10-701: Introduction to Machine Learning Lecture 4 - Linear Regression

Henry Chai \& Zack Lipton
9/11/23

- Announcements:
- HW1 released 9/6, due 9/20 at 11:59 PM

Front Matter

- Recommended Readings:
- Bishop, Section 3.2
- Murphy, Sections 7.1-7.3

Recall:
 Regression

- Learning to diagnose heart disease

Decision Tree Regression

- Learning to diagnose heart disease

- Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$

1-NN
 Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$

2-NN Regression?

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\boldsymbol{x}=\left[x_{1}, \ldots, x_{D}\right]^{T} \in \mathbb{R}^{D}$

- Assume

$$
y=\boldsymbol{w}^{T} \boldsymbol{x}+w_{0}
$$

Linear
 Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\boldsymbol{x}=\left[1, x_{1}, \ldots, x_{D}\right]^{T} \in \mathbb{R}^{D+1}$
- Assume

$$
\begin{aligned}
& =\left[1, x_{1}, \ldots, x_{D}\right]^{T} \in \mathbb{R}^{D+1} \\
& \underset{w^{T} x}{ } W=\left[W_{0}, W_{1}, \ldots, W_{D}\right]^{T}
\end{aligned}
$$

Linear
 Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\boldsymbol{x}=\left[1, x_{1}, \ldots, x_{D}\right]^{T} \in \mathbb{R}^{D+1}$
- Assume

$$
y=\boldsymbol{w}^{T} \boldsymbol{x}
$$

- Notation: given training data $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$

$$
\because=\left[\begin{array}{cc}
1 & x^{(1)^{T}} \\
1 & x^{(2)^{T}} \\
\vdots & \vdots \\
1 & x^{(N)^{T}}
\end{array}\right]=\left[\begin{array}{cccc}
1 & x_{1}^{(1)} & \cdots & x_{D}^{(1)} \\
1 & x_{1}^{(2)} & \cdots & x_{D}^{(2)} \\
\vdots & \vdots & \ddots & \vdots \\
1 & x_{1}^{(N)} & \cdots & x_{D}^{(N)}
\end{array}\right] \in \mathbb{R}^{N \times D+1}
$$

is the design matrix

$$
(y)=\left[y^{(1)}, \ldots, y^{(N)}\right]^{T} \in \mathbb{R}^{N} \text { is the target vector }
$$

1. Define a model and model parameters

General Recipe for
Machine Learning

2. Write down an objective function
3. Optimize the objective w.r.t. the model parameters
4. Define a model and model parameters
5. Assume $\boldsymbol{y}=\boldsymbol{w}^{T} \boldsymbol{x}$
6. Parameters: $\boldsymbol{w}=\left[w_{0}, w_{1}, \ldots, w_{D}\right]$

Recipe for Linear Regression

2. Write down an objective function
3. Minimize the squared error

$$
\ell_{\mathcal{D}}(\boldsymbol{w})=\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)^{2}
$$

3. Optimize the objective w.r.t. the model parameters
4. Solve in closed form: take partial derivatives, set to 0 and solve

$$
\begin{aligned}
\ell_{\mathcal{D}}(\boldsymbol{w}) & =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)^{2}=\sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)^{T}} \boldsymbol{w}-y^{(n)}\right)^{2} \\
& =\|X \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2} \text { where }\|\boldsymbol{z}\|_{2}=\sqrt{\sum_{d=1}^{D} z_{d}^{2}}=\sqrt{\boldsymbol{z}^{T} \boldsymbol{z}} \\
& =(X \boldsymbol{w}-\boldsymbol{y})^{T}(X \boldsymbol{w}-\boldsymbol{y}) \\
& =\left(\boldsymbol{w}^{T} X^{T} X \boldsymbol{w}-2 \boldsymbol{w}^{T} X^{T} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}\right) \\
\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) & =\left(2 X^{T} X \boldsymbol{w}-2 X^{T} \boldsymbol{y}\right)
\end{aligned}
$$

Minimizing the Squared Error

$$
\begin{aligned}
\ell_{\mathcal{D}}(\boldsymbol{w}) & =\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)^{2}=\sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)^{T}} \boldsymbol{w}-y^{(n)}\right)^{2} \\
& =\|X \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2} \text { where }\|\boldsymbol{z}\|_{2}=\sqrt{\sum_{d=1}^{D} z_{d}^{2}}=\sqrt{\mathbf{z}^{T} \boldsymbol{z}} \\
& =(X \boldsymbol{w}-\boldsymbol{y})^{T}(X \boldsymbol{w}-\boldsymbol{y}) \\
& =\left(\boldsymbol{w}^{T} X^{T} X \boldsymbol{w}-2 \boldsymbol{w}^{T} X^{T} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}\right) \\
\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\widehat{\boldsymbol{w}}) & =\left(2 X^{T} X \widehat{\boldsymbol{w}}-2 X^{T} \boldsymbol{y}\right)=0 \\
\rightarrow X^{T} X \widehat{\boldsymbol{w}} & =X^{T} \boldsymbol{y} \\
\rightarrow \widehat{\boldsymbol{w}} & =\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
\end{aligned}
$$

Minimizing the Squared Error

$$
\begin{aligned}
& \ell_{\mathcal{D}}(\boldsymbol{w})=\sum_{n=1}^{N}\left(\boldsymbol{w}^{T} \boldsymbol{x}^{(n)}-y^{(n)}\right)^{2}=\sum_{n=1}^{N}\left(\boldsymbol{x}^{(n)^{T}} \boldsymbol{w}-y^{(n)}\right)^{2} \\
&=\|X \boldsymbol{w}-\boldsymbol{y}\|_{2}^{2} \text { where }\|\boldsymbol{z}\|_{2}=\sqrt{\sum_{d=1}^{D} z_{d}^{2}}=\sqrt{\boldsymbol{z}^{T} \boldsymbol{z}} \\
&=(X \boldsymbol{w}-\boldsymbol{y})^{T}(X \boldsymbol{w}-\boldsymbol{y}) \\
&=\left(\boldsymbol{w}^{T} X^{T} X \boldsymbol{w}-2 \boldsymbol{w}^{T} X^{T} \boldsymbol{y}+\boldsymbol{y}^{T} \boldsymbol{y}\right) \\
& \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w})=\left(2 X^{T} X \boldsymbol{w}-2 X^{T} \boldsymbol{y}\right) \\
& H_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w})=2 X^{T} X \\
& H_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) \text { is positive semi-definite }
\end{aligned}
$$

Minimizing the Squared Error

$$
\widehat{\boldsymbol{w}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting $X^{T} X$? $X \in \mathbb{R}^{N \times(D+1)} \Rightarrow X^{\top} X \in \mathbb{R}^{(D+1) x(D+1)}$ $\left.\begin{array}{c}\text { classically inverting as } O\left(D^{3}\right)\left(\begin{array}{c}\text { (bot we cat } \\ g+t\end{array}\left(D^{23733}\right)\right.\end{array}\right)$ we meed to store $X, O(N D)$

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere

Gradient Descent: Intuition

- Suppose the current weight vector is $\boldsymbol{w}^{(t)}$
- Move some distance, η, in the "most downhill" direction, \widehat{v} :

Gradient Descent

$$
\boldsymbol{w}^{(t+1)}=\boldsymbol{w}^{(t)}+\eta \widehat{\boldsymbol{v}}
$$

- Suppose the current weight vector is $\boldsymbol{w}^{(t)}$
- Move some distance, η, in the "most downhill" direction, \widehat{v} :

$$
\boldsymbol{w}^{(t+1)}=\boldsymbol{w}^{(t)}+\eta \widehat{\boldsymbol{v}}
$$

- The gradient points in the direction of steepest increase ...
- ... so $\widehat{\boldsymbol{v}}$ should point in the opposite direction:

$$
\widehat{\boldsymbol{v}}^{(t)}=-\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|}
$$

Gradient Descent: Step Size

Small η

Large η

Gradient Descent: Step Size

Small η

Large η

Gradient Descent: Step Size

Small η

Large η

- Use a variable $\eta^{(t)}$ instead of a fixed η !

Gradient Descent: Step Size

- Set $\eta^{(t)}=\eta^{(0)}\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|$
- $\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|$ decreases as $\ell_{\mathcal{D}}$ approaches its minimum
$\rightarrow \eta^{(t)}$ (hopefully) decreases over time

$$
\cdot \widehat{\boldsymbol{v}}^{(t)}=-\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|}
$$

Gradient

 Descent$\cdot \eta^{(t)}=\eta^{(0)}\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|$

$$
\begin{aligned}
\cdot \boldsymbol{w}^{(t+1)} & =\boldsymbol{w}^{(t)}+\eta^{(t)} \widehat{\boldsymbol{v}}^{(t)} \\
& =\boldsymbol{w}^{(t)}+\left(\eta^{(0)}\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|\right)\left(-\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|}\right) \\
& =\boldsymbol{w}^{(t)}-\eta^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)
\end{aligned}
$$

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \eta^{(0)}$

1. Initialize $\boldsymbol{w}^{(0)}$ to all zeros and set $t=0$
2. While TERMINATION CRITERION is not satisfied
a. Compute the gradient:

$$
\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)
$$

b. Update $\boldsymbol{w}: \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{w}^{(t)}$
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \eta^{(0)}, \epsilon$

1. Initialize $\boldsymbol{w}^{(0)}$ to all zeros and set $t=0$
2. While $\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)\right\|>\epsilon$

Gradient Descent

a. Compute the gradient:

$$
\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)
$$

b. Update $\boldsymbol{w}: \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{w}^{(t)}$
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \eta^{(0)}, T$

1. Initialize $\boldsymbol{w}^{(0)}$ to all zeros and set $t=0$
2. While $t<T$

Gradient Descent

a. Compute the gradient:

$$
\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)
$$

b. Update $\boldsymbol{w}: \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{w}^{(t)}$
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}, y^{(i)}\right)\right\}_{i=1}^{N}, \eta^{(0)}, T$

1. Initialize $\boldsymbol{w}^{(0)}$ to all zeros and set $t=0$

Why
Gradient Descent for linear regression?
2. While TERMINATION CRITERION is not satisfied
a. Compute the gradient:

$$
\nabla_{w} \ell_{\mathcal{D}}\left(w^{(t)}\right)=\frac{1}{N}\left(2 x \sqrt{\chi} w-2 x^{\top} y\right)
$$

b. Update $\boldsymbol{w}: \boldsymbol{w}^{(t+1)} \leftarrow \boldsymbol{w}^{(t)}-\eta^{(0)} \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$
c. Increment $t: t \leftarrow t+1$

- Output: $\boldsymbol{w}^{(t)}$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if
$\forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D}$ and $0 \leq c \leq 1$
$f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq \underbrace{c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)}$

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0 \leq c \leq 1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right) \leq c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

- A function $f: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is strictly convex if

$$
\begin{aligned}
& \forall \boldsymbol{x}^{(1)} \in \mathbb{R}^{D}, \boldsymbol{x}^{(2)} \in \mathbb{R}^{D} \text { and } 0<c<1 \\
& f\left(c \boldsymbol{x}^{(1)}+(1-c) \boldsymbol{x}^{(2)}\right)<c f\left(\boldsymbol{x}^{(1)}\right)+(1-c) f\left(\boldsymbol{x}^{(2)}\right)
\end{aligned}
$$

Convexity

Convexity

Convexity

Convexity

Convex functions:
Each local minimum is a global minimum!

Non-convex functions:
A local minimum may or may not be a global minimum...

Convexity

Strictly convex functions:
There exists a unique global minimum!

Non-convex functions:
A local minimum may or may not be a global minimum...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

Gradient Descent \& Convexity

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Not ideal if the objective function is non-convex...

The squared error for linear regression is convex (but not strictly convex)!

- Gradient descent is a local optimization algorithm - it will converge to a local minimum (if it converges)
- Works great if the objective function is convex!

$\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w})=\left(2 X^{T} X \boldsymbol{w}-2 X^{T} \boldsymbol{y}\right)$
$H_{w} \ell_{\mathcal{D}}(\boldsymbol{w})=2 X^{T} X$ which is positive semi-definite

$$
\widehat{\boldsymbol{w}}=\left(X^{T} X\right)^{-1} X^{T} \boldsymbol{y}
$$

1. Is $X^{T} X$ invertible?

- When $N \gg D+1, X^{T} X$ is (almost always) full rank and therefore, invertible!
- If $X^{T} X$ is not invertible (occurs when one of the features is a linear combination of the others) then there are infinitely many solutions.

2. If so, how computationally expensive is inverting $X^{T} X$?

- $X^{T} X \in \mathbb{R}^{D+1 \times D+1}$ so inverting $X^{T} X$ takes $O\left(D^{3}\right)$ time...
- Computing $X^{T} X$ takes $O\left(N D^{2}\right)$ time
- Can use gradient descent to (potentially) speed things up when N and D are large!

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights \boldsymbol{w}) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights \boldsymbol{w}) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights \boldsymbol{w}) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights \boldsymbol{w}) are there for the given dataset?

Linear
 Regression: Uniqueness

- Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights \boldsymbol{w}) are there for the given dataset?

- Closed form solution for linear regression
- Setting the gradient equal to 0 and solving for critical points
- Potential issues: invertibility and computational costs

Key Takeaways

- Gradient descent
- Effect of step size
- Termination criteria
- Convexity vs. non-convexity
- Strong vs. weak convexity
- Implications for local, global and unique optima
- Suppose you have a regression task and your goal is to minimize the true squared error:

$$
\operatorname{err}(h)=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[(h(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

Bias-Variance Tradeoff

where f is the target function and
\mathcal{P} is some distribution of interest over all possible inputs

- Let $h_{\mathcal{D}}$ be the hypothesis returned when the input training dataset is \mathcal{D}
- Assume each data point in \mathcal{D} is drawn independently from \mathcal{P}

$$
\cdot \operatorname{err}\left(h_{\mathcal{D}}\right)=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\left(h_{\mathcal{D}}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]
$$

$$
\cdot \mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]=\mathbb{E}_{\mathcal{D}}\left[\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\left(h_{\mathcal{D}}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right]
$$

$$
\begin{aligned}
& =\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[\left(h_{\mathcal{D}}(\boldsymbol{x})-f(\boldsymbol{x})\right)^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-2 h_{\mathcal{D}}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]\right] \\
& =\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}\right]-2 \bar{h}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]
\end{aligned}
$$

- where $\bar{h}(\boldsymbol{x})=\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})\right] \approx \frac{1}{C} \sum_{c=1}^{C} h_{\mathcal{D}_{c}}(\boldsymbol{x})$

Bias-Variance Tradeoff

- $\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]$
$=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}\right]-2 \bar{h}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]$

$$
=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}\right]-\bar{h}(\boldsymbol{x})^{2}+\bar{h}(\boldsymbol{x})^{2}-2 \bar{h}(\boldsymbol{x}) f(\boldsymbol{x})+f(\boldsymbol{x})^{2}\right]
$$

$$
=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-\bar{h}(\boldsymbol{x})^{2}\right]+(\bar{h}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

$=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\right.$ Variance of $h_{\mathcal{D}}(\boldsymbol{x})+$ Bias of $\left.\bar{h}(\boldsymbol{x})\right]$

How variable is $h_{\mathcal{D}}$?

Bias-Variance Tradeoff

$$
\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-\bar{h}(\boldsymbol{x})^{2}\right]+(\bar{h}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

How well, on average, does $h_{\mathcal{D}}$ approximate f ?

How well could $h_{\mathcal{D}}$ approximate anything?

Bias-Variance Tradeoff

$$
\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-\bar{h}(\boldsymbol{x})^{2}\right]+(\bar{h}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

How well, on average, does $h_{\mathcal{D}}$ approximate f ?

How well could $h_{\mathcal{D}}$ approximate random noise?

Bias-Variance Tradeoff

$$
\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-\bar{h}(\boldsymbol{x})^{2}\right]+(\bar{h}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

How well, on average, does $h_{\mathcal{D}}$ approximate f ?

Increases as the model becomes more complex

Bias-Variance Tradeoff

$$
\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right]=\mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}\left[h_{\mathcal{D}}(\boldsymbol{x})^{2}-\bar{h}(\boldsymbol{x})^{2}\right]+(\bar{h}(\boldsymbol{x})-f(\boldsymbol{x}))^{2}\right]
$$

Decreases as the model becomes more complex

Bias-Variance Tradeoff (Example)

- $\mathcal{X}=\mathbb{R}$ and $\mathcal{P}=\operatorname{Uniform}(0,2 \pi)$
- $f(x)=\sin (x)$
- $N=2 \rightarrow \mathcal{D}=\left\{\left(x_{1}, \sin \left(x_{1}\right)\right),\left(x_{2}, \sin \left(x_{2}\right)\right)\right\}$
- Consider two models:
- The "constant" model $-\mathcal{H}_{0}=\{h: h(x)=b\}$
- Linear regression $-\mathcal{H}_{1}=\{h: h(x)=a x+b\}$

Bias-Variance Tradeoff (Example)

Bias-Variance Tradeoff (Example)

Bias-Variance Tradeoff (Example)

Bias-Variance Tradeoff ($N=2$)

Bias of $\bar{h}(x) \approx 0.50$
Variance of $h_{\mathcal{D}}(x) \approx 0.25$
$\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right] \approx 0.75$
p

Bias of $\bar{h}(x) \approx 0.21$
Variance of $h_{\mathcal{D}}(x) \approx 1.74$
$\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right] \approx 1.95$

Bias-Variance Tradeoff ($N=5$)

Bias of $\bar{h}(x) \approx 0.50$
Variance of $h_{\mathcal{D}}(x) \approx 0.10$
$\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right] \approx 0.60$

Variance of $h_{\mathcal{D}}(x) \approx 0.21$
$\mathbb{E}_{\mathcal{D}}\left[\operatorname{err}\left(h_{\mathcal{D}}\right)\right] \approx 0.42$

Number of training points, N

Number of training points, N

Generalization
Bias-Variance analysis

Number of training points, N

Number of training points, N

Simple model
Complex model

