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Front Matter

 Announcements

 HW2 released 9/20, due 10/4 at 11:59 PM

 Recommended Readings

 Murphy, Chapters 10.1 - 10.5
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https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=338


𝑋1

(“hat”)
𝑋2

(“cat”)
𝑋3

(“dog”)
𝑋4

(“fish”)
𝑋5

(“mom”)
𝑋6

(“dad”)
𝑃(𝑋|𝑌 = 1) 𝑃 𝑋 𝑌 = 0

0 0 0 0 0 0 𝜃1 𝜃64

1 0 0 0 0 0 𝜃2 𝜃65

1 1 0 0 0 0 𝜃3 𝜃66

1 0 1 0 0 0 𝜃4 𝜃67

⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮

1 1 1 1 1 1 1 − 

𝑖=1

63

𝜃𝑖 1 − 

𝑖=64

126

𝜃𝑖
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Recall: 
How hard is 
modelling 
𝑃 𝑋 𝑌 ?



Recall: 
Naïve Bayes 
Assumption

 Assume features are conditionally independent given the 
label:

𝑃 𝑋 𝑌 = ෑ

𝑑=1

𝐷

𝑃 𝑋𝑑 𝑌

 Pros:

 Significantly reduces computational complexity 

 Also reduces model complexity, combats overfitting

 Cons:

 Is a strong, often illogical assumption 

 We’ll see a relaxed version of this next week 

today when we discuss Bayesian networks
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Motivating 
Example
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 “the city’s warning system was 

hacked late on Friday [4/7/2017]”

 “The alarms, which started going off 

around 11:40 p.m. Friday and lasted 

until 1:20 a.m. Saturday, … jarring 

residents awake and flooding 911 

with thousands of calls…”

 “…the sirens, which are meant to 

alert the public to severe weather 

or other emergencies, …”

 “Social media was flooded with 

complaints.”

Source: https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html 

https://www.nytimes.com/2017/04/08/us/dallas-emergency-sirens-hacking.html


Constructing 
a Bayesian 
Network

 𝐻 = sirens are hacked 

 𝑊 = extreme weather 

event occurred 

 𝑆 = sirens go off overnight  

 𝐶 = 911 flooded with 

phone calls 

 𝑀 = social media flooded 

with posts

 All variables are binary
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𝑆

𝐻

𝑀𝐶

𝑊



Constructing 
a Bayesian 
Network

 By the chain rule of 

probability, the full joint 

distribution is

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

 𝑃 𝑀|𝐶, 𝑆, 𝐻, 𝑊

 𝑃 𝐶|𝑆, 𝐻, 𝑊

 𝑃 𝑆 𝐻, 𝑊  

 𝑃 𝐻 𝑊

 𝑃 𝑊
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𝑆

𝐻

𝑀𝐶

𝑊



Constructing 
a Bayesian 
Network

 Directed acyclic graph 

where edges indicate 

conditional dependency 

 A variable is conditionally 

independent of all its non-

descendants (i.e., upstream 

variables) given its parents

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  

𝑃 𝐶 𝑆 𝑃 𝑀 𝑆
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𝑆

𝐻

𝑀𝐶

𝑊



Naïve Bayes as 
a Bayesian 
Network
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 Assume features are conditionally independent 
given the label:

𝑃 𝑋, 𝑌 = 𝑃 𝑌 𝑃 𝑋 𝑌 = 𝑃 𝑌 ෑ

𝑑=1

𝐷

𝑃 𝑋𝑑 𝑌



Bayesian 
Network 
Example: 
Gene 
Expression

9/25/23 10Figure courtesy of Ziv Bar-Joseph



Bayesian 
Networks: 
Outline

 How can we learn a Bayesian network? 

 Learning the graph structure

 Learning the conditional probabilities

 What inference questions can we answer with a 

Bayesian network? 

 Computing (or estimating) marginal (conditional) 

probabilities

 Implied (conditional) independencies
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Learning a 
Network

1. Specify the random variables

2. Determine the conditional dependencies

 Prior knowledge

 Domain expertise

 Learned from data (model selection)
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Learning the 
Parameters

 𝑃 𝐻, 𝑊, 𝑆, 𝐶, 𝑀 =

𝑃 𝐻 𝑃 𝑊 𝑃 𝑆 𝐻, 𝑊  

𝑃 𝐶 𝑆 𝑃 𝑀 𝑆

 How many parameters do 

we need to learn?
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𝑆

𝐻

𝑀𝐶

𝑊



Learning the 
Parameters

9/25/23 14

𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1

𝑃 𝑊 = 1

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0

𝑃 𝐶 = 1|𝑆 = 1
𝑃 𝐶 = 1|𝑆 = 0

𝑃 𝑀 = 1|𝑆 = 1
𝑃 𝑀 = 1|𝑆 = 0



Learning the 
Parameters
(Fully-observed)

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



Bayesian 
Networks: 
Outline

 How can we learn a Bayesian network? 

 Learning the graph structure

 Learning the conditional probabilities

 What inference questions can we answer with a 

Bayesian network? 

 Computing (or estimating) marginal (conditional) 

probabilities

 Implied (conditional) independencies
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Computing 
Joint 
Probabilities…
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𝑆

𝐻

𝑀𝐶

𝑊
 What is

𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0 ?

=

𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗

𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing 
Joint 
Probabilities 
is easy
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𝑆

𝐻

𝑀𝐶

𝑊
𝑃 𝐻 = 1, 𝑊 = 0, 𝑆 = 1, 𝐶 = 1, 𝑀 = 0

=

𝑃 𝐻 = 1 ∗

1 − 𝑃 𝑊 = 1 ∗

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 ∗

𝑃 𝐶 = 1|𝑆 = 1 ∗

1 − 𝑃 𝑀 = 1|𝑆 = 1



Computing 
Marginal 
Probabilities…

 What is 𝑃 𝑆 = 1 ?
𝑃 𝑆 = 1

= 

ℎ,𝑤,𝑐,𝑚

𝑃(

)

𝐻 = ℎ, 𝑊 = 𝑤,

 𝑆 = 1, 𝐶 = 𝑐, 𝑀 = 𝑚

 What is 𝑃 𝐻 = 1 𝑀 = 1 ?

𝑃 𝐻 = 1 𝑀 = 1 =
𝑃 𝐻 = 1, 𝑀 = 1

𝑃 𝑀 = 1
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𝑆

𝐻

𝑀𝐶

𝑊

=
σ𝑤,𝑠,𝑐 𝑃 𝐻 = 1, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1

σℎ,𝑤,𝑠,𝑐 𝑃 𝐻 = ℎ, 𝑊 = 𝑤, 𝑆 = 𝑠, 𝐶 = 𝑐, 𝑀 = 1



Computing 
Marginal 
Probabilities…

 Computing arbitrary marginal 

(conditional) distributions requires 

summing over exponentially many 

possible combinations of the 

unobserved variables

 Computation can be improved by 

storing and reusing calculated values 

(dynamic programming) 

 Still exponential in the worst case
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𝑆

𝐻

𝑀𝐶

𝑊



Computing 
Marginal 
Probabilities 
is (NP-)hard!

 Claim: 3-SAT reduces to computing marginal 

probabilities in a Bayesian network

 Proof (sketch): Given a Boolean equation in 3-CNF, e.g., 

𝑋1 ∨ 𝑋2 ∨ 𝑋3 ∧ ¬𝑋1 ∨ 𝑋4 ∨ ¬𝑋𝑁 ∧ ⋯, construct the 

corresponding Bayesian network 

 𝑃 𝑌 = 1 > 0 means the 3-CNF is satisfiable!
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𝐶1

𝑋1

𝑌

𝐶2

𝑋2 𝑋4𝑋3 𝑋𝑁⋯

⋯

𝑃 𝑋𝑖 = 1 = 0.5

𝑃 𝐶𝑖 = 1|𝑋1 , … , 𝑋𝑁

= ቊ
1 if clause 𝑖 is TRUE
0 otherwise

𝑃 𝑌 = 1|𝐶1 , … = ቊ
1 if all 𝐶𝑖 = 1
0 otherwise



Sampling for 
Bayesian 
Networks
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𝑆

𝐻

𝑀𝐶

𝑊

 Sampling from a Bayesian network is 

easy!

1. Sample all free variables          

(𝐻 and 𝑊) 

2. Sample any variable whose 

parents have already been 

sampled

3. Stop once all variables have 

been sampled

𝑃 𝑆 = 1 ≈
# of samples w/ 𝑆 = 1

# of samples



Sampling for 
Bayesian 
Networks

 Sampling from a Bayesian network is 

easy!

1. Sample all free variables          

(𝐻 and 𝑊) 

2. Sample any variable whose 

parents have already been 

sampled

3. Stop once all variables have 

been sampled

𝑃 𝐻 = 1|𝑀 = 1

≈
# of samples w/ 𝐻 = 1 and 𝑀 = 1

# of samples w/ 𝑀 = 1

 If the condition is rare, we need lots 

of samples to get a good estimate
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𝑆

𝐻

𝑀𝐶

𝑊



Weighted
Sampling for 
Bayesian 
Networks

 Initialize 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑁𝐸𝑣𝑒𝑛𝑡 = 0

 Repeatedly

 Draw a sample from the full joint 

distribution

 Set the condition to be true 

(set 𝑀 = 1)

 Compute the joint probability of 

the adjusted sample, 𝑤 (easy!)

 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 = 𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛 + 𝑤

 If the event occurs in the adjusted 

sample (𝐻 = 1?), update 𝑁𝐸𝑣𝑒𝑛𝑡  

𝑁𝐸𝑣𝑒𝑛𝑡 = 𝑁𝐸𝑣𝑒𝑛𝑡 + 𝑤

 Desired marginal conditional 

probability is ≈
𝑁𝐸𝑣𝑒𝑛𝑡

𝑁𝐶𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛
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𝑆

𝐻

𝑀𝐶

𝑊



Conditional 
Independence

 𝑋 and 𝑌 are conditionally 

independent given 𝑍 (𝑋 ⊥ 𝑌 | 𝑍) if 

𝑃 𝑋, 𝑌 𝑍 = 𝑃 𝑋 𝑍 𝑃 𝑌 𝑍

 In a Bayesian network, each variable 

is conditionally independent of its 

non-descendants given its parents

 𝐻 and 𝑀 are not independent 

but they are conditionally 

independent given 𝑆

 What other conditional 

independencies does a Bayesian 

network imply?
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𝑆

𝐻

𝑀𝐶

𝑊



Markov 
Blanket
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 A Markov blanket of 𝐴 ∈ 𝒮 

is any set 𝐵 ⊆ 𝒮 s.t. 

𝐴 ⊥ 𝒮\𝐵 | 𝐵

 Contains all the useful 

information about 𝐴

 Trivially, 𝒮 is always a 

Markov blanket for any 

random variable in 𝒮



Markov 
Boundary
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 The Markov boundary of 𝐴 

is the smallest possible 

Markov blanket of 𝐴

 The Markov boundary 

consists of a variable’s 

children, parents and co-

parents (the other parents 

of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


But what if you 
care about the 
relationship 
between two 
variables?
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 Let 𝒮 be the set of all 

random variables in a 

Bayesian network

 The Markov boundary of 𝐴 

is the smallest possible 

Markov blanket of 𝐴

 The Markov boundary 

consists of a variable’s 

children, parents and co-

parents (the other parents 

of its children)

Source: https://en.wikipedia.org/wiki/Markov_blanket#/media/File:Diagram_of_a_Markov_blanket.svg 

https://en.wikipedia.org/wiki/Markov_blanket


D-separation

 Random variables 𝐴 and 𝐵 are d-separated given evidence 

variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

 Definition 1: 𝐴 and 𝐵 are d-separated given 𝑍 iff every 

undirected path between 𝐴 and 𝐵 is blocked by 𝑍

 An undirected path between 𝐴 and 𝐵 is blocked by 𝑍 if

1. ∃ a “common parent” variable 𝐶 on the path and 𝐶 ∈ 𝑍

2. ∃ a “cascade” variable 𝐶 on the path and 𝐶 ∈ 𝑍

3. ∃ a “collider” variable 𝐶 on the path and 

𝐶, descendents 𝐶 ∉ 𝑍
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𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯

𝐴 ⋯ 𝐶 𝐵⋯



 Random variables 𝐴 and 𝐵 are d-separated given evidence 

variables 𝑍 if 𝐴 ⊥ 𝐵 | 𝑍

 Definition 2: 𝐴 and 𝐵 are d-separated given 𝑍 iff ∄ a path 

between 𝐴 and 𝐵 in the undirected ancestral moral graph with 

𝑍 removed

1. Keep only 𝐴, 𝐵, 𝑍 and their ancestors (ancestral graph)

2. Add edges between all co-parents (moral graph)

3. Undirected: replace directed edges with undirected ones

4. Delete 𝑍 and check if 𝐴 and 𝐵 are connected

 Example: 𝐴 ⊥ 𝐵 | 𝐷, 𝐸 ?

D-separation

9/25/23 30Figure courtesy of Matt Gormley



Learning the 
Parameters
(Fully-observed)

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



What can we 
do if some 
variables are 
unobserved?

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



What can we 
do if some 
variables are 
unobserved?

 𝒟 = 𝐻 𝑛 , 𝑊 𝑛 , 𝑆 𝑛 , 𝐶 𝑛 , 𝑀 𝑛
𝑛=1

𝑁

 Set parameters via MLE

𝑃 𝐻 = 1 =
𝑁𝐻=1

𝑁
⋮

𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 =
𝑁𝑆=1,𝐻=0,𝑊=1

𝑁𝐻=0,𝑊=1

⋮
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𝑆

𝐻

𝑀𝐶

𝑊



Latent 
Variables

 Suppose our dataset consists of observed variables 𝑋 𝑛  

and hidden or latent variables 𝑍 𝑛

 The log likelihood of the observed variables (assuming iid 

data) as a function of the conditional probabilities 𝜃 is:

ℓ 𝜃 = 

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 𝜃 = 

𝑛=1

𝑁

log 

𝑧

𝑝 𝑋 𝑛 , 𝑍 𝑛 = 𝑧 𝜃

 Issues:

 The parameters inside the log are not decoupled

 The sum inside the log contains exponentially many terms
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Expectation-
Maximization 

 Insight: if we knew 𝑍 𝑛 , then maximizing the complete 

log likelihood would be easy!

ℓ𝑐 𝜃 = 

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 , 𝑍 𝑛 𝜃

 Insight: Given the observed variables 𝑋 𝑛  and some 

setting of the parameters 𝜃, we can compute a 

posterior distribution over 𝑍 𝑛

𝑞 𝑧 = 𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃

 Idea: optimize the expected complete log likelihood 

with respect to the current parameters 𝜃 𝑡
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Learning 
the 
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1 = 0.1 𝑃 𝑊 = 1 = 0.3

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1 = 0.9
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 = 0.8
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 = 0.5
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0 = 0.1

𝑃 𝐶 = 1|𝑆 = 1 = 0.9
𝑃 𝐶 = 1|𝑆 = 0 = 0.1

𝑃 𝑀 = 1|𝑆 = 1 = 0.7
𝑃 𝑀 = 1|𝑆 = 0 = 0.2

Suppose 𝑋 𝑛 = 𝑊 𝑛 = 1, 𝑆 𝑛 = 0, 𝑀 𝑛 = 0

ℎ 𝑐 𝑝 𝐻 = ℎ, 𝐶 = 𝑐, 𝑋 𝑛 𝑞(𝐻 = ℎ, 𝐶 = 𝑐)

0 0

0 1

1 0

1 1



Learning 
the 
Parameters
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𝑆

𝐻

𝑀𝐶

𝑊

𝑃 𝐻 = 1 = 0.1 𝑃 𝑊 = 1 = 0.3

𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 1 = 0.9
𝑃 𝑆 = 1|𝐻 = 1, 𝑊 = 0 = 0.8
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 1 = 0.5
𝑃 𝑆 = 1|𝐻 = 0, 𝑊 = 0 = 0.1

𝑃 𝐶 = 1|𝑆 = 1 = 0.9
𝑃 𝐶 = 1|𝑆 = 0 = 0.1

𝑃 𝑀 = 1|𝑆 = 1 = 0.7
𝑃 𝑀 = 1|𝑆 = 0 = 0.2

Suppose 𝑋 𝑛 = 𝑊 𝑛 = 1, 𝑆 𝑛 = 0, 𝑀 𝑛 = 0

ℎ 𝑐 𝑝 𝐻 = ℎ, 𝐶 = 𝑐, 𝑋 𝑛 𝑞(𝐻 = ℎ, 𝐶 = 𝑐)

0 0 0.9 ∗ 0.3 ∗ 0.5 ∗ 0.9 ∗ 0.8 ≈ 0.097 0.097/0.1102 ≈ 0.88

0 1 0.9 ∗ 0.3 ∗ 0.5 ∗ 0.1 ∗ 0.8 ≈ 0.011 0.011/0.1102 ≈ 0.10

1 0 0.1 ∗ 0.3 ∗ 0.1 ∗ 0.9 ∗ 0.8 ≈ 0.002 0.002/0.1102 ≈ 0.018

1 1 0.1 ∗ 0.3 ∗ 0.1 ∗ 0.1 ∗ 0.8 ≈ 0.0002 0.0002/0.1102 ≈ 0.002



Expectation-
Maximization 

 Insight: if we knew 𝑍 𝑛 , then maximizing the complete 

log likelihood would be easy!

ℓ𝑐 𝜃 = 

𝑛=1

𝑁

log 𝑝 𝑋 𝑛 , 𝑍 𝑛 𝜃

 Insight: Given the observed variables 𝑋 𝑛  and some 

setting of the parameters 𝜃, we can (relatively) easily 

compute a posterior distribution over 𝑍 𝑛

𝑞𝜃 𝑧 = 𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃

 Idea: optimize the expected complete log likelihood 

with respect to the current parameters 𝜃 𝑡
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Expectation-
Maximization 

 Randomly initialize the parameters 𝜃 0  and set 𝑡 = 0 

 While NOT CONVERGED

 Expectation or E-step: Express the expected complete log 

likelihood as a function of the parameters 𝜃 using 𝜃 𝑡−1

𝑄𝜃 𝑡 𝜃 = 𝔼𝑞
𝜃 𝑡

ℓ𝑐 𝜃

𝑄
𝜃 𝑡 𝜃 = 

𝑛=1

𝑁



𝑧

𝑝 𝑍 𝑛 = 𝑧 𝑋 𝑛 , 𝜃 𝑡 log 𝑝 𝑋 𝑛 , 𝑧 𝜃

 Maximization or M-step: optimize the expected complete 

log likelihood with respect to the parameters

𝜃 𝑡+1 = argmax
𝜃

𝑄
𝜃 𝑡 𝜃  

 Increment 𝑡 ← 𝑡 + 19/25/23 39



Key Takeaways

 Bayesian networks are flexible models for modelling joint 

probability distributions 

 Trade-off between expressiveness (full joint distributions) 

and computational tractability (Naïve Bayes)

 Bayesian networks represent conditional dependence though a 

directed acyclic graph

 Graph structure usually specified, can be learned

 Parameters in the fully-observed case learned via MLE 

 Parameters in the partially-observed case learned via EM

 Computing marginal & conditional distributions is NP-hard

 Can use sampling for approximate inference

 Markov blanket and d-separation provide notions of conditional 

independence for single and pairs of variables respectively9/25/23 40
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