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Front Matter

� Announcements: 

� HW1 released 9/6, due 9/20 at 11:59 PM 

� Recommended Readings:

� Bishop, Section 3.2

� Murphy, Sections 7.1-7.3
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https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=248


� Learning to diagnose heart disease  
as a (supervised) binary regression task

Recall: 
Regression
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� Learning to diagnose heart disease  
as a (supervised) binary regression task

Decision Tree
Regression
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1-NN
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ	and               
one-dimensional inputs 𝑥 ∈ ℝ

� Assume 
𝑦 = 𝒘)𝒙 + 𝑤*

� Notation: given training data 𝒟 = 𝒙 + , 𝑦 +
+,-
.

� 𝑋 =

1 𝒙 - )

1 𝒙 / )

⋮ ⋮
1 𝒙 . )

=

1 𝑥-
- ⋯ 𝑥0

-

1 𝑥-
/ ⋯ 𝑥0

/

⋮ ⋮ ⋱ ⋮
1 𝑥-

. ⋯ 𝑥0
.

∈ ℝ.×02-	

is the design matrix

� 𝒚 = 𝑦 - , … , 𝑦 . )
∈ ℝ. is the target vector
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2-NN
Regression?

� Suppose we have real-valued targets 𝑦 ∈ ℝ	and               
one-dimensional inputs 𝑥 ∈ ℝ

� Assume 
𝑦 = 𝒘)𝒙 + 𝑤*

� Notation: given training data 𝒟 = 𝒙 + , 𝑦 +
+,-
.

� 𝑋 =

1 𝒙 - )

1 𝒙 / )

⋮ ⋮
1 𝒙 . )

=

1 𝑥-
- ⋯ 𝑥0

-

1 𝑥-
/ ⋯ 𝑥0

/

⋮ ⋮ ⋱ ⋮
1 𝑥-

. ⋯ 𝑥0
.

∈ ℝ.×02-	

is the design matrix

� 𝒚 = 𝑦 - , … , 𝑦 . )
∈ ℝ. is the target vector
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Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ	and               
𝐷-dimensional inputs 𝒙 = 1, 𝑥-, … , 𝑥0 ) ∈ ℝ0

� Assume 
𝑦 = 𝒘)𝒙 + 𝑤*

� Notation: given training data 𝒟 = 𝒙 + , 𝑦 +
+,-
.

� 𝑋 =

1 𝒙 - )

1 𝒙 / )

⋮ ⋮
1 𝒙 . )

=

1 𝑥-
- ⋯ 𝑥0

-

1 𝑥-
/ ⋯ 𝑥0

/

⋮ ⋮ ⋱ ⋮
1 𝑥-

. ⋯ 𝑥0
.

∈ ℝ.×02-	

is the design matrix

� 𝒚 = 𝑦 - , … , 𝑦 . )
∈ ℝ. is the target vector

9/11/23 7



Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ	and               
𝐷-dimensional inputs 𝒙 = 1, 𝑥-, … , 𝑥0 ) ∈ ℝ02-

� Assume 
𝑦 = 𝒘)𝒙 + 𝑤*

� Notation: given training data 𝒟 = 𝒙 3 , 𝑦 3
+,-
.

� 𝑋 =

1 𝒙 - )

1 𝒙 / )

⋮ ⋮
1 𝒙 . )

=

1 𝑥-
- ⋯ 𝑥0

-

1 𝑥-
/ ⋯ 𝑥0

/

⋮ ⋮ ⋱ ⋮
1 𝑥-

. ⋯ 𝑥0
.

∈ ℝ.×02-	

is the design matrix

� 𝒚 = 𝑦 - , … , 𝑦 . )
∈ ℝ. is the target vector
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Linear
Regression

� Suppose we have real-valued targets 𝑦 ∈ ℝ	and               
𝐷-dimensional inputs 𝒙 = 1, 𝑥-, … , 𝑥0 ) ∈ ℝ02-

� Assume 
𝑦 = 𝒘)𝒙 + 𝑤*

� Notation: given training data 𝒟 = 𝒙 3 , 𝑦 3
3,-
.

� 𝑋 =

1 𝒙 - )

1 𝒙 / )

⋮ ⋮
1 𝒙 . )

=

1 𝑥-
- ⋯ 𝑥0

-

1 𝑥-
/ ⋯ 𝑥0

/

⋮ ⋮ ⋱ ⋮
1 𝑥-

. ⋯ 𝑥0
.

∈ ℝ.×02-	

is the design matrix

� 𝒚 = 𝑦 - , … , 𝑦 . )
∈ ℝ. is the target vector
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1. Define a model and model parameters
1.  Assume 𝑦 = 𝒘)𝒙
2.  Parameters: 𝒘 = 𝑤*, 𝑤-, … , 𝑤0

2. Write down an objective function
1.  Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
� Solve in closed form: take partial derivatives,           

set to 0 and solve

General 
Recipe 
for 
Machine 
Learning
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1. Define a model and model parameters
1.  Assume 𝑦 = 𝒘)𝒙
2.  Parameters: 𝒘 = 𝑤*, 𝑤-, … , 𝑤0

2. Write down an objective function
1.  Minimize the squared error

3. Optimize the objective w.r.t. the model parameters
1. Solve in closed form: take partial derivatives,           

set to 0 and solve

Recipe 
for 
Linear
Regression
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ℓ𝒟 𝒘 = 6
3,-

.

𝒘)𝒙 3 − 𝑦 3 /



ℓ𝒟 𝒘 = 6
3,-

.

𝒘)𝒙 3 − 𝑦 3 /
= 6

3,-

.

𝒙 3 )
𝒘− 𝑦 3

/

Minimizing the 
Squared Error

12

= 𝑋𝒘− 𝒚 /
/ where 𝒛 / = 6

5,-

0

𝑧5/ = 𝒛)𝒛

= 𝑋𝒘 − 𝒚 ) 𝑋𝒘 − 𝒚
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∇𝒘ℓ𝒟 𝒘 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

= 𝒘)𝑋)𝑋𝒘 − 2𝒘)𝑋)𝒚 + 𝒚)𝒚



Minimizing the 
Squared Error

13

= 𝑋𝒘− 𝒚 /
/ where 𝒛 / = 6

5,-

0

𝑧5/ = 𝒛)𝒛

= 𝑋𝒘 − 𝒚 ) 𝑋𝒘 − 𝒚
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= 𝒘)𝑋)𝑋𝒘 − 2𝒘)𝑋)𝒚 + 𝒚)𝒚

→ 𝑋)𝑋A𝒘 = 𝑋)𝒚

→ A𝒘 = 𝑋)𝑋 7-𝑋)𝒚

∇𝒘ℓ𝒟 A𝒘 = 2𝑋)𝑋A𝒘 − 2𝑋)𝒚 = 0

ℓ𝒟 𝒘 = 6
3,-

.

𝒘)𝒙 3 − 𝑦 3 /
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Minimizing the 
Squared Error

14

= 𝑋𝒘− 𝒚 /
/ where 𝒛 / = 6

5,-

0

𝑧5/ = 𝒛)𝒛

= 𝑋𝒘 − 𝒚 ) 𝑋𝒘 − 𝒚
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∇𝒘ℓ𝒟 𝒘 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

= 𝒘)𝑋)𝑋𝒘 − 2𝒘)𝑋)𝒚 + 𝒚)𝒚

𝐻𝒘ℓ𝒟 𝒘 = 2𝑋)𝑋

𝐻𝒘ℓ𝒟 𝒘  is positive semi-definite

ℓ𝒟 𝒘 = 6
3,-

.

𝒘)𝒙 3 − 𝑦 3 /
= 6

3,-

.

𝒙 3 )
𝒘− 𝑦 3

/



Closed Form 
Solution

159/11/23

1. Is 𝑋)𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋)𝑋	is (almost always) full rank and 

therefore, invertible!
• If 𝑋)𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others), what 
does that imply about our problem?

2. If so, how computationally expensive is inverting 𝑋)𝑋?
• 𝑋)𝑋 ∈ ℝ02-×02- so inverting 𝑋)𝑋	takes 𝑂 𝐷8  time…

• Computing 𝑋)𝑋 takes 𝑂 𝑁𝐷/  time
• What alternative optimization method can we use to 

minimize the mean squared error?

A𝒘 = 𝑋)𝑋 7-𝑋)𝒚



Gradient 
Descent:
Intuition

� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere
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Gradient 
Descent:
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� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere

 



Gradient 
Descent:
Intuition
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� An iterative method for minimizing functions 

� Requires the gradient to exist everywhere

 



Gradient 
Descent

� Suppose the current weight vector is 𝒘 9

� Move some distance, 𝜂, in the “most downhill” direction, A𝒗:
𝒘 92- = 𝒘 9 + 𝜂A𝒗

� The gradient points in the direction of steepest increase …

� … so A𝒗 is a unit vector pointing in the opposite direction:

A𝒗 9 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #
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Gradient 
Descent:
Step Direction

� Suppose the current weight vector is 𝒘 9

� Move some distance, 𝜂, in the “most downhill” direction, A𝒗:
𝒘 92- = 𝒘 9 + 𝜂A𝒗

� The gradient points in the direction of steepest increase …

� … so A𝒗 should point in the opposite direction:

A𝒗 9 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #
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Gradient 
Descent: 
Step Size

21

Small 𝜂 Large 𝜂
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Gradient 
Descent: 
Step Size
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Gradient 
Descent: 
Step Size
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� Use a variable 𝜂 9  instead of a fixed 𝜂!

� Set 𝜂 9 = 𝜂 * ∇𝒘ℓ𝒟 𝒘 9  

� ∇𝒘ℓ𝒟 𝒘 9 	decreases as ℓ𝒟	 approaches its minimum 
→ 𝜂 9  (hopefully) decreases over time
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Gradient 
Descent: 
Step Size



� A𝒗 9 = − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #

� 𝜂 9 = 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

� 𝒘 92- = 𝒘 9 + 𝜂 9 A𝒗 9

� 𝒘 92- = 𝒘 9 + 𝜂 * ∇𝒘ℓ𝒟 𝒘 9 − ∇𝒘ℓ𝒟 𝒘 #

∇𝒘ℓ𝒟 𝒘 #

� 𝒘 92- = 𝒘 9 − 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

25

Gradient 
Descent
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Gradient 
Descent

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,-
.
, 𝜂 *

1. Initialize 𝒘 *  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 9 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

b. Update 𝒘: 𝒘 92- ← 𝒘 9 − 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

c. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝒘 9
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Gradient 
Descent

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,-
.
, 𝜂 * , 𝜖

1. Initialize 𝒘 *  to all zeros and set 𝑡 = 0

2. While ∇𝒘ℓ𝒟 𝒘 9 > 𝜖

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 9 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

b. Update 𝒘: 𝒘 92- ← 𝒘 9 − 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

c. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝒘 9
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Gradient 
Descent

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,-
.
, 𝜂 * , 𝑇

1. Initialize 𝒘 *  to all zeros and set 𝑡 = 0

2. While 𝑡 < 𝑇

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 9 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

b. Update 𝒘: 𝒘 92- ← 𝒘 9 − 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

c. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝒘 9
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Why
Gradient 
Descent for
linear 
regression?

� Input: 𝒟 = 𝒙 + , 𝑦 +
+,-
.
, 𝜂 * , 𝑇

1. Initialize 𝒘 *  to all zeros and set 𝑡 = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

∇𝒘ℓ𝒟 𝒘 9 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

b. Update 𝒘: 𝒘 92- ← 𝒘 9 − 𝜂 * ∇𝒘ℓ𝒟 𝒘 9

c. Increment 𝑡: 𝑡 ← 𝑡 + 1	

� Output: 𝒘 9
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� A function 𝑓:ℝ0 → ℝ is strictly convex if 
∀	𝒙 - ∈ ℝ0, 𝒙 / ∈ ℝ0 and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 - + 1 − 𝑐 𝒙 / ≤ 𝑐𝑓 𝒙 - + 1 − 𝑐 𝑓 𝒙 /

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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� A function 𝑓:ℝ0 → ℝ is strictly convex if 
∀	𝒙 - ∈ ℝ0, 𝒙 / ∈ ℝ0 and 0 ≤ 𝑐 ≤ 1
𝑓 𝑐𝒙 - + 1 − 𝑐 𝒙 / ≤ 𝑐𝑓 𝒙 - + 1 − 𝑐 𝑓 𝒙 /

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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� A function 𝑓:ℝ0 → ℝ is strictly convex if 
∀	𝒙 - ∈ ℝ0, 𝒙 / ∈ ℝ0 and 0 < 𝑐 < 1
𝑓 𝑐𝒙 - + 1 − 𝑐 𝒙 / < 𝑐𝑓 𝒙 - + 1 − 𝑐 𝑓 𝒙 /

𝑓 𝑐𝑥 ! + 1 − 𝑐 𝑥 "

Convexity
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𝑓

𝑥 ! 𝑥 "𝑐𝑥 ! + 1 − 𝑐 𝑥 "

𝑐𝑓 𝑥 ! + 1 − 𝑐 𝑓 𝑥 "



Convexity
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Convex functions

Non-convex functions



Convexity
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Given a function 𝑓:ℝ0 → ℝ 

• 𝒙∗ is a global minimum iff 
𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀	𝒙 ∈ ℝ0

• 𝒙∗ is a local minimum iff 
∃	𝜖 s.t. 𝑓 𝒙∗ ≤ 𝑓 𝒙 	∀
𝒙 s.t. 𝒙 − 𝒙∗ / < 𝜖



Convexity
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Convex functions:

Each local minimum is a 
global minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Convexity
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Strictly convex functions:

There exists a unique global 
minimum!

Non-convex functions:
A local minimum may or may 
not be a global minimum…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…



� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
Gradient 
Descent & 
Convexity
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Gradient 
Descent & 
Convexity
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� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…



Gradient 
Descent & 
Convexity

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Not ideal if the objective function is non-convex…
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The squared 
error for linear 
regression is 
convex (but 
not strictly 
convex)!

� Gradient descent is a local optimization algorithm – it 

will converge to a local minimum (if it converges)

� Works great if the objective function is convex! 
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∇𝒘ℓ𝒟 𝒘 = 2𝑋)𝑋𝒘 − 2𝑋)𝒚

𝐻𝒘ℓ𝒟 𝒘 = 2𝑋)𝑋 which is positive semi-definite



Closed Form 
Solution
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1. Is 𝑋)𝑋 invertible?
• When 𝑁 ≫ 𝐷 + 1, 𝑋)𝑋	is (almost always) full rank and 

therefore, invertible!
• If 𝑋)𝑋	is not invertible (occurs when one of the 

features is a linear combination of the others) then 
there are infinitely many solutions.

2. If so, how computationally expensive is inverting 𝑋)𝑋?
• 𝑋)𝑋 ∈ ℝ02-×02- so inverting 𝑋)𝑋	takes 𝑂 𝐷8  time…

• Computing 𝑋)𝑋 takes 𝑂 𝑁𝐷/  time
• Can use gradient descent to (potentially) speed things 

up when 𝑁 and 𝐷 are large!

A𝒘 = 𝑋)𝑋 7-𝑋)𝒚



Linear 
Regression: 
Uniqueness

47

𝑦

𝑥

� Consider a 1D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset?
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Linear 
Regression: 
Uniqueness

50

� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of parameters 𝜃) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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� Consider a 2D linear 
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Linear 
Regression: 
Uniqueness
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� Consider a 2D linear 

regression model trained 
to minimize the mean 
squared error: how many 

optimal solutions (i.e., 
sets of weights 𝒘) are 
there for the given 
dataset? 

𝑦

𝑥1

𝑥2
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Key Takeaways

� Closed form solution for linear regression

� Setting the gradient equal to 0 and solving for critical 
points

� Potential issues: invertibility and computational costs

� Gradient descent

� Effect of step size

� Termination criteria

� Convexity vs. non-convexity 

� Strong vs. weak convexity 

� Implications for local, global and unique optima
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Bias-Variance 
Tradeoff

� Suppose you have a regression task and your goal is to 

minimize the true squared error:

𝑒𝑟𝑟 ℎ = 𝔼𝒙~𝒫 ℎ 𝒙 − 𝑓 𝒙
/

where 𝑓 is the target function and

where 𝒫 is some distribution of interest over all possible inputs 

� Let ℎ𝒟 be the hypothesis returned when the input training 

dataset is 𝒟 

� Assume each data point in 𝒟 is drawn independently from 𝒫
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Bias-Variance 
Tradeoff

� 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 ℎ𝒟 𝒙 − 𝑓 𝒙 /

� 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒟 𝔼𝒙∼𝒫 ℎ𝒟 𝒙 − 𝑓 𝒙
/

� 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 − 𝑓 𝒙 /

� 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − 2ℎ𝒟 𝒙 𝑓 𝒙 + 𝑓 𝒙 /

� 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − 2[ℎ 𝒙 𝑓 𝒙 + 𝑓 𝒙 /

� where [ℎ 𝒙 = 𝔼𝒟 ℎ𝒟 𝒙

55

≈
1
𝐶
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C

ℎ𝒟$ 𝒙
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Bias-Variance 
Tradeoff

� 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟
� = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − 2[ℎ 𝒙 𝑓 𝒙 + 𝑓 𝒙 /

� = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 / − 2[ℎ 𝒙 𝑓 𝒙 + 𝑓 𝒙 /

� = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 − 𝑓 𝒙
/

� = 𝔼𝒙∼𝒫 Variance	of	ℎ𝒟 𝒙 + Bias	of	[ℎ 𝒙
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Bias-Variance 
Tradeoff 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 − 𝑓 𝒙

/

How well, on average, 
does	ℎ𝒟 approximate 𝑓?

How variable is ℎ𝒟?
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Bias-Variance 
Tradeoff 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 − 𝑓 𝒙

/

How well, on average, 
does	ℎ𝒟 approximate 𝑓?

How well could ℎ𝒟 approximate anything?

9/11/23
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Bias-Variance 
Tradeoff 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 − 𝑓 𝒙

/

How well, on average, 
does	ℎ𝒟 approximate 𝑓?

How well could ℎ𝒟 approximate random noise?

9/11/23
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Bias-Variance 
Tradeoff 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 = 𝔼𝒙∼𝒫 𝔼𝒟 ℎ𝒟 𝒙 / − [ℎ 𝒙 / + [ℎ 𝒙 − 𝑓 𝒙

/

Decreases as the model 
becomes more complex

Increases as the model becomes more complex
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Bias-Variance 
Tradeoff
(Example)

�𝒳 = ℝ and 𝒫 = Uniform 0, 2𝜋

� 𝑓 𝑥 = sin 𝑥

� 𝑁 = 2 → 𝒟 = 𝑥-, sin 𝑥- , 𝑥/, sin 𝑥/

� Consider two models:

� The “constant” model - ℋ* = ℎ ∶ ℎ 𝑥 = 𝑏 	

� Linear regression - ℋ- = ℎ ∶ ℎ 𝑥 = 𝑎𝑥 + 𝑏
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Bias-Variance 
Tradeoff
(Example)
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Bias-Variance 
Tradeoff
(Example)
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Bias-Variance 
Tradeoff
(Example)

64

[ℎ 𝑥[ℎ 𝑥
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Bias-Variance 
Tradeoff
(𝑁 = 2)

65

Variance	of	ℎ𝒟 𝑥 ≈ 0.25

[ℎ 𝑥 [ℎ 𝑥

Bias	of	[ℎ 𝑥 ≈ 0.50 Bias	of	[ℎ 𝑥 ≈ 0.21
Variance	of	ℎ𝒟 𝑥 ≈ 1.74

𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 ≈ 0.75 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 ≈ 1.95
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Bias-Variance 
Tradeoff
(𝑁 = 5)

66

Variance	of	ℎ𝒟 𝑥 ≈ 0.10
Bias	of	[ℎ 𝑥 ≈ 0.50 Bias	of	[ℎ 𝑥 ≈ 0.21

Variance	of	ℎ𝒟 𝑥 ≈ 0.21
𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 ≈ 0.60 𝔼𝒟 𝑒𝑟𝑟 ℎ𝒟 ≈ 0.42

[ℎ 𝑥 [ℎ 𝑥
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Generalization
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Bias-Variance analysis

𝑒𝑟𝑟 ℎ

𝑒𝑟𝑟 ℎ, 𝒟9DE+3

Number of training points, 𝑁
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or

Training error

Generalization error

Number of training points, 𝑁
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or

Bias

Variance 𝑒𝑟𝑟 ℎ

𝑒𝑟𝑟 ℎ, 𝒟9DE+3



Simple model
68

Number of training points, 𝑁
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Complex model

𝑒𝑟𝑟 ℎ

𝑒𝑟𝑟 ℎ, 𝒟9DE+3

Number of training points, 𝑁
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𝑒𝑟𝑟 ℎ

𝑒𝑟𝑟 ℎ, 𝒟9DE+3


