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Front Matter

� Announcements:

� HW1 released 9/6, due 9/20 (Wednesday) at 11:59 PM

� HW2 released 9/20 (Wednesday), due 10/4 at 11:59 PM

� Recommended Readings:

� Mitchell, Estimating Probabilities

� Murphy, Sections 15.1 & 15.2
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http://www.cs.cmu.edu/~tom/mlbook/Joint_MLE_MAP.pdf
https://ebookcentral.proquest.com/lib/cm/detail.action?docID=3339490


Probabilistic 
Learning

� Previously: 
� (Unknown) Target function, 𝑐∗: 𝒳 → 𝒴

� Classifier, ℎ ∶ 𝒳 → 𝒴

� Goal: find a classifier, ℎ, that best approximates 𝑐∗

� Now:

� (Unknown) Target distribution, 𝑦 ∼ 𝑝∗ 𝑌 𝒙

� Distribution, 𝑝 𝑌 𝒙

� Goal: find a distribution, 𝑝, that best approximates 𝑝∗
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Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 #  of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the likelihood of 𝒟 is 

𝐿 𝜃 =7
$%"

#

𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function (pdf) 

𝑓 𝑋|𝜃 , then the likelihood of 𝒟	is 

𝐿 𝜃 =7
$%"

#

𝑓 𝑥 $ |𝜃
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Log-Likelihood 

� Given 𝑁 independent, identically distribution (iid) 

samples 𝒟 = 𝑥 " , … , 𝑥 #  of a random variable 𝑋

� If 𝑋 is discrete with probability mass function (pmf) 

𝑝 𝑋|𝜃 , then the log-likelihood of 𝒟	is 

ℓ 𝜃 = log7
$%"

#

𝑝 𝑥 $ |𝜃 = >
$%"

#

log 𝑝 𝑥 $ |𝜃

� If 𝑋 is continuous with probability density function (pdf) 

𝑓 𝑋|𝜃 , then the log-likelihood of 𝒟	is 

ℓ 𝜃 = log7
$%"

#

𝑓 𝑥 $ |𝜃 = >
$%"

#

log 𝑓 𝑥 $ |𝜃
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution 

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 9/18/23 6
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution ?

@
𝑥 " = 0.5,
𝑥 & = 1

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 9/18/23 7
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Maximum 
Likelihood 
Estimation 
(MLE)

� Insight: every valid probability distribution has a finite 

amount of probability mass as it must sum/integrate to 1

� Idea: set the parameter(s) so that the likelihood of the 
samples is maximized

� Intuition: assign as much of the (finite) probability mass 
to the observed data at the expense of unobserved data

� Example: the 
exponential 
distribution ?

@
𝑥 " = 2,
𝑥 & = 3

Source: https://en.wikipedia.org/wiki/Exponential_distribution#/media/File:Exponential_probability_density.svg 9/18/23 8

https://en.wikipedia.org/wiki/Exponential_distribution


� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the likelihood is

𝐿 𝜆 =7
$%"

#

𝑓 𝑥 $ |𝜆 =7
$%"

#

𝜆𝑒'() !

ℓ 𝜆 = >
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆>
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−>
$%"

#

𝑥 $

Exponential 
Distribution
MLE

9/18/23 9



� The pdf of the exponential distribution is 
𝑓 𝑥|𝜆 = 𝜆𝑒'()

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜆 = >
$%"

#

log 𝑓 𝑥 $ |𝜆 = >
$%"

#

log 𝜆𝑒'() !

ℓ 𝜆 = >
$%"

#

log 𝜆 + log 𝑒'() ! = 𝑁 log 𝜆 − 𝜆>
$%"

#

𝑥 $

� Taking the partial derivative and setting it equal to 0 gives

𝜕ℓ
𝜕𝜆

=
𝑁
𝜆
−>
$%"

#

𝑥 $

Exponential 
Distribution
MLE
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Bernoulli 
Distribution
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
M𝜙
−

𝑁*
1 − M𝜙

= 0 →
𝑁"
M𝜙
=

𝑁*
1 − M𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − M𝜙 = 𝑁* M𝜙 → 𝑁" = M𝜙 𝑁* +𝑁"

𝜕ℓ
𝜕𝜙

→ M𝜙 =
𝑁"

𝑁* +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 #  and 𝑁* is 

the number of 0’s
9/18/23 12



Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-likelihood is

ℓ 𝜙 = >
$%"

#

log 𝑝 𝑥 $ |𝜙 = >
$%"

#

log𝜙) ! 1 − 𝜙 "') !

ℓ 𝜙 = >
$%"

#

𝑥 log𝜙 + 1 − 𝑥 log 1 − 𝜙

ℓ 𝜙 = 𝑁" log𝜙 + 𝑁* log 1 − 𝜙

� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 #  and 𝑁* is 
the number of 0’s
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Coin 
Flipping
MLE

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� The partial derivative of the log-likelihood is

𝜕ℓ
𝜕𝜙

=
𝑁"
𝜙
−

𝑁*
1 − 𝜙

= 0 →
𝑁"
M𝜙
=

𝑁*
1 − M𝜙

𝜕ℓ
𝜕𝜙

→ 𝑁" 1 − M𝜙 = 𝑁* M𝜙 → 𝑁" = M𝜙 𝑁* +𝑁"

𝜕ℓ
𝜕𝜙

→ M𝜙 =
𝑁"

𝑁* +𝑁"
� where 𝑁" is the number of 1’s in 𝑥 " , … , 𝑥 #  and 𝑁* is 

the number of 0’s
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� Insight: sometimes we have prior information we want 
to incorporate into parameter estimation

� Idea: use Bayes rule to reason about the posterior 
distribution over the parameters

� MLE finds M𝜃 = argmax
+

	𝑝 𝒟 𝜃

� MAP finds M𝜃 = argmax
+

	𝑝 𝜃 𝒟

MAP finds M𝜃 = argmax
+

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds M𝜃 = argmax
+

	𝑝 𝒟 𝜃 𝑝 𝜃 /𝑝 𝒟

MAP finds M𝜃. = argmax
+

	log 𝑝 𝒟 𝜃 + log 𝑝 𝜃

Maximum a 
Posteriori 
(MAP) 
Estimation

likelihood prior

log-posterior9/18/23 17



Coin 
Flipping
MAP

� A Bernoulli random variable takes value 1 (or heads) with 
probability 𝜙 and value 0 (or tails) with probability 1 − 𝜙

� The pmf of the Bernoulli distribution is 
𝑝 𝑥|𝜙 = 𝜙) 1 − 𝜙 "')

� Assume a Beta prior over the parameter 𝜙, which has pdf

𝑓 𝜙 𝛼, 𝛽 =
𝜙,'" 1 − 𝜙 -'"

Β 𝛼, 𝛽

where Β 𝛼, 𝛽 = ∫*
"𝜙,'" 1 − 𝜙 -'"𝑑𝜙 is a normalizing 

constant to ensure the distribution integrates to 1
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Beta 
Distribution
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Beta 
Distribution
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Beta 
Distribution
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Beta 
Distribution
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Beta 
Distribution
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Okay, but why 
should we use 
this strange 
distribution as 
a prior?
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Conjugate 
Priors

� For a given likelihood function 𝑝 𝒟 𝜃 , a prior 𝑝 𝜃  is 

called a conjugate prior if the resulting posterior 
distribution 𝑝 𝜃 𝒟  is in the same family as 𝑝 𝜃  i.e., 
𝑝 𝜃 𝒟  and 𝑝 𝜃  are the same type of random variable 

just with different parameters

� We like conjugate priors because they are 

mathematically convenient

� However, we do not have to use a conjugate prior if 
it doesn’t align with our actual prior belief.
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Example:
Beta-Binomial 
Conjugacy

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽

𝑝 𝑥|𝛼, 𝛽
=

𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
∫ 𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 = X𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 = X𝜙) 1 − 𝜙 "') 𝜙
,'" 1 − 𝜙 -'"

Β 𝛼, 𝛽
𝑑𝜙

𝑝 𝑥|𝛼, 𝛽 =
1

Β 𝛼, 𝛽
X𝜙,.)'" 1 − 𝜙 -')𝑑𝜙 =

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
Β 𝛼, 𝛽
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Example:
Beta-Binomial 
Conjugacy

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽

𝑝 𝑥|𝛼, 𝛽
=

𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
∫ 𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽 𝑑𝜙

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝑝 𝑥|𝜙 𝑓 𝜙 𝛼, 𝛽
B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

Β 𝛼, 𝛽

𝑓 𝜙 𝑥, 𝛼, 𝛽 	=
𝜙) 1 − 𝜙 "') 𝜙,'" 1 − 𝜙 -'"

Β 𝛼, 𝛽
B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

Β 𝛼, 𝛽

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝜙,.)'" 1 − 𝜙 -')

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
= 𝑓 𝜙 𝛼 + 𝑥, 𝛽 − 𝑥 + 1

𝑓 𝜙 𝑥, 𝛼, 𝛽 =
𝜙,.)'" 1 − 𝜙 -')

B 𝛼 + 𝑥, 𝛽 − 𝑥 + 1
= 𝑓 𝜙 𝛼 + 𝑥, 𝛽 + 1 − 𝑥

9/18/23 27



Beta-Binomial 
MAP

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the log-posterior is

ℓ 𝜙 = log 𝑓 𝜙 𝛼 + 𝑥 " + 𝑥 & +⋯𝑥 # ,

	 −	 𝑓 𝛽 + 1 − 𝑥 " + 1 − 𝑥 & +⋯+ 1 − 𝑥 #

ℓ 𝜙 = log 𝑓 𝜙 𝛼 + 𝑁", 𝛽 + 𝑁* 	

where 𝑁/ is the number of 𝑖’s observed in the samples

ℓ 𝜙 = log
𝜙,.#"'" 1 − 𝜙 -.##'"

Β 𝛼, 𝛽
ℓ 𝜙 = 𝛼 + 𝑁" − 1 log𝜙 + 𝛽 + 𝑁* − 1 log 1 − 𝜙 − log Β 𝛼, 𝛽
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Beta-Binomial 
MAP

� Given 𝑁 iid samples 𝑥 " , … , 𝑥 # , the partial derivative of the log-

posterior is 

𝜕ℓ
𝜕𝜙

=
𝛼 + 𝑁" − 1

𝜙
−

𝛽 + 𝑁* − 1
1 − 𝜙

	 	 ⋮

→ M𝜙012 =
𝑁" + 𝛼 − 1

𝑁* + 𝛽 − 1 + 𝑁" + 𝛼 − 1

�𝛼 − 1	is a “pseudocount” of the number of 1’s you’ve “observed” 

�𝛽 − 1	is a “pseudocount” of the number of 0’s you’ve “observed”
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙034 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 2 and 𝛽 = 5, then

𝜙012 =
(2 − 1 + 10)

(2 − 1 + 10) + (5 − 1 + 2)
=
11
17

<
10
12
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙034 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 101 and 𝛽 = 101, then

𝜙012 =
(101 − 1 + 10)

(101 − 1 + 10) + (101 − 1 + 2)
=
110
212

≈
1
2
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Coin 
Flipping
MAP:
Example

� Suppose 𝒟	consists of ten 1’s or heads (𝑁" = 10) and     

two 0’s or tails (𝑁* = 2):

𝜙034 =
10

10 + 2 =
10
12

� Using a Beta prior with 𝛼 = 1 and 𝛽 = 1, then

𝜙012 =
(1 − 1 + 10)

(1 − 1 + 10) + (1 − 1 + 2)
=
10
12

= 𝜙034
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

then given 𝛸 =

1 𝒙 " 5

1 𝒙 & 5

⋮ ⋮
1 𝒙 # 5

 and 𝒚 =

𝑦 "

𝑦 &

⋮
𝑦 #

, the MLE of 𝝎 is
M(C)LE for 
Linear 
Regression h𝝎 = argmax

𝝎
	 log 𝑃 𝒚 𝑋,𝝎

= 𝑋5𝑋 '"𝑋5𝒚

⋮
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and independent, identical Gaussian priors on the weights …
𝜔7	~	𝑁 0, 𝑠& → 𝝎	~	𝑁 𝟎, 𝑠&𝐼8."

then, the MAP of 𝝎 is the ridge regression solution!MAP for 
Linear 
Regression h𝝎 = argmax

𝝎
	 log 𝑃 𝝎 𝑋, 𝒚

= 𝑋5𝑋 + 𝜆 𝑠& 𝐼8." '"𝑋5𝒚

⋮
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the distribution over 𝒚 isBayesian
Linear 
Regression 𝒚 ∼ 𝑁 𝑋𝟎 + 𝟎 = 𝟎, 𝑋Σ𝑋5 + 𝜎&𝐼
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the joint distribution over 𝒚 and 𝝎 is

� The covariance between 𝒚 and 𝝎 is

Bayesian
Linear 
Regression 

𝒚
𝝎 ∼ 𝑁 𝟎

𝟎 , 𝑋Σ𝑋
5 + 𝜎&𝐼 ? ? ?
? ? ? Σ

Cov 𝒚 = 𝑋𝝎 + 𝝐,𝝎 = Cov 𝑋𝝎,𝝎 = 𝑋Cov 𝝎,𝝎 = 𝑋Σ

9/18/23 36



� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the joint distribution over 𝒚 and 𝝎 is

� The covariance between 𝒚 and 𝝎 is

Bayesian
Linear 
Regression 

Cov 𝒚 = 𝑋𝝎 + 𝝐,𝝎 = Cov 𝑋𝝎,𝝎 = 𝑋Cov 𝝎,𝝎 = 𝑋Σ

𝒚
𝝎 ∼ 𝑁 𝟎

𝟎 , 𝑋Σ𝑋
5 + 𝜎&𝐼 Σ𝑋5	
𝑋Σ Σ
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the conditional distribution of 𝝎 given 𝒚 isBayesian
Linear 
Regression 

where

𝝁29:5 = Σ𝑋5 𝑋Σ𝑋5 + 𝜎&𝐼 '"𝒚, 

Σ29:5 = Σ − Σ𝑋5 𝑋Σ𝑋5 + 𝜎&𝐼 '"𝑋Σ

𝝎	|	𝒚 ∼ 𝑁 𝝁29:5, Σ29:5
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the conditional distribution of ℎ 𝒙; = 𝒙;5𝝎 given 𝒚 isBayesian
Linear 
Regression 

where

𝝁2<48 = 𝒙;5Σ𝑋5 𝑋Σ𝑋5 + 𝜎&𝐼 '"𝒚, 

Σ2<48 = 𝒙;5Σ𝒙; − 𝒙;5Σ𝑋5 𝑋Σ𝑋5 + 𝜎&𝐼 '"𝑋Σ𝒙;

ℎ 𝒙; 	|	𝒚 ∼ 𝑁 𝝁2<48, Σ2<48
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� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the conditional distribution of ℎ 𝒙; = 𝒙;5𝝎 given 𝒚 is

Kernelized
Bayesian
Linear 
Regression 

where

𝐾 𝒂, 𝒃 = Φ 𝒂 5ΣΦ 𝒃
𝝁2<48 = 𝐾(𝒙;, 𝑋) 𝐾 𝑋, 𝑋 + 𝜎&𝐼 '"𝒚, 

Σ2<48 = 𝐾(𝒙;, 𝒙;) − 𝐾(𝒙;, 𝑋) 𝐾 𝑋, 𝑋 + 𝜎&𝐼 '"𝐾(𝑋, 𝒙;)

ℎ 𝒙; 	|	𝒚 ∼ 𝑁 𝝁2<48, Σ2<48

9/18/23 40



� If we assume a linear model with additive Gaussian noise 

𝑦 = 𝝎5𝒙 + 𝜖 where 𝜖	~	𝑁 0, 𝜎& → 𝑦 ∼ 𝑁 𝝎5𝒙, 𝜎&  …

and a general (zero-mean) Gaussian prior on the weights …
𝝎	~	𝑁 𝟎, Σ

then the conditional distribution of ℎ 𝒙; = 𝒙;5𝝎 given 𝒚 is

Kernelized
Bayesian
Linear 
Regression =  
Gaussian 
Process (GP)

where

𝐾 𝒂, 𝒃 = Φ 𝒂 5ΣΦ 𝒃
𝝁2<48 = 𝐾(𝒙;, 𝑋) 𝐾 𝑋, 𝑋 + 𝜎&𝐼 '"𝒚, 

Σ2<48 = 𝐾(𝒙;, 𝒙;) − 𝐾(𝒙;, 𝑋) 𝐾 𝑋, 𝑋 + 𝜎&𝐼 '"𝐾(𝑋, 𝒙;)

ℎ 𝒙; 	|	𝒚 ∼ 𝑁 𝝁2<48, Σ2<48
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Gaussian 
Process (GP)

x

Mean ±2 Standard Deviations

𝑓	~	𝒢𝒫 𝑚,𝐾 → 𝑓 𝑥 	~	𝒩 𝑚 𝑥 ,𝐾 𝑥, 𝑥

𝑓 ∼ 𝒢𝒫 𝑚 𝑥 = 0,𝐾 𝑥, 𝑥; = exp − 𝑥 − 𝑥; &
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Gaussian 
Process (GP)

𝑓	~	𝒢𝒫 𝑚,𝐾 → 𝑓 𝑥 	~	𝒩 𝑚 𝑥 ,𝐾 𝑥, 𝑥

𝑓 ∼ 𝒢𝒫 𝑚 𝑥 = 0,𝐾 𝑥, 𝑥; = exp − 𝑥 − 𝑥; &

x

Samples Mean ±2 Standard Deviations
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Gaussian 
Process (GP)

𝑓	~	𝒢𝒫 𝑚,𝐾 → 𝑓 𝑥 	~	𝒩 𝑚 𝑥 ,𝐾 𝑥, 𝑥

𝑓 ∼ 𝒢𝒫 𝑚 𝑥 = 0,𝐾 𝑥, 𝑥; = exp − 𝑥 − 𝑥;

x

Samples Mean ±2 Standard Deviations
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GP Prior

x

Mean ±2 Standard Deviations

𝑓 ∼ 𝒢𝒫 𝑚 𝑥 = 0,𝐾 𝑥, 𝑥; = exp − 𝑥 − 𝑥; &
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GP Posterior

x

D = Data Mean ±2 Standard Deviations

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑚𝒟, 𝐾𝒟
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GP Posterior

x

Samples D = Data Mean ±2 Standard Deviations

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑚𝒟, 𝐾𝒟
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GP Posterior

x⇤x

Samples D = Data Mean ±2 Standard Deviations

𝑓 𝑥; 	~	𝒩 𝑚𝒟 𝑥; , Σ𝒟 𝑥;, 𝑥;

𝑓	|	𝒟 ∼ 𝒢𝒫 𝑚𝒟, 𝐾𝒟

𝑥’
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Key Takeaways

� Two ways of estimating the parameters of a probability 

distribution given samples of a random variable:

� Maximum likelihood estimation – maximize the 
(log-)likelihood of the observations

� Maximum a posteriori estimation – maximize the 
(log-)posterior of the parameters conditioned on the 

observations

� Requires a prior distribution, drawn from 
background knowledge or domain expertise

� Linear/ridge regression can be interpreted as MLE/MAP 
estimators under certain likelihood/prior models

� A Gaussian process is the kernelization of Bayesian 
linear regression or MAP estimation for linear regression9/18/23 49


