendants (i.e., upstream

Network

variables) given its parents
P(H,W,S,G M)

(O ) = PO P(sINY)
PC\S) P(1S)

9/25/23



- Assume features are conditionally independent
given the label:

D
P(X,Y) = P(Y)P(X|Y) = P(Y) HP(XdlY)
d=1

Naive Bayes as @

a Bayesian
Network /
\"4

9/25/23



Bayesian
Network

Example:
Gene
Expression

9/25/23



Bayesian

Networks:
Outline
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* How can we learn a Bayesian network?

* Learning the graph structure

* Learning the conditional probabilities

- What inference questions can we answer with a

Bayesian network?

* Computing (or estimating) marginal (conditional)

probabilities

* Implied (conditional) independencies

11



Learning a

Network

9/25/23

1. Specify the random variables

2. Determine the conditional dependencies

* Prior knowledge
- Domain expertise

* Learned from data (model selection)

12



Learning the

Parameters

9/25/23

- P(H,W,S,C,M) =

P(H)P(W)P(S|H,W)
P(C|S)P(M|S)

* How many parameters do

we need to learn?

13



Learning the

Parameters

9/25/23

P(C=1|S=1)
P(C =1|S = 0)

=1|H=1W =1)
=1|H =1,W = 0)
=1|H=0W = 1)
=1|H =0,W = 0)
P(M=1|S=1)
P(M = 1|S = 0)

14



G @ D = {(H®, wm, s cm ym)n"
n=1

* Set parameters via MLE

Learning the ° P(H = 1) = =1
Parameters .

(Fully-observed)

P(S=1H=0W =1)

& W Reor )

- ?cg':\\m >

9/25/23 15



Bayesian

Networks:
Outline

9/25/23

* How can we learn a Bayesian network?

* Learning the graph structure

* Learning the conditional probabilities

- What inference questions can we answer with a

Bayesian network?

* Computing (or estimating) marginal (conditional)

probabilities

* Implied (conditional) independencies

16



Computing
Joint

Probabilities...

9/25/23

* What is
PH=1,W=05=1,C=1,M=0)?

17



a m PH=1,W=0,S=1,C =1,M = 0)

Computing =

Joint FG’\: )

Probabilities ° ((-P(w= I»

EERY, (?(S'z\\\-\f-\,\d:@}w

(Pc=r12=1)
& (\—?(M:\\s:)))




Computing
Marginal

Probabilities...

* Whatis P(S = 1)?

:L \/J‘: w/

/ /

1)?

P(H=1, M-




Computing
Marginal

Probabilities...

9/25/23

* Computing arbitrary marginal

(conditional) distributions requires
summing over exponentially many
possible combinations of the

unobserved variables

- Computation can be improved by

storing and reusing calculated values
(dynamic programming)

- Still exponential in the worst case

20



* Claim: 3-SAT reduces to computing marginal
probabilities in a Bayesian network

* Proof (sketch): Given a Boolean equation in 3-CNF, e.g.,
(X; VX, VX)) A(=X; VX,V =Xy) A, construct the
corresponding Bayesian network

Computing
Marginal

Probabilities

is (NP-)hard! PG = 11X, -, Xy)

_ 1 if clause i is TRUE
0 otherwise

lifallC: =1
P(Y =1|C,,...) = E
( [C1, ) {O otherwise

- P(Y = 1) > 0 means the 3-CNF is satisfiable!

9/25/23 21



Sampling for

Bayesian
Networks

9/25/23

- Sampling from a Bayesian network is

easy!
1. Sample all free variables
(H and W)

2. Sample any variable whose
parents have already been
sampled

3. Stop once all variables have
been sampled

# of samplesw/ S =1

P(S=1)=
( ) # of samples

22



- Sampling from a Bayesian network is
easy!
1. Sample all free variables
(H and W)

2. Sample any variable whose
parents have already been
sampled

Sampling for

Bayesian
Networks

3. Stop once all variables have
been sampled
P(H=1|M =1)
# of samplesw/H =1and M =1

~y
~y

o of samplesw/ M =1

* If the condition is rare, we need lots
of samples to get a good estimate

9/25/23 23




F(\’\:\ \ M3 \3 * Initialize Neongition = Ngpent = 0

* Repeatedly

* Draw a sample from the full joint
G @ distribution

* Set the condition to be true

Welgh.ted (set M = 1)
Sampl.mg for - Compute the joint probability of
Baye5|an ° the adjusted sample, w (easy!)

Networks

Ncongition = Ncondition T W
* If the event occurs in the adjusted
sample (H = 17), update Ngyont

G @ Ngvent = Ngvent +W

* Desired marginal conditional

NEvent

probability is =
9/25/23 Condition



Conditional

Independence

9/25/23

- X and Y are conditionally

independent givenZ (X LY | Z) if
P(X,Y|Z) = P(X|Z2)P(Y|Z)

* In a Bayesian network, each variable

is conditionally independent of its

non-descendants given its parents

- H and M are not independent
but they are conditionally

independent given S

- What other conditional

independencies does a Bayesian

network imply?
25



Markov

Blanket

9/25/23

* Let § be the set of all

random variables in a

Bayesian network

* A Markov blanket of A € §

isany set B € § s.t.

A 1[s\B| B
T
* Contains all the useful

information about 4

* Trivially, S is always a

Markov blanket for any

random variablein §

26



* Let § be the set of all
' random variables in a

—--~

* The Markov boundary

\_
@ ‘ ‘ consists of a variable’s

children, parents and co-

@ @ parents (the other parents

of its children)

Bayesian network

* The Markov boundary of A
is the smallest possible
Markov blanket of A

Markov
Boundary

9/25/23 Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of a Markov_blanket.svg 27



https://en.wikipedia.org/wiki/Markov_blanket

But what if you
care about the

relationship
between two
variables?

* Let § be the set of all

random variablesin a

Bayesian network

* The Markov boundary of A

is the smallest possible
Markov blanket of A

* The Markov boundary

consists of a variable’s
children, parents and co-
parents (the other parents

of its children)

9/25/23 Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of a Markov_blanket.svg



https://en.wikipedia.org/wiki/Markov_blanket

- Random variables A and B are d-separated given evidence
variablesZifA LB | Z

* Definition 1: A and B are d-separated given Z iff every
undirected path between A and B is blocked by Z

* An undirected path between A and B is blocked by Z if

1. 3 a “common parent” variable C on the pathand C € Z

D-separation 4_@_.

2. 3 a “cascade” variable C on the pathand C € Z

3. 3 a “collider” variable C on the path and

{C,descendents(C)} & Z

~N~>O-)




- Random variables A and B are d-separated given evidence
variablesZ ifA L B | Z

* Definition 2: A and B are d-separated given Z iff A a path
between A and B in the undirected ancestral moral graph with

Z removed
1. Keep only A4, B, Z and their ancestors (ancestral graph)

_ 2. Add edges between all co-parents (moral graph)
D-separatlon 3. Undirected: replace directed edges with undirected ones

4. Delete Z and check if A and B are connected

* Example: A L B |{D,E}?

Original: Ancestral: Moral: Undirected: Givens Removed:

o e e o e =A and B connected
= not d-separated

Figure courtesy of Matt Gormley 30
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Learning the

EICINEGEES
(Fully-observed)
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@ CP = {(H(n)’ wm s C(n)’M(n))}N
n=1

* Set parameters via MLE

Ny=1
N

P(H=1)=

NS=1,H=O,W=1

P(S=1H=0W =1) =

NH=O,W=1

31



D = {(HO,wm, s, 0, g}
n=

What can we * Set parameters via MLE
do if some ° P(H =1) = N1;1V=1
variables are :

unobserved?

Ne—1 g—ow=
PS=1H=0W =1) = S=1,H=0,W=1

1\121722(),l4/':::1

9/25/23



What can we
do if some

variables are
unobserved?

9/25/23

D ={( wm s M(”))}:ﬂ
* Set parameters via MLE
P(H=1) = %

Ng_ _
P(s = 1| HIEID,w = 1) = =2E=

33



* Suppose our dataset consists of observed variables xm

and hidden or latent variables Z (™

* The log likelihood of the observed variables (assuming iid

data) as a function of the conditional probabilities 6 is:
Latent N

N
Variables £(0) = z logp(X™|09) = z log (z p(x™,z(MW = Z|9)>

n=1
— _ L 4
* Issues: N

* The parameters inside the log are not decoupled

* The sum inside the log contains exponentially many terms

9/25/23 34



Expectation-

Maximization

9/25/23

* Insight: if we knew Z™M then maximizing the complete

log likelihood would be easy!

N
£.(6) = z logp(x™,zM|0)
n=1

* Insight: Given the observed variables XM and some

setting of the parameters 8, we can compute a

posterior distribution over VA,

q(z) = p(Z(") = Z|X(”),9)

35



Suppose X (™ = (W(") =1,5M™ =0o,M™ = 0)

P(H=1) =0.1 P(W =1) =03
G @ PS=1H=1W =1) = 0.9
° P(S=1H=1W =0) = 0.8
P(S=1H=0,W =1) = 0.5
Learning G @ P(S=1H=0,W =0) = 0.1
the PC=1S=1)=09 PM=1|S=1) =07

ElEEES P(C=1S=0=01 PM=1S=0)=0.2

0

0 (1-0.1Y03)t - 0.5Y1-0.1)1-0.) x0.677 OV . =02

10 ~ 0.007 0.013B
9/25/23 1 1 ,’:ch - O.002



Suppose X™ = (W(") =1,5M™ =0, MM = O)

P(H=1) =0.1 P(W =1) =03
G @ PS=1H=1W =1) = 0.9
° P(S=1H=1W =0) = 0.8
P(S=1H=0,W =1) = 0.5
Learning G @ P(S=1|H =0,W = 0) = 0.1
the PC=1S=1)=09 PM=1|S=1) =07

ElEEES P(C=1S=0=01 PM=1S=0)=0.2

0 0

09%0.3x05%x09%08=0.097 0.097/0.1102 = 0.88
01 09%x03%05%x0.1%x08~0.011 0.011/0.1102 = 0.10
1 0 01%x03%01%x09%0.8~=0.002 0.002/0.1102 = 0.018
1 1 01%03%0.1%x0.1%0.8= 0.0002 0.0002/0.1102 = 0.002 =

9/25/23



Expectation-

Maximization

9/25/23

* Insight: if we knew Z™M then maximizing the complete

log likelihood would be easy!

N
£.(6) = z logp(x™,zM|0)
n=1

* Insight: Given the observed variables XM and some

setting of the parameters 6, we can (relatively) easily

compute a posterior distribution over AD)

qo(z) = p(Z(") = Z|X(”),9)

- ldea: optimize the expected complete log likelihood

with respect to the current parameters )

38



Expectation-

Maximization

9/25/23

- Randomly initialize the parameters 8(® and sett = 0

* While NOT CONVERGED
- Expectation or E-step: Express the expected complete log

likelihood as a function of the parameters 6 using g1

Qg (0) = Eq_,[£c(6)]

CE——————

N
—> =) ) p(z™ = 2|x®,60) logp(x ™, 7|6)
n=1 z

* Maximization or M-step: optimize the expected complete

log likelihood with respect to the parameters

0(t+1) — arggnax QO(t) (Q)

*Incrementt < t+1

39



Key Takeaways

9/25/23

* Bayesian networks are flexible models for modelling joint

probability distributions

* Trade-off between expressiveness (full joint distributions)
and computational tractability (Naive Bayes)

* Bayesian networks represent conditional dependence though a

directed acyclic graph

* Graph structure usually specified, can be learned
- Parameters in the fully-observed case learned via MLE

* Parameters in the partially-observed case learned via EM

* Computing marginal & conditional distributions is NP-hard

* Can use sampling for approximate inference

- Markov blanket and d-separation provide notions of conditional

independence for single and pairs of variables respectively 40
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