10-701: Introduction to Machine Learning Lecture 6 - MLE \& MAP

Henry Chai \& Zack Lipton
9/18/23

- Announcements:
- HW1 released 9/6, due 9/20 (Wednesday) at 11:59 PM
- HW2 released 9/20 (Wednesday), due 10/4 at 11:59 PM
- Recommended Readings:
- Mitchell, Estimating Probabilities
- Murphy, Sections 15.1 \& 15.2
- Previously:
- (Unknown) Target function, $c^{*}: \mathcal{X} \rightarrow \mathcal{Y}$
- Classifier, $h: \mathcal{X} \rightarrow \mathcal{Y}$

Probabilistic Learning

- Now:
- (Unknown) Target distribution, $y \sim p^{*}(Y \mid x)$
- Distribution, $p(Y \mid \boldsymbol{x})$
- Goal: find a distribution, p, that best approximates p^{*}
- Given N independent, identically distribution (iid) samples $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ of a random variable X
- If X is discrete with probability mass function (pmf) $p(X \mid \theta)$, then the likelihood of \mathcal{D} is

$$
L(\theta)=\prod_{n=1}^{N} p\left(x^{(n)} \mid \theta\right)
$$

- If X is continuous with probability density function (pdf) $f(X \mid \theta)$, then the likelihood of \mathcal{D} is

$$
L(\theta)=\prod_{n=1}^{N} f\left(x^{(n)} \mid \theta\right)
$$

- Given N independent, identically distribution (iid) samples $\mathcal{D}=\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ of a random variable X
- If X is discrete with probability mass function (pmf) $p(X \mid \theta)$, then the log-likelihood of \mathcal{D} is

$$
\ell(\theta)=\log \prod_{n=1}^{N} p\left(x^{(n)} \mid \theta\right)=\sum_{n=1}^{N} \log p\left(x^{(n)} \mid \theta\right)
$$

- If X is continuous with probability density function (pdf) $f(X \mid \theta)$, then the log-likelihood of \mathcal{D} is

$$
\ell(\theta)=\log \prod_{n=1}^{N} f\left(x^{(n)} \mid \theta\right)=\sum_{n=1}^{N} \log f\left(x^{(n)} \mid \theta\right)
$$

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- Insight: every valid probability distribution has a finite amount of probability mass as it must sum/integrate to 1
- Idea: set the parameter(s) so that the likelihood of the samples is maximized

Maximum Likelihood Estimation (MLE)

- Intuition: assign as much of the (finite) probability mass to the observed data at the expense of unobserved data
- Example: the exponential distribution

- The pdf of the exponential distribution is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

Exponential Distribution MLE

- The pdf of the exponential distribution is

$$
f(x \mid \lambda)=\lambda e^{-\lambda x}
$$

Exponential Distribution MLE

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-likelihood is

$$
\begin{aligned}
\ell(\lambda) & =\sum_{n=1}^{N} \log f\left(x^{(n)} \mid \lambda\right)=\sum_{n=1}^{N} \log \lambda e^{-\lambda x^{(n)}} \\
& =\sum_{n=1}^{N} \log \lambda+\log e^{-\lambda x^{(n)}}=N \log \lambda-\lambda \sum_{n=1}^{N} x^{(n)}
\end{aligned}
$$

- Taking the partial derivative and setting it equal to 0 gives

$$
\frac{\partial \ell}{\partial \lambda}=\frac{N}{\lambda}-\sum_{n=1}^{N} x^{(n)}
$$

- A Bernoulli random variable takes value 1 probability ϕ and value $0 \quad$ with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

Bernoulli Distribution MLE

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-likelihood is

$$
\begin{aligned}
\ell(\phi) & =\sum_{n=1}^{N} \log p\left(x^{(n)} \mid \phi\right)=\sum_{n=1}^{N} \log \phi^{x^{(n)}}(1-\phi)^{1-x^{(n)}} \\
& =\sum_{n=1}^{N} x \log \phi+(1-x) \log (1-\phi) \\
& =N_{1} \log \phi+N_{0} \log (1-\phi)
\end{aligned}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

$$
\frac{\partial \ell}{\partial \phi}=\frac{N_{1}}{\phi}-\frac{N_{0}}{1-\phi}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's
- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- The partial derivative of the log-likelihood is

$$
\begin{aligned}
& \frac{N_{1}}{\hat{\phi}}-\frac{N_{0}}{1-\hat{\phi}}=0 \rightarrow \frac{N_{1}}{\hat{\phi}}=\frac{N_{0}}{1-\hat{\phi}} \\
\rightarrow & N_{1}(1-\hat{\phi})=N_{0} \hat{\phi} \rightarrow N_{1}=\hat{\phi}\left(N_{0}+N_{1}\right) \\
\rightarrow & \hat{\phi}=\frac{N_{1}}{N_{0}+N_{1}}
\end{aligned}
$$

- where N_{1} is the number of 1 's in $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$ and N_{0} is the number of 0 's

Maximum a
 Posteriori
 (MAP)

Estimation

- Insight: sometimes we have prior information we want to incorporate into parameter estimation
- Idea: use Bayes rule to reason about the posterior distribution over the parameters
- MLE finds $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta)$
- MAP finds $\hat{\theta}=\underset{\theta}{\operatorname{argmax}} p(\theta \mid \mathcal{D})$

$$
\begin{aligned}
& =\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) p(\theta) / p(\mathcal{D}) \\
& =\underset{\theta}{\operatorname{argmax}} p(\mathcal{D} \mid \theta) p(\theta)
\end{aligned}
$$

$$
=\underset{\theta}{\operatorname{argmax}} \underbrace{\log p(\mathcal{D} \mid \theta)+\log p(\theta)}_{\text {log-posterior }}
$$

- A Bernoulli random variable takes value 1 (or heads) with probability ϕ and value 0 (or tails) with probability $1-\phi$
- The pmf of the Bernoulli distribution is

$$
p(x \mid \phi)=\phi^{x}(1-\phi)^{1-x}
$$

- Assume a Beta prior over the parameter ϕ, which has pdf

$$
f(\phi \mid \alpha, \beta)=\frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}
$$

where $\mathrm{B}(\alpha, \beta)=\int_{0}^{1} \phi^{\alpha-1}(1-\phi)^{\beta-1} d \phi$ is a normalizing constant to ensure the distribution integrates to 1

Beta
 Distribution

Beta Distribution w/ $\alpha=1$ and $\beta=1$

Beta Distribution w/ $\alpha=2$ and $\beta=2$

Beta

Distribution

Beta
 Distribution

Beta Distribution $\mathrm{w} / \alpha=10$ and $\beta=10$

Beta

Distribution

Beta Distribution w/ $\alpha=2$ and $\beta=5$

Beta

Distribution

Beta Distribution w/ $\alpha=4$ and $\beta=1$

Okay, but why should we use this strange distribution as a prior?

Conjugate Priors

- For a given likelihood function $p(\mathcal{D} \mid \theta)$, a prior $p(\theta)$ is called a conjugate prior if the resulting posterior distribution $p(\theta \mid \mathcal{D})$ is in the same family as $p(\theta)$ i.e., $p(\theta \mid \mathcal{D})$ and $p(\theta)$ are the same type of random variable just with different parameters
- We like conjugate priors because they are mathematically convenient
- However, we do not have to use a conjugate prior if it doesn't align with our actual prior belief.

$$
\begin{array}{r}
f(\phi \mid x, \alpha, \beta)=\frac{p(x \mid \phi) f(\phi \mid \alpha, \beta)}{p(x \mid \alpha, \beta)} \\
p(x \mid \alpha, \beta)=\int p(x \mid \phi) f(\phi \mid \alpha, \beta) d \phi
\end{array}
$$

Example:
Beta-Binomial Conjugacy

$$
\begin{aligned}
& =\int \phi^{x}(1-\phi)^{1-x} \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)} d \phi \\
& =\frac{1}{\mathrm{~B}(\alpha, \beta)} \int \phi^{\alpha+x-1}(1-\phi)^{\beta-x} d \phi=\frac{\mathrm{B}(\alpha+x, \beta-x+1)}{\mathrm{B}(\alpha, \beta)}
\end{aligned}
$$

$$
\begin{aligned}
& f(\phi \mid x, \alpha, \beta)=\frac{p(x \mid \phi) f(\phi \mid \alpha, \beta)}{p(x \mid \alpha, \beta)}=\frac{p(x \mid \phi) f(\phi \mid \alpha, \beta)}{\int p(x \mid \phi) f(\phi \mid \alpha, \beta) d \phi} \\
& f(\phi \mid x, \alpha, \beta)=\frac{p(x \mid \phi) f(\phi \mid \alpha, \beta)}{\left(\frac{\mathrm{B}(\alpha+x, \beta-x+1)}{\mathrm{B}(\alpha, \beta)}\right)}
\end{aligned}
$$

$$
=\frac{\phi^{x}(1-\phi)^{1-x} \frac{\phi^{\alpha-1}(1-\phi)^{\beta-1}}{\mathrm{~B}(\alpha, \beta)}}{\left(\frac{\mathrm{B}(\alpha+x, \beta-x+1)}{\mathrm{B}(\alpha, \beta)}\right)}
$$

$$
=\frac{\phi^{\alpha+x-1}(1-\phi)^{\beta-x}}{\mathrm{~B}(\alpha+x, \beta-x+1)}=f(\phi \mid \alpha+x, \beta-x+1)
$$

$$
=f(\phi \mid \alpha+x, \beta+(1-x))
$$

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the log-posterior is

$$
\ell(\phi)=\log f\left(\phi \mid \alpha+x^{(1)}+x^{(2)}+\cdots x^{(N)},\right)
$$

$$
\left(\beta+\left(1-x^{(1)}\right)+\left(1-x^{(2)}\right)+\cdots+\left(1-x^{(N)}\right)\right)
$$

$$
=\log f\left(\phi \mid \alpha+N_{1}, \beta+N_{0}\right)
$$

where N_{i} is the number of i^{\prime} s observed in the samples

$$
\begin{aligned}
& =\log \frac{\phi^{\alpha+N_{1}-1}(1-\phi)^{\beta+N_{0}-1}}{\mathrm{~B}(\alpha, \beta)} \\
& =\left(\alpha+N_{1}-1\right) \log \phi+\left(\beta+N_{0}-1\right) \log 1-\phi-\log \mathrm{B}(\alpha, \beta)
\end{aligned}
$$

- Given N iid samples $\left\{x^{(1)}, \ldots, x^{(N)}\right\}$, the partial derivative of the logposterior is

Beta-Binomial MAP

$$
\begin{aligned}
& \frac{\partial \ell}{\partial \phi}= \frac{\left(\alpha+N_{1}-1\right)}{\phi}-\frac{\left(\beta+N_{0}-1\right)}{1-\phi} \\
& \vdots \\
& \rightarrow \hat{\phi}_{M A P}=\frac{\left(N_{1}+\alpha-1\right)}{\left(N_{0}+\beta-1\right)+\left(N_{1}+\alpha-1\right)}
\end{aligned}
$$

- $\alpha-1$ is a "pseudocount" of the number of 1 's you've "observed"
- $\beta-1$ is a "pseudocount" of the number of 0's you've "observed"

Coin
Flipping
MAP:
Example

- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=2$ and $\beta=5$, then

$$
\phi_{M A P}=\frac{(2-1+10)}{(2-1+10)+(5-1+2)}=\frac{11}{17}<\frac{10}{12}
$$

Coin
Flipping
MAP:
Example

- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=101$ and $\beta=101$, then

$$
\phi_{M A P}=\frac{(101-1+10)}{(101-1+10)+(101-1+2)}=\frac{110}{212} \approx \frac{1}{2}
$$

Coin
Flipping
MAP:
Example

- Suppose \mathcal{D} consists of ten 1 's or heads $\left(N_{1}=10\right)$ and two 0 's or tails ($N_{0}=2$):

$$
\phi_{M L E}=\frac{10}{10+2}=\frac{10}{12}
$$

- Using a Beta prior with $\alpha=1$ and $\beta=1$, then

$$
\phi_{M A P}=\frac{(1-1+10)}{(1-1+10)+(1-1+2)}=\frac{10}{12}=\phi_{M L E}
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

M(C)LE for Linear
Regression

$$
=\left(X^{T} X\right)^{-1} X^{T} y
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

and independent, identical Gaussian priors on the weights ...

$$
\omega_{d} \sim N\left(0, s^{2}\right) \rightarrow \boldsymbol{\omega} \sim N\left(\mathbf{0}, s^{2} I_{D+1}\right)
$$

MAP for Linear Regression

$$
\widehat{\boldsymbol{\omega}}=\underset{\boldsymbol{\omega}}{\operatorname{argmax}} \log P(\boldsymbol{\omega} \mid X, \boldsymbol{y})
$$

$$
=\left(X^{T} X+\lambda\left(s^{2}\right) I_{D+1}\right)^{-1} X^{T} y
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$ and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

Bayesian Linear Regression

then the distribution over \boldsymbol{y} is

$$
\boldsymbol{y} \sim N\left(X \mathbf{0}+\mathbf{0}=\mathbf{0}, X \Sigma X^{T}+\sigma^{2} I\right)
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$ and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

Bayesian Linear Regression

then the joint distribution over \boldsymbol{y} and $\boldsymbol{\omega}$ is

$$
\left[\begin{array}{c}
\boldsymbol{y} \\
\boldsymbol{\omega}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
0 \\
0
\end{array}\right],\left[\begin{array}{cc}
X \Sigma X^{T}+\sigma^{2} I & ? ? ? \\
? ? ? & \Sigma
\end{array}\right]\right)
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$ and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

Bayesian Linear Regression

then the joint distribution over \boldsymbol{y} and $\boldsymbol{\omega}$ is

$$
\left[\begin{array}{l}
\boldsymbol{y} \\
\boldsymbol{\omega}
\end{array}\right] \sim N\left(\left[\begin{array}{l}
\mathbf{0} \\
\mathbf{0}
\end{array}\right],\left[\begin{array}{cc}
X \Sigma X^{T}+\sigma^{2} I & \Sigma X^{T} \\
X \Sigma & \Sigma
\end{array}\right]\right)
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

Bayesian

 Linear Regressionthen the conditional distribution of $\boldsymbol{\omega}$ given \boldsymbol{y} is

$$
\boldsymbol{\omega} \mid \boldsymbol{y} \sim N\left(\boldsymbol{\mu}_{P O S T}, \Sigma_{P O S T}\right)
$$

$$
\begin{gathered}
\text { where } \\
\boldsymbol{\mu}_{P O S T}=\Sigma X^{T}\left(X \Sigma X^{T}+\sigma^{2} I\right)^{-1} \boldsymbol{y}_{\mathbf{\prime}} \\
\Sigma_{P O S T}=\Sigma-\Sigma X^{T}\left(X \Sigma X^{T}+\sigma^{2} I\right)^{-1} X \Sigma
\end{gathered}
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

Bayesian

 Linear Regressionthen the conditional distribution of $h\left(\boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{\boldsymbol{\prime} \boldsymbol{T}} \boldsymbol{\omega}$ given \boldsymbol{y} is $h\left(\boldsymbol{x}^{\prime}\right) \mid \boldsymbol{y} \sim N\left(\boldsymbol{\mu}_{P R E D}, \Sigma_{P R E D}\right)$

$$
\begin{gathered}
\text { where } \\
\boldsymbol{\mu}_{P R E D}=x^{\prime T} \Sigma X^{T}\left(X \Sigma X^{T}+\sigma^{2} I\right)^{-1} y_{\prime} \\
\Sigma_{P R E D}=x^{\prime T} \Sigma x^{\prime}-x^{\prime T} \Sigma X^{T}\left(X \Sigma X^{T}+\sigma^{2} I\right)^{-1} X \Sigma x^{\prime}
\end{gathered}
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

then the conditional distribution of $h\left(\boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{\boldsymbol{\prime T}} \boldsymbol{\omega}$ given \boldsymbol{y} is

$$
h\left(\boldsymbol{x}^{\prime}\right) \mid \boldsymbol{y} \sim N\left(\boldsymbol{\mu}_{P R E D}, \Sigma_{P R E D}\right)
$$

where

$$
\begin{aligned}
& K(\boldsymbol{a}, \boldsymbol{b})=\Phi(\boldsymbol{a})^{T} \Sigma \Phi(\boldsymbol{b}) \\
& \boldsymbol{\mu}_{P R E D}=K\left(\boldsymbol{x}^{\prime}, X\right)\left(K(X, X)+\sigma^{2} I\right)^{-1} \boldsymbol{y}_{\mathbf{\prime}} \\
& \Sigma_{P R E D}=K\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}^{\prime}\right)-K\left(\boldsymbol{x}^{\prime}, X\right)\left(K(X, X)+\sigma^{2} I\right)^{-1} K\left(X, \boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

- If we assume a linear model with additive Gaussian noise

$$
y=\boldsymbol{\omega}^{T} \boldsymbol{x}+\epsilon \text { where } \epsilon \sim N\left(0, \sigma^{2}\right) \rightarrow y \sim N\left(\boldsymbol{\omega}^{T} \boldsymbol{x}, \sigma^{2}\right) \ldots
$$

and a general (zero-mean) Gaussian prior on the weights ...

$$
\boldsymbol{\omega} \sim N(\mathbf{0}, \Sigma)
$$

then the conditional distribution of $h\left(\boldsymbol{x}^{\prime}\right)=\boldsymbol{x}^{\boldsymbol{\prime T}} \boldsymbol{\omega}$ given \boldsymbol{y} is

$$
h\left(\boldsymbol{x}^{\prime}\right) \mid \boldsymbol{y} \sim N\left(\boldsymbol{\mu}_{P R E D}, \Sigma_{P R E D}\right)
$$

where

$$
\begin{aligned}
& K(\boldsymbol{a}, \boldsymbol{b})=\Phi(\boldsymbol{a})^{T} \Sigma \Phi(\boldsymbol{b}) \\
& \boldsymbol{\mu}_{P R E D}=K\left(\boldsymbol{x}^{\prime}, X\right)\left(K(X, X)+\sigma^{2} I\right)^{-1} \boldsymbol{y}_{\mathbf{\prime}} \\
& \Sigma_{P R E D}=K\left(\boldsymbol{x}^{\prime}, \boldsymbol{x}^{\prime}\right)-K\left(\boldsymbol{x}^{\prime}, X\right)\left(K(X, X)+\sigma^{2} I\right)^{-1} K\left(X, \boldsymbol{x}^{\prime}\right)
\end{aligned}
$$

$$
f \sim \mathcal{G P}\left(m(x)=0, K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2}\right)\right)
$$

Gaussian Process (GP)

Gaussian Process (GP)

$$
f \sim \mathcal{G P}\left(m(x)=0, K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2}\right)\right)
$$

Gaussian Process (GP)

GP Prior

$$
f \sim \mathcal{G P}\left(m(x)=0, K\left(x, x^{\prime}\right)=\exp \left(-\left(x-x^{\prime}\right)^{2}\right)\right)
$$

GP Posterior

$$
f \mid \mathcal{D} \sim \mathcal{G} \mathcal{P}\left(m_{\mathcal{D}}, K_{\mathcal{D}}\right)
$$

- Two ways of estimating the parameters of a probability distribution given samples of a random variable:
- Maximum likelihood estimation - maximize the (log-)likelihood of the observations
- Maximum a posteriori estimation - maximize the (log-)posterior of the parameters conditioned on the observations
- Requires a prior distribution, drawn from background knowledge or domain expertise
- Linear/ridge regression can be interpreted as MLE/MAP estimators under certain likelihood/prior models
- A Gaussian process is the kernelization of Bayesian linear regression or MAP estimation for linear regression

