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Front Matter

 Announcements

 HW2 released 9/20, due 10/4 at 11:59 PM

 Recommended Readings

 Murphy, Chapters 10.1 - 10.5
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https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338


𝑋1

(“hat”)
𝑋2
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⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
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𝜃𝑖 1 − ෍

𝑖=64

126

𝜃𝑖
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Recall: 
How hard is 
modelling 
𝑃 𝑋 𝑌 ?



Recall: 
Naïve Bayes 
Assumption

 Assume features are conditionally independent given the 
label:

𝑃 𝑋 𝑌 = ෑ

𝑑=1

𝐷

𝑃 𝑋𝑑 𝑌

 Pros:

 Significantly reduces computational complexity 

 Also reduces model complexity, combats overfitting

 Cons:

 Is a strong, often illogical assumption 

 We’ll see a relaxed version of this next week 

today when we discuss Bayesian networks
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Motivating 
Example
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 “the city’s warning system was 

hacked late on Friday [4/7/2017]”

 “The alarms, which started going off 

around 11:40 p.m. Friday and lasted 

until 1:20 a.m. Saturday, … jarring 

residents awake and flooding 911 

with thousands of calls…”

 “…the sirens, which are meant to 

alert the public to severe weather 

or other emergencies, …”

 “Social media was flooded with 

complaints.”

Source: https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html 

https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html


Constructing 
a Bayesian 
Network

 𝐻 = sirens are hacked 

 𝑊 = extreme weather 

event occurred 

 𝑆 = sirens go off overnight  

 𝐶 = 911 flooded with 

phone calls 

 𝑀 = social media flooded 

with posts

 All variables are binary
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𝑆

𝐻

𝑀𝐶

𝑊



Constructing 
a Bayesian 
Network

 By the chain rule of 

probability, the full joint 

distribution is

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

 𝑃 𝑀|𝐶, 𝑆, 𝐻, 𝑊

 𝑃 𝐶|𝑆, 𝐻, 𝑊

 𝑃 𝑆 𝐻, 𝑊  

 𝑃 𝐻 𝑊

 𝑃 𝑊
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𝑆

𝐻

𝑀𝐶

𝑊



Constructing 
a Bayesian 
Network

 Directed acyclic graph 

where edges indicate 

conditional dependency 

 A variable is conditionally 

independent of all its non-

descendants (i.e., upstream 

variables) given its parents

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  

𝑃 𝐶 𝑆 𝑃 𝑀 𝑆
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𝑆

𝐻

𝑀𝐶

𝑊



Naïve Bayes as 
a Bayesian 
Network
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 Assume features are conditionally independent 
given the label:

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃 𝑋 𝑌 = 𝑃 𝑌 ෑ

𝑑=1

𝐷

𝑃 𝑋𝑑 𝑌



Bayesian 
Network 
Example: 
Gene 
Expression

9/25/23 10Figure courtesy of Ziv Bar-Joseph



Bayesian 
Networks: 
Outline

 How can we learn a Bayesian network? 

 Learning the graph structure

 Learning the conditional probabilities

 What inference questions can we answer with a 

Bayesian network? 

 Computing (or estimating) marginal (conditional) 

probabilities

 Implied (conditional) independencies
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Learning a 
Network

1. Specify the random variables

2. Determine the conditional dependencies

 Prior knowledge

 Domain expertise

 Learned from data (model selection)
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Learning the 
Parameters

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  

𝑃 𝐶 𝑆 𝑃 𝑀 𝑆

 How many parameters do 

we need to learn?
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𝑆

𝐻

𝑀𝐶

𝑊



Learning the 
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1

𝑃 𝑊 = 1

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0

𝑃 𝐶 = 1|𝑆 = 1
𝑃 𝐶 = 1|𝑆 = 0

𝑃 𝑀 = 1|𝑆 = 1
𝑃 𝑀 = 1|𝑆 = 0



Learning the 
Parameters
(Fully-observed)

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



Bayesian 
Networks: 
Outline

 How can we learn a Bayesian network? 

 Learning the graph structure

 Learning the conditional probabilities

 What inference questions can we answer with a 

Bayesian network? 

 Computing (or estimating) marginal (conditional) 

probabilities

 Implied (conditional) independencies
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Computing 
Joint 
Probabilities…
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𝑆

𝐻

𝑀𝐶

𝑊
 What is

𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0 ?

=

𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗

𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing 
Joint 
Probabilities 
is easy
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𝑆

𝐻

𝑀𝐶

𝑊
𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0

=

𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗

𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing 
Marginal 
Probabilities…

 What is 𝑃 𝑆 = 1 ?
𝑃 𝑆 = 1

= ෍

ℎ,𝑤,𝑐,𝑚

𝑃(

)

𝐻 = ℎ, 𝑊 = 𝑤,

 𝑆 = 1, 𝐶 = 𝑐, 𝑀 = 𝑚

 What is 𝑃 𝐻 = 1 𝑀 = 1 ?

𝑃 𝐻 = 1 𝑀 = 1 =
𝑃 𝐻 = 1, 𝑀 = 1

𝑃 𝑀 = 1
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𝑆

𝐻

𝑀𝐶

𝑊

=
σ𝑤,𝑠,𝑐 𝑃 𝐻 = 1, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1

σℎ,𝑤,𝑠,𝑐 𝑃 𝐻 = ℎ, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1



Computing 
Marginal 
Probabilities…

 Computing arbitrary marginal 

(conditional) distributions requires 

summing over exponentially many 

possible combinations of the 

unobserved variables

 Computation can be improved by 

storing and reusing calculated values 

(dynamic programming) 

 Still exponential in the worst case
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𝑆

𝐻

𝑀𝐶

𝑊



Computing 
Marginal 
Probabilities 
is (NP-)hard!

 Claim: 3-SAT reduces to computing marginal 

probabilities in a Bayesian network

 Proof (sketch): Given a Boolean equation in 3-CNF, e.g., 

𝑋1 ∨ 𝑋2 ∨ 𝑋3 ∧ ¬𝑋1 ∨ 𝑋4 ∨ ¬𝑋𝑁 ∧ ⋯, construct the 

corresponding Bayesian network 

 𝑃 𝑌 = 1 > 0 means the 3-CNF is satisfiable!
9/25/23 21

𝐶1

𝑋1

𝑌

𝐶2

𝑋2 𝑋4𝑋3 𝑋𝑁⋯

⋯

𝑃 𝑋𝑖 = 1 = 0.5

𝑃 𝐶𝑖 = 1|𝑋1 , … , 𝑋𝑁

= ቊ
1 if clause 𝑖 is TRUE
0 otherwise

𝑃 𝑌 = 1|𝐶1 , … = ቊ
1 if all 𝐶𝑖 = 1
0 otherwise



Sampling for 
Bayesian 
Networks
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𝑆

𝐻

𝑀𝐶

𝑊

 Sampling from a Bayesian network is 

easy!

1. Sample all free variables          

(𝐻 and 𝑊) 

2. Sample any variable whose 

parents have already been 

sampled

3. Stop once all variables have 

been sampled

𝑃 𝑆 = 1 ≈
# of samples w/ 𝑆 = 1

# of samples



Sampling for 
Bayesian 
Networks

 Sampling from a Bayesian network is 

easy!

1. Sample all free variables          

(𝐻 and 𝑊) 

2. Sample any variable whose 

parents have already been 

sampled

3. Stop once all variables have 

been sampled

𝑃 𝐻 = 1|𝑀 = 1

≈
# of samples w/ 𝐻 = 1 and 𝑀 = 1

# of samples w/ 𝑀 = 1

 If the condition is rare, we need lots 

of samples to get a good estimate
9/25/23 23

𝑆

𝐻

𝑀𝐶

𝑊



Weighted
Sampling for 
Bayesian 
Networks

 Initialize 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑁𝐸𝑣𝑒𝑛𝑡 = 0

 Repeatedly

 Draw a sample from the full joint 

distribution

 Set the condition to be true 

(set 𝑀 = 1)

 Compute the joint probability of 

the adjusted sample, 𝑤 (easy!)

 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑤

 If the event occurs in the adjusted 

sample (𝐻 = 1?), update 𝑁𝐸𝑣𝑒𝑛𝑡  

𝑁𝐸𝑣𝑒𝑛𝑡 = 𝑁𝐸𝑣𝑒𝑛𝑡 + 𝑤

 Desired marginal conditional 

probability is ≈
𝑁𝐸𝑣𝑒𝑛𝑡

𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
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𝑆

𝐻

𝑀𝐶

𝑊



Conditional 
Independence

 𝑋 and 𝑌 are conditionally 

independent given 𝑍 (𝑋 ⊥ 𝑌 | 𝑍) if 

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

 In a Bayesian network, each variable 

is conditionally independent of its 

non-descendants given its parents

 𝐻 and 𝑀 are not independent 

but they are conditionally 

independent given 𝑆

 What other conditional 

independencies does a Bayesian 

network imply?
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𝑆

𝐻

𝑀𝐶

𝑊



Markov 
Blanket
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 A Markov blanket of 𝐴 ∈ 𝒮 

is any set 𝐵 ⊆ 𝒮 s.t. 

𝐴 ⊥ 𝒮\𝐵 | 𝐵

 Contains all the useful 

information about 𝐴

 Trivially, 𝒮 is always a 

Markov blanket for any 

random variable in 𝒮



Markov 
Boundary
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 The Markov boundary of 𝐴 

is the smallest possible 

Markov blanket of 𝐴

 The Markov boundary 

consists of a variable’s 

children, parents and co-

parents (the other parents 

of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


But what if you 
care about the 
relationship 
between two 
variables?
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 The Markov boundary of 𝐴 

is the smallest possible 

Markov blanket of 𝐴

 The Markov boundary 

consists of a variable’s 

children, parents and co-

parents (the other parents 

of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


D-separation

 Random variables 𝐴 and 𝐵 are d-separated given evidence 

variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

 Definition 1: 𝐴 and 𝐵 are d-separated given 𝑍 iff every 

undirected path between 𝐴 and 𝐵 is blocked by 𝑍

 An undirected path between 𝐴 and 𝐵 is blocked by 𝑍 if

1. ∃ a “common parent” variable 𝐶 on the path and 𝐶 ∈ 𝑍

2. ∃ a “cascade” variable 𝐶 on the path and 𝐶 ∈ 𝑍

3. ∃ a “collider” variable 𝐶 on the path and 

𝐶, descendents 𝐶 ∉ 𝑍
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𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯



 Random variables 𝐴 and 𝐵 are d-separated given evidence 

variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

 Definition 2: 𝐴 and 𝐵 are d-separated given 𝑍 iff ∄ a path 

between 𝐴 and 𝐵 in the undirected ancestral moral graph with 

𝑍 removed

1. Keep only 𝐴, 𝐵, 𝑍 and their ancestors (ancestral graph)

2. Add edges between all co-parents (moral graph)

3. Undirected: replace directed edges with undirected ones

4. Delete 𝑍 and check if 𝐴 and 𝐵 are connected

 Example: 𝐴 ⊥ 𝐵 | 𝐷, 𝐸 ?

D-separation
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Learning the 
Parameters
(Fully-observed)

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



What can we 
do if some 
variables are 
unobserved?

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



What can we 
do if some 
variables are 
unobserved?

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



Latent 
Variables

 Suppose our dataset consists of observed variables 𝑋 𝑛  

and hidden or latent variables 𝑍 𝑛

 The log likelihood of the observed variables (assuming iid 

data) as a function of the conditional probabilities 𝜃 is:

ℓ 𝜃 = ෍

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 𝜃 = ෍

𝑛=1

𝑁

log ෍

𝑧

𝑝 𝑋 𝑛 , 𝑍 𝑛 = 𝑧 𝜃

 Issues:

 The parameters inside the log are not decoupled

 The sum inside the log contains exponentially many terms
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Expectation-
Maximization 

 Insight: if we knew 𝑍 𝑛 , then maximizing the complete 

log likelihood would be easy!

ℓ𝑐 𝜃 = ෍

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 , 𝑍 𝑛 𝜃

 Insight: Given the observed variables 𝑋 𝑛  and some 

setting of the parameters 𝜃, we can compute a 

posterior distribution over 𝑍 𝑛

𝑞 𝑧 = 𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃

 Idea: optimize the expected complete log likelihood 

with respect to the current parameters 𝜃 𝑡
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Learning 
the 
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1 = 0.1 𝑃 𝑊 = 1 = 0.3

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1 = 0.9
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 = 0.8
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 = 0.5
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0 = 0.1

𝑃 𝐶 = 1|𝑆 = 1 = 0.9
𝑃 𝐶 = 1|𝑆 = 0 = 0.1

𝑃 𝑀 = 1|𝑆 = 1 = 0.7
𝑃 𝑀 = 1|𝑆 = 0 = 0.2

Suppose 𝑋 𝑛 = 𝑊 𝑛 = 1, 𝑆 𝑛 = 0, 𝑀 𝑛 = 0

ℎ 𝑐 𝑝 𝐻 = ℎ, 𝐶 = 𝑐, 𝑋 𝑛 𝑞(𝐻 = ℎ, 𝐶 = 𝑐)

0 0

0 1

1 0

1 1



Learning 
the 
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1 = 0.1 𝑃 𝑊 = 1 = 0.3

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1 = 0.9
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 = 0.8
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 = 0.5
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0 = 0.1

𝑃 𝐶 = 1|𝑆 = 1 = 0.9
𝑃 𝐶 = 1|𝑆 = 0 = 0.1

𝑃 𝑀 = 1|𝑆 = 1 = 0.7
𝑃 𝑀 = 1|𝑆 = 0 = 0.2

Suppose 𝑋 𝑛 = 𝑊 𝑛 = 1, 𝑆 𝑛 = 0, 𝑀 𝑛 = 0

ℎ 𝑐 𝑝 𝐻 = ℎ, 𝐶 = 𝑐, 𝑋 𝑛 𝑞(𝐻 = ℎ, 𝐶 = 𝑐)

0 0 0.9 ∗ 0.3 ∗ 0.5 ∗ 0.9 ∗ 0.8 ≈ 0.097 0.097/0.1102 ≈ 0.88

0 1 0.9 ∗ 0.3 ∗ 0.5 ∗ 0.1 ∗ 0.8 ≈ 0.011 0.011/0.1102 ≈ 0.10

1 0 0.1 ∗ 0.3 ∗ 0.1 ∗ 0.9 ∗ 0.8 ≈ 0.002 0.002/0.1102 ≈ 0.018

1 1 0.1 ∗ 0.3 ∗ 0.1 ∗ 0.1 ∗ 0.8 ≈ 0.0002 0.0002/0.1102 ≈ 0.002



Expectation-
Maximization 

 Insight: if we knew 𝑍 𝑛 , then maximizing the complete 

log likelihood would be easy!

ℓ𝑐 𝜃 = ෍

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 , 𝑍 𝑛 𝜃

 Insight: Given the observed variables 𝑋 𝑛  and some 

setting of the parameters 𝜃, we can (relatively) easily 

compute a posterior distribution over 𝑍 𝑛

𝑞𝜃 𝑧 = 𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃

 Idea: optimize the expected complete log likelihood 

with respect to the current parameters 𝜃 𝑡
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Expectation-
Maximization 

 Randomly initialize the parameters 𝜃 0  and set 𝑡 = 0 

 While NOT CONVERGED

 Expectation or E-step: Express the expected complete log 

likelihood as a function of the parameters 𝜃 using 𝜃 𝑡−1

𝑄𝜃 𝑡 𝜃 = 𝔼𝑞
𝜃 𝑡

ℓ𝑐 𝜃

𝑄
𝜃 𝑡 𝜃 = ෍

𝑛=1

𝑁

෍

𝑧

𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃 𝑡 log 𝑝 𝑋 𝑛 , 𝑧 𝜃

 Maximization or M-step: optimize the expected complete 

log likelihood with respect to the parameters

𝜃 𝑡+1 = argmax
𝜃

𝑄
𝜃 𝑡 𝜃  

 Increment 𝑡 ← 𝑡 + 19/25/23 39



Key Takeaways

 Bayesian networks are flexible models for modelling joint 

probability distributions 

 Trade-off between expressiveness (full joint distributions) 

and computational tractability (Naïve Bayes)

 Bayesian networks represent conditional dependence though a 

directed acyclic graph

 Graph structure usually specified, can be learned

 Parameters in the fully-observed case learned via MLE 

 Parameters in the partially-observed case learned via EM

 Computing marginal & conditional distributions is NP-hard

 Can use sampling for approximate inference

 Markov blanket and d-separation provide notions of conditional 

independence for single and pairs of variables respectively9/25/23 40
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