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* Announcements:

* HW1 released 9/6, due 9/20 (Wednesday) at 11:59 PM
* HW2 released 9/20 (Wednesday), due 10/4 at 11:59 PM

Front Matter

- Recommended Readings:

* Mitchell, Estimating Probabilities

* Murphy, Sections 15.1 & 15.2

9/18/23


http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://ebookcentral.proquest.com/lib/cm/detail.action?docID=3339490

* Previously:

* (Unknown) Target function, c*: X - Y
* Classifier, h : X = Y
Probabilistic * Goal: find a classifier, h, that best approximates c*

Learning * Now:
* (Unknown) Target distribution, y ~ p*(Y|x)
* Distribution, p(Y|x)

* Goal: find a distribution, p, that best approximates p”*
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Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the likelihood of D is

N
1@ = | [p(x™16)
n=1

* If X is continuous with probability density function (pdf)
f(X|6), then the likelihood of D is

N
Lo = | [rxmie)
n=1



Log-Likelihood
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* Given N independent, identically distribution (iid)

samples D = {x(l), o x(N)} of a random variable X

* If X is discrete with probability mass function (pmf)
p(X|0), then the log-likelihood of D is

N N
£(0) = logl_[p(x(”)|9) = Z logp(x(”)w)
n=1 n=1

* If X is continuous with probability density function (pdf)
f(X|8), then the log-likelihood of D is

N N
£©) =log| [f(x™16) = ) logf(x™]6)
n=1 n=1



Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg
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Maximum
Likelihood

Estimation
(MLE)
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* Insight: every valid probability distribution has a finite

amount of probability mass as it must sum/integrate to 1

* |dea: set the parameter(s) so that the likelihood of the

samples is maximized

* Intuition: assign as much of the (finite) probability mass

to the observed data at the expense of unobserved data
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Source: https://en.wikipedia.org/wiki/Exponential distribution#/media/File:Exponential probability density.svg



https://en.wikipedia.org/wiki/Exponential_distribution

* The pdf of the exponential distribution is

fFlxlA) = Ae™™
* Given N iid samples {x(l), ...,x(N)}, the likelihood is
N N
: L(2) = Hf (x™12) = Hae-ﬁx”‘)
Exponential 12 12

Distribution
MLE
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Exponential

Distribution
MLE
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* The pdf of the exponential distribution is

f(x|A) = e

* Given N iid samples {x(l) x(N)} the log-likelihood is

@) = Z log f (x™14) = Z log Ae =A™

N
= Z log A + log e~ ™ = logd— A4 z x ™)

n=1

- Taking the partial derivative and setting it equal to O gives

0f N
oL A

n=1

x (M

10



Bernoulli

Distribution
MLE
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* A Bernoulli random variable takes value 1 with
probability ¢ and value O with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

11



Coin

Flipping
MLE
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = dp*(1— )™

* Given N iid samples {x(l) x(N)} the log-likelihood is

f(qb)—zlogp(x(”)lqb) Zlogc])x(")(l )1

N

= leogqb + (1 —x)log(1 - ¢)

n=1

= N;log¢p + Nylog(1 — ¢)

- where N; is the number of 1’s in {x(l), ...,x(N)} and N is

the number of 0’s

12



* A Bernoulli random variable takes value 1 (or heads) with
probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is
p(x|g) = p*(1 — p)'™*

* The partial derivative of the log-likelihood is

Coin 0¢ N; N

Flipping g ¢ 1—¢
MLE

- where N; is the number of 1’s in {x(l), ...,x(N)} and Ny is
the number of 0’s

9/18/23
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Coin

Flipping
MLE
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* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

p(x|p) = p*(1 — )™

* The partial derivative of the log-likelihood is

Ny N N, N

b 1-¢ 6 1-6¢

- N1(1 - 43) = No$ = Ny = ¢(Ny + Ny)

Ny
No + N,

5=

- where N; is the number of 1’s in {x(l), ...,x(N)} and Ny is

the number of 0’s

14



Maximum a
Posteriori

(MAP)
Estimation
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* Insight: sometimes we have prior information we want

to incorporate into parameter estimation

* ldea: use Bayes rule to reason about the posterior

distribution over the parameters
* MLE finds 8 = argmax p(D|6)
6

* MAP finds 8 = argmax p(6|D)
0
= argmax p(D|0)p(6)/r(D)
= argmax p(D|60)p(6)
0

PN

likelihood prior

= argmax logp(D|6) + logp(O)
6 — _/
~—

log-posterior

15



* A Bernoulli random variable takes value 1 (or heads) with

probability ¢ and value O (or tails) with probability 1 — ¢

* The pmf of the Bernoulli distribution is

Coin p(x|p) = ¢p*(1 — )™
F|ipping - Assume a Beta prior over the parameter ¢, which has pdf
MAP = -
9 (1= )F!
f(qbla,ﬁ) _ B(C(,ﬁ)

where B(a, B) = fol d*1(1 — ¢p)B~1d¢ is a normalizing

constant to ensure the distribution integrates to 1

9/18/23
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Beta

Distribution
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Beta

Distribution
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Beta

Distribution
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Beta

Distribution
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Beta

Distribution
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Okay, but why
should we use

this strange
distribution as
a prior?
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Beta Distribution w/ a=4 and =1
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Conjugate
Priors
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* For a given likelihood function p(D|0), a prior p(0) is

called a conjugate prior if the resulting posterior
distribution p(6|D) is in the same family as p(0) i.e.,
p(@|D) and p(0) are the same type of random variable
just with different parameters

- We like conjugate priors because they are

mathematically convenient

* However, we do not have to use a conjugate prior if

it doesn’t align with our actual prior belief.

23



Example:
Beta-Binomial

Conjugacy
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p(x|d)f (¢la,p)
p(x|a, B)

f(@lx,a,B) =

p(xla, B) = j p(x|d)f (Bla, B)deb

S Dl
B(a,B)

=[x -4 dep

Bla+x,—x+1)

a+x—1 p—x —
— s | # - 9

B(a, B)
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Example:
Beta-Binomial

Conjugacy
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_pix[p)f(@la,p) _ p&x|@)f(la, B)

JOR OB =" m TpGid)f Gla g

p(xlp)f(¢la, B)

f(lx,aB) = (B(a T f—x+ 1))

B(a, B)
b _ —X ¢a—1(1 _ ¢)'B_1

(B(a +]§c€c,[i 'E)x + 1))

B ¢a+x—1(1 _ ¢)ﬁ—x
" Bla+x,B—x+1)

= f(pla+x,8—x+1)

=f(qb|a:+x,,8+(1—x))

25



Beta-Binomial
MAP
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* Given N iid samples {x(l), e x(N)}, the log-posterior is

2(¢p) =log f(pla +xW +x@ 4 ...xN))

(ﬁ +(1-xW)+(1-x@)+ -+ (1- x(N)))

= log f(¢la + Ny, B + No)

where Nj is the number of i’s observed in the samples

¢a+N1—1(1 . ¢),B+NO—1

B(a, B)
=(a+N;—1logdp+ (L+Ny—1)logl — ¢ —logB(a, )

= log

26



Beta-Binomial
MAP
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* Given N iid samples {x(l), e x(N)}, the partial derivative of the log-

posterior is

9 _(@+M-1) (B+No—1
0~ ¢ 1-¢

. B (N +a—1)
_)¢MAP_(NO+ﬁ—1)+(N1+a—1)

a — 1is a “pseudocount” of the number of 1’s you’ve “observed”

*f — 1is a “pseudocount” of the number of 0’s you’ve “observed”

27



Coin

Flipping
MAP:

Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 2 and § = 5, then

- (2 -1+ 10) _11_10
¢MAP_(2—1+10)+(5—1+2)_17 12

28



Coin

Flipping
MAP:

Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior with @ = 101 and f = 101, then

(101 —1+4+10) 110 1
dmap = — 51575
(101 —1+4+10)+ (101 —-1+4+2) 212 2

29



Coin

Flipping
MAP:

Example
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* Suppose D consists of ten 1’s or heads (N; = 10) and

two 0’s or tails (Ng = 2):

10 10
¢MLE_10+2_12

* Using a Beta prior witha = 1 and f = 1, then

- (1-1+10) 10
¢MAP_(1—1+10)+(1—1+2)_12_¢MLE

30



M(C)LE for

Linear
Regression
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* If we assume a linear model with additive Gaussian noise

y = w'x + e wheree ~N(0,0%) >y ~ N(w'x,05?) ...

_y(l) -
y(2)

, the MLE of w is

_1 x(l)T_
T

then given X = |1 x?) andy =
1 T

® = argmax log P(y|X, w)
w

= X" Xy

Ly (N)_

31



MAP for

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,06%) >y ~ N(w"x,5?) ...

and independent, identical Gaussian priors on the weights ...
wg ~N(0,5*) > @ ~N(0,5%Ipq)

then, the MAP of w is the ridge regression solution!

® = argmax log P(w|X,y)
w

= (XTX + A(sD)Ip) Xy

32



Bayesian

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,06%) >y ~ N(w"x,5?) ...

and a general (zero-mean) Gaussian prior on the weights ...
w~N(0,2)

then the distribution over y is

y~NXO0O+0=0X2X"+c%])

33



Bayesian

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,06°%) >y ~ N(w"x,5?) ...
and a general (zero-mean) Gaussian prior on the weights ...

w~N(0,2)

then the joint distribution over y and w is

PARLI(H RS}

34



Bayesian

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,06°%) >y ~ N(w"x,5?) ...
and a general (zero-mean) Gaussian prior on the weights ...

w~N(0,2)

then the joint distribution over y and w is

AR (R A )

35



* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,06%) >y ~ N(w"x,5?) ...

and a general (zero-mean) Gaussian prior on the weights ...

w~N(0,ZX)
Baye5|an then the conditional distribution of w given y is
Linear
" ~ N )
Regressmn w|y (Mpost) ZposT)
where

Hpost = ZXT(XEXT + 0271y,
Ypost = = — ZXT(XZXT + 027 1XZ

9/18/23 36



* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,6%) > y ~ N(w"x,5?) ...

and a general (zero-mean) Gaussian prior on the weights ...

w~N(0,X)
Baye5|an then the conditional distribution of h(x') = x'Tw given y is
Linear
. / ~ N Z
Regression h(x') |y ~ N(#prep, Zprep)
where

tprep = X EXT(XTXT + a21) 1y,
Sprpp = X 2x — xTTXT(XTXT + 021)"1XzTx!

9/18/23 37



Kernelized
Bayesian

Linear
Regression
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,6%) > y ~ N(w"x,5?) ...
and a general (zero-mean) Gaussian prior on the weights ...

w~ N(0,2%)

then the conditional distribution of h(x') = ' w given y is

h(x') |y ~ N(prep, ZpRED)
where

K(a,b) = d(a)'zd(b)
tprep = K(x', X)(K(X, X) + a21)7 1y,
Yprep = K(x',x") — K(x', X)(K(X,X) + 0?)"1K(X,x")

38



Kernelized
Bayesian

Linear
Regression =
CEINESETR
Process (GP)
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* If we assume a linear model with additive Gaussian noise
y = w'x + € wheree ~N(0,6%) > y ~ N(w"x,5?) ...
and a general (zero-mean) Gaussian prior on the weights ...

w~ N(0,2%)

then the conditional distribution of h(x') = ' w given y is

h(x') |y ~ N(prep, ZpRED)
where

K(a,b) = d(a)'zd(b)
tprep = K(x', X)(K(X, X) + a21)7 1y,
Yprep = K(x',x") — K(x', X)(K(X,X) + 0?)"1K(X,x")

39



CEINSELR

Process (GP)
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f~GPm(x) =0,K(xx") = exp(—(x —x)%))

—— Mean 1+2 Standard Deviations

X

f~GPmK) - f(x) ~N(mx),K(x,x))

40



CEINSELR

Process (GP)
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f~GPm(x) =0,K(xx") = exp(—(x —x)%))

—— Samples — Mean  C33+42 Standard Deviations

N\
=

f~GPmK) - f(x) ~N(mx),K(x,x))

41



CEINSELR

Process (GP)
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f~GP(m(x) =0K(xx") =exp(—|x —x]))

—— Samples — Mean  C33+42 Standard Deviations

\.&\

#,v‘“‘mlwwuvt‘iv'lm ' A ; VA

X

f~GPmK) - f(x) ~N(mx),K(x,x))



GP Prior
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f~GPm(x) =0,K(xx") = exp(—(x —x)%))

—— Mean 1+2 Standard Deviations

43



GP Posterior
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f 1D~ GP(mp,Kp)

oD = Data

— Mean

1+2 Standard Deviations

44



GP Posterior
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f 1D~ GP(mp,Kp)

—— Samples

oD = Data

— Mean

1+2 Standard Deviations
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GP Posterior
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f 1D~ GP(mp,Kp)

—— Samples

oD = Data

— Mean

1+2 Standard Deviations

46



- Two ways of estimating the parameters of a probability
distribution given samples of a random variable:

* Maximum likelihood estimation — maximize the

(log-)likelihood of the observations

* Maximum a posteriori estimation — maximize the

(log-)posterior of the parameters conditioned on the

\CAELCEENR observations
* Requires a prior distribution, drawn from

background knowledge or domain expertise

* Linear/ridge regression can be interpreted as MLE/MAP

estimators under certain likelihood/prior models

* A Gaussian process is the kernelization of Bayesian

9/18/23 linear regression or MAP estimation for linear regression 7



