10-701: Introduction to Machine Learning Lecture 4 – Linear Regression

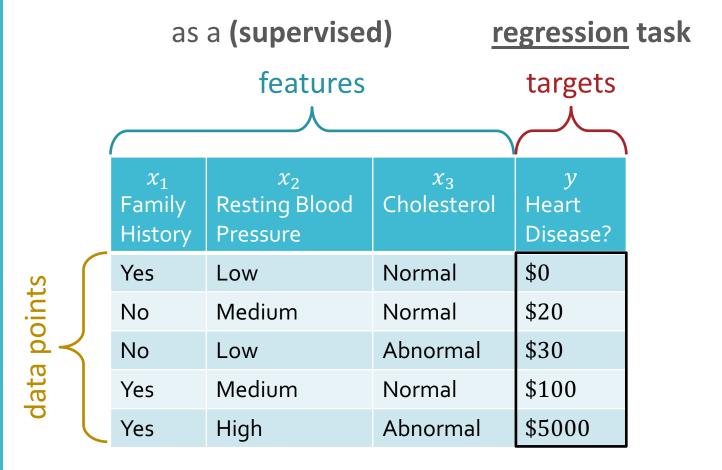
Henry Chai & Zack Lipton 9/11/23

Front Matter

- Announcements:
 - HW1 released 9/6, due 9/20 at 11:59 PM
- Recommended Readings:
 - Bishop, Section 3.2
 - Murphy, <u>Sections 7.1-7.3</u>

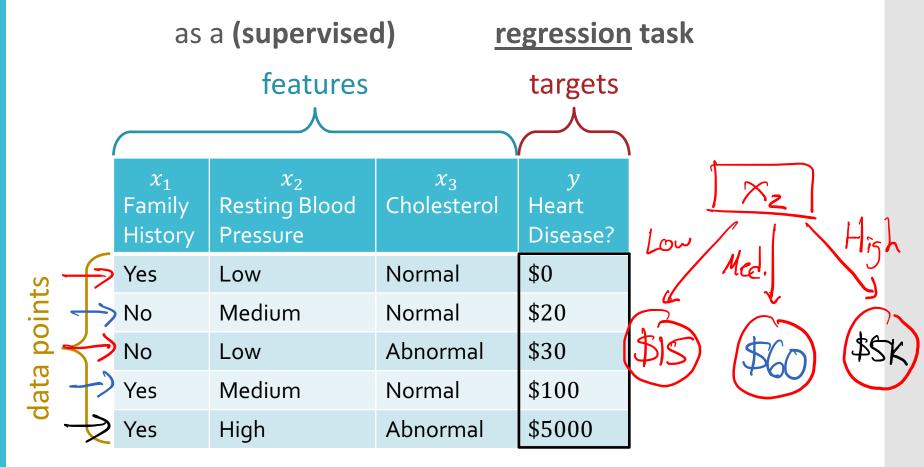
Recall: Regression

Learning to diagnose heart disease



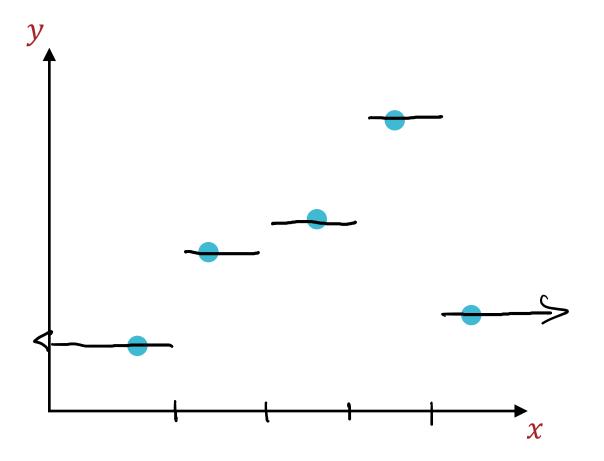
Decision Tree Regression

Learning to diagnose heart disease



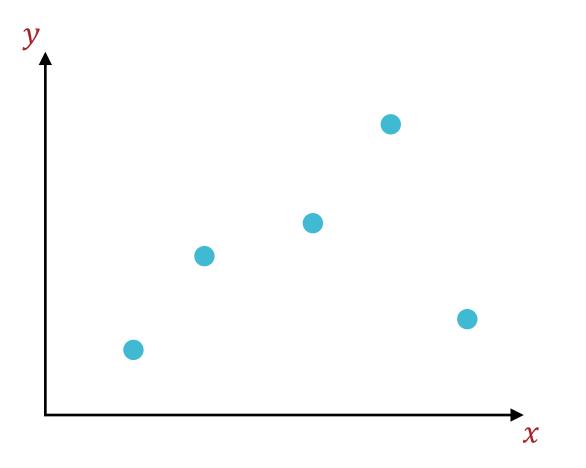
1-NN Regression

• Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



2-NN Regression?

• Suppose we have real-valued targets $y \in \mathbb{R}$ and one-dimensional inputs $x \in \mathbb{R}$



Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\mathbf{x} = [x_1, ..., x_D]^T \in \mathbb{R}^D$
- Assume

$$y = \mathbf{w}^T \mathbf{x} + w_0$$

Linear Regression

• Suppose we have real-valued targets $y \in \mathbb{R}$ and

Assume

D-dimensional inputs
$$\mathbf{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$$

Assume
$$\mathbf{y} = \mathbf{w}^T \mathbf{x}$$

Linear Regression

- Suppose we have real-valued targets $y \in \mathbb{R}$ and D-dimensional inputs $\mathbf{x} = [1, x_1, ..., x_D]^T \in \mathbb{R}^{D+1}$
- Assume

$$y = \mathbf{w}^T \mathbf{x}$$

• Notation: given training data $\mathcal{D} = \{(x^{(n)}, y^{(n)})\}_{n=1}^{N}$

is the *design matrix*

•
$$(y) = [y^{(1)}, ..., y^{(N)}]^T \in \mathbb{R}^N$$
 is the target vector

General Recipe for Machine

Learning

1. Define a model and model parameters

2. Write down an objective function

3. Optimize the objective w.r.t. the model parameters

Recipe Linear Regression

1. Define a model and model parameters

Assume
$$\gamma = W^T X$$

The parameters $W = [W_0, W_1, ..., W_D]$

2. Write down an objective function

Minimize squered loss
$$l_{\infty}(\omega) = \frac{1}{N} \sum_{n=1}^{\infty} (y^{(n)} - y^{(n)})^{2}$$

Minimizing the Squared Error

gradient

$$I_{D}(\omega) = \frac{1}{N} \sum_{N=1}^{N} (w^{T} x^{(N)} - y^{(N)})^{2} = \frac{1}{N} \sum_{N=1}^{N} (x^{(N)} T_{W} - y^{(N)})^{2}$$

$$\times w - y \in \mathbb{R}^{N}$$

$$I_{D}(\omega) = \frac{1}{N} (x_{W} - y)^{T} (x_{W} - y) = ||x_{W} - y^{T}||_{2}^{2}$$

$$= \frac{1}{N} (w^{T} x^{T} x_{W} - 2 w^{T} x^{T} y_{W} + y^{T} x_{W})$$

$$\Rightarrow \frac{1}{N} (2x^{T} x_{W}^{2} - 2x^{T} y_{W}^{2}) = 0$$

$$\Rightarrow x^{T} x_{W}^{2} = x^{T} y_{W}^{2} = 0 \Rightarrow x^{T} x^{2} = x^{T} y_{W}^{2}$$

$$\Rightarrow w^{2} = (x^{T} x_{W}^{2} - x^{T} y_{W}^{2})$$

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

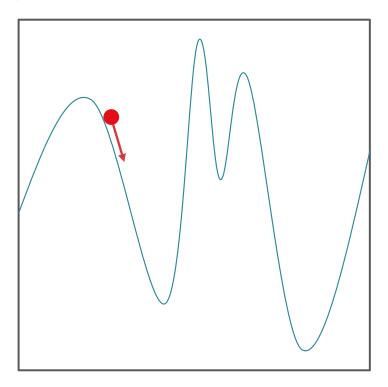
1. Is X^TX invertible?

Closed Form Solution

2. If so, how computationally expensive is inverting X^*X^* $X \in \mathbb{R}^{N \times (D+1)} \Rightarrow X^T X \in \mathbb{R}^{(D+1) \times (D+1)} \times \mathbb{R}^{(D+1) \times (D+1)}$ $\text{classically inverting is } O(D^3) \text{ (bot we can get <math>O(D^2.373)$)}
We need to store X', O(ND)

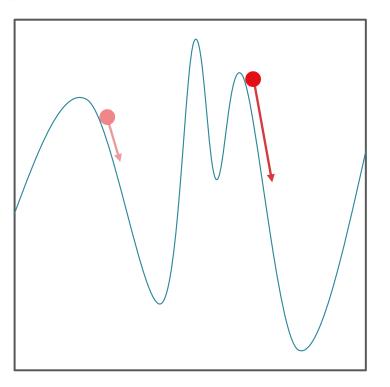
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



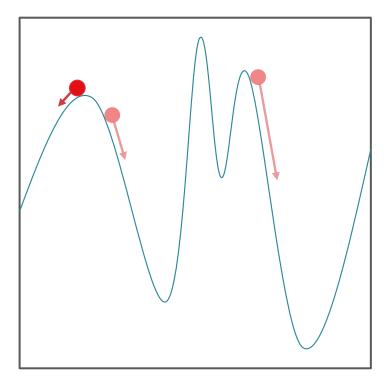
Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



Gradient Descent: Intuition

- An iterative method for minimizing functions
- Requires the gradient to exist everywhere



- Suppose the current weight vector is $\mathbf{w}^{(t)}$
- Move some distance, η , in the "most downhill" direction, \hat{v} :

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \eta \widehat{\boldsymbol{v}}$$

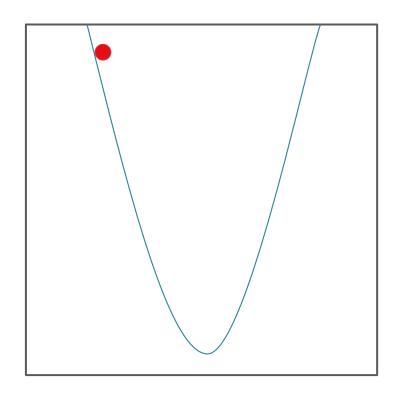
Gradient Descent: Step Direction

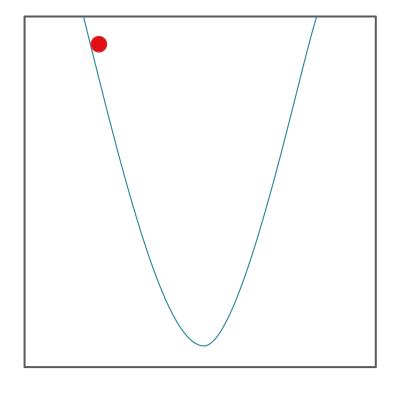
- Suppose the current weight vector is $\mathbf{w}^{(t)}$
- Move some distance, η , in the "most downhill" direction, \hat{v} :

$$\boldsymbol{w}^{(t+1)} = \boldsymbol{w}^{(t)} + \eta \widehat{\boldsymbol{v}}$$

- The gradient points in the direction of steepest increase ...
- ... so \hat{v} should point in the opposite direction:

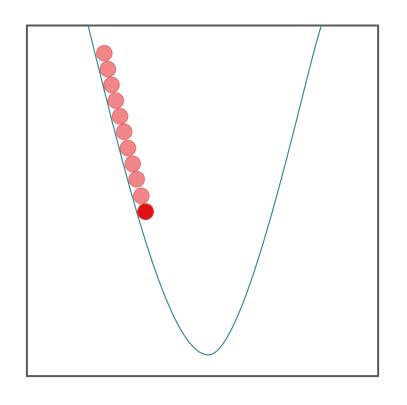
$$\widehat{\boldsymbol{v}}^{(t)} = -\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)}\right)\right\|}$$

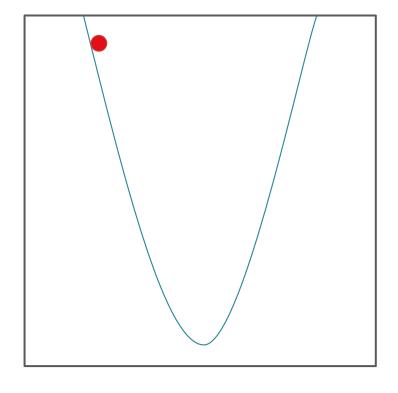




Small η

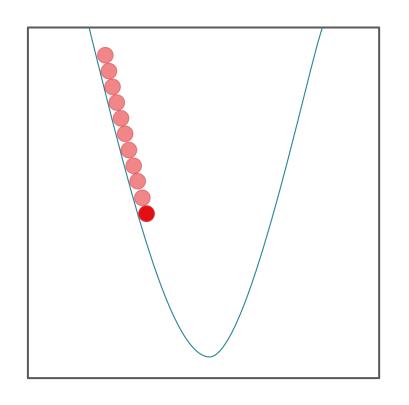
Large η

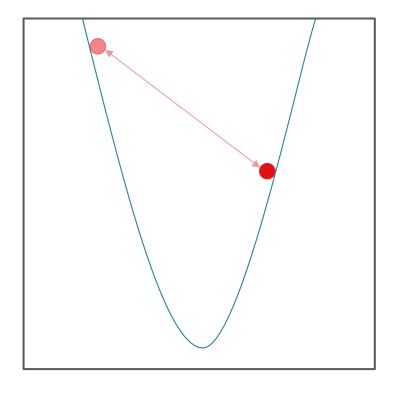




Small η

Large η

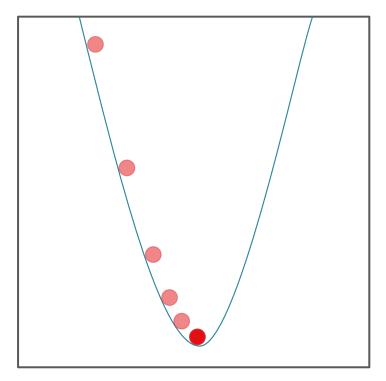




Small η

Large η

• Use a variable $\eta^{(t)}$ instead of a fixed η !



- Set $\eta^{(t)} = \eta^{(0)} \| \nabla_{\mathbf{w}} \ell_{\mathcal{D}} \left(\mathbf{w}^{(t)} \right) \|$
- $\|\nabla_{w}\ell_{\mathcal{D}}(w^{(t)})\|$ decreases as $\ell_{\mathcal{D}}$ approaches its minimum $\to \eta^{(t)}$ (hopefully) decreases over time

$$\bullet \ \widehat{\boldsymbol{v}}^{(t)} = -\frac{\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)}\right)}{\left\|\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)}\right)\right\|}$$

$$\boldsymbol{\cdot} \ \boldsymbol{\eta}^{(t)} = \boldsymbol{\eta}^{(0)} \left\| \nabla_{\boldsymbol{w}} \ell_{\mathcal{D}} \left(\boldsymbol{w}^{(t)} \right) \right\|$$

$$w^{(t+1)} = w^{(t)} + \eta^{(t)} \widehat{v}^{(t)}$$

$$= \omega^{(t)} + \eta^{(0)} || \nabla \omega \int_{\mathcal{O}} (\omega^{(t)}) || \frac{-\nabla \omega \int_{\mathcal{O}} (\omega^{(t)})}{|| \nabla \omega \int_{\mathcal{O}} (\omega^{(t)})}$$

$$= \omega^{(t)} - \eta^{(0)} \nabla \omega \int_{\mathcal{O}} (\omega)$$

• Input:
$$\mathcal{D} = \{(\mathbf{x}^{(i)}, y^{(i)})\}_{i=1}^{N}, \eta^{(0)}$$

- 1. Initialize $w^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{ (x^{(i)}, y^{(i)}) \}_{i=1}^{N}, \eta^{(0)}, \epsilon$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While $\|\nabla_{\mathbf{w}} \ell_{\mathcal{D}}(\mathbf{w}^{(t)})\| > \epsilon$
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

• Input:
$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N, \eta^{(0)}, T$$

- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While t < T
 - a. Compute the gradient:

$$\nabla_{\boldsymbol{w}}\ell_{\mathcal{D}}\left(\boldsymbol{w}^{(t)}\right)$$

- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

Why Gradient Descent for linear regression?

• Input:
$$\mathcal{D} = \{(x^{(i)}, y^{(i)})\}_{i=1}^N, \eta^{(0)}, T$$

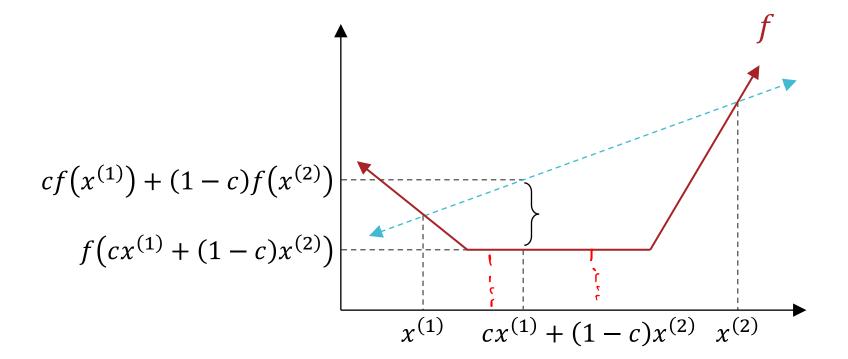
- 1. Initialize $\mathbf{w}^{(0)}$ to all zeros and set t=0
- 2. While TERMINATION CRITERION is not satisfied
 - a. Compute the gradient:

$$\nabla_{\mathbf{w}}\ell_{\mathcal{D}}(\mathbf{w}^{(t)}) = \sqrt{2} \left(2 \times \sqrt{1} \times \mathbf{w} - 2 \times \sqrt{1} \right)$$

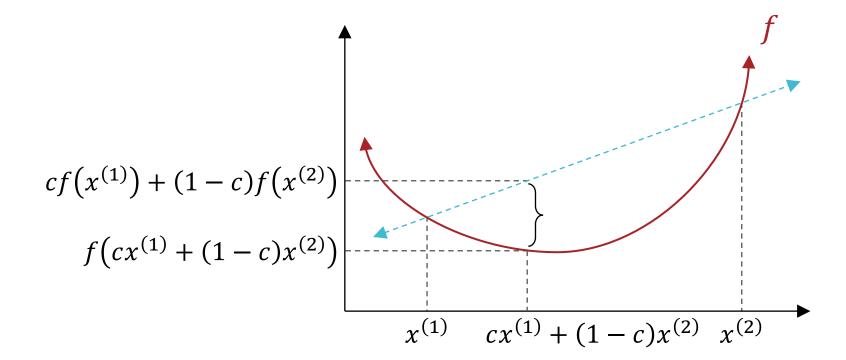
- b. Update $w: w^{(t+1)} \leftarrow w^{(t)} \eta^{(0)} \nabla_w \ell_{\mathcal{D}} \left(w^{(t)} \right)$
- c. Increment $t: t \leftarrow t + 1$
- Output: $\mathbf{w}^{(t)}$

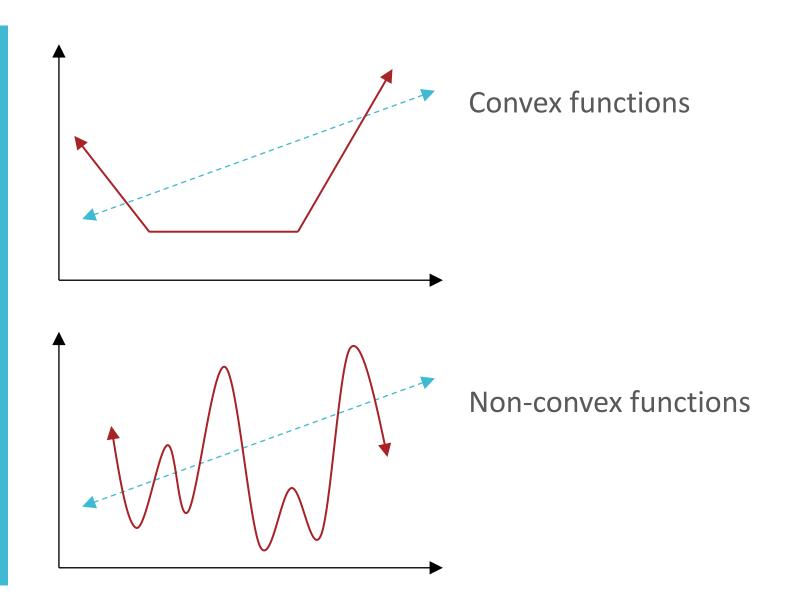
• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \leq c \leq 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$ $cf(x^{(1)}) + (1-c)f(x^{(2)})$ $f(cx^{(1)}) + (1-c)x^{(2)})$ $cx^{(1)} + (1-c)x^{(2)} x^{(2)}$ $\chi^{(1)}$

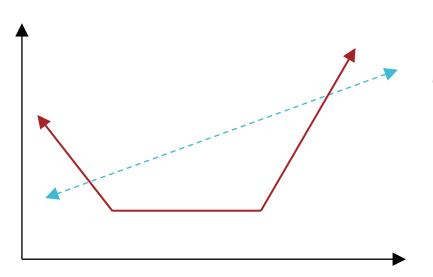
• A function $f: \mathbb{R}^D \to \mathbb{R}$ is convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 \le c \le 1$ $f(cx^{(1)} + (1-c)x^{(2)}) \le cf(x^{(1)}) + (1-c)f(x^{(2)})$



• A function $f: \mathbb{R}^D \to \mathbb{R}$ is strictly convex if $\forall x^{(1)} \in \mathbb{R}^D, x^{(2)} \in \mathbb{R}^D \text{ and } 0 < c < 1$ $f(cx^{(1)} + (1-c)x^{(2)}) < cf(x^{(1)}) + (1-c)f(x^{(2)})$

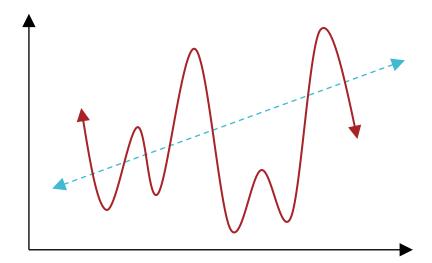






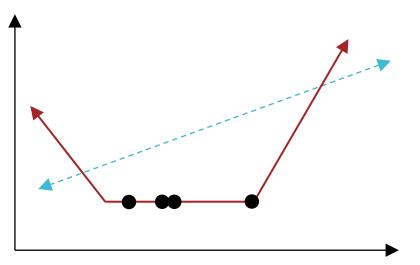
Given a function $f: \mathbb{R}^D \to \mathbb{R}$

• x^* is a *global* minimum iff $f(x^*) \le f(x) \ \forall \ x \in \mathbb{R}^D$

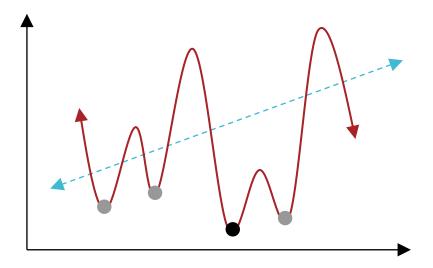


• x^* is a *local* minimum iff $\exists \epsilon \text{ s.t. } f(x^*) \leq f(x) \forall$

$$x$$
 s.t. $||x - x^*||_2 < \epsilon$

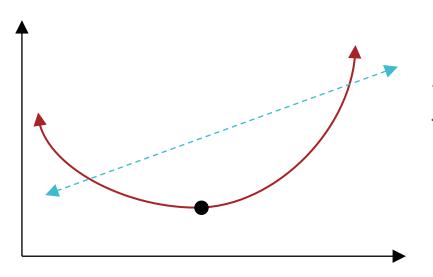


Convex functions:
Each local minimum is a global minimum!

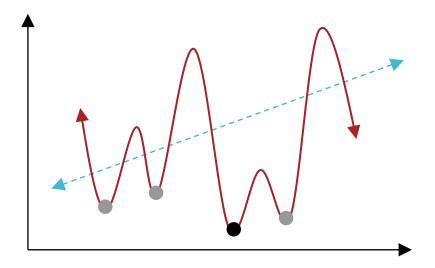


Non-convex functions:

A local minimum may or may not be a global minimum...



Strictly convex functions:
There exists a unique global minimum!



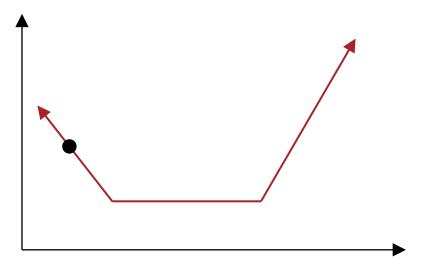
Non-convex functions:

A local minimum may or may not be a global minimum...

9/11/23 **36**

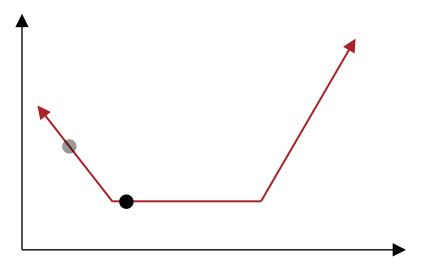
Gradient Descent & Convexity

- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!

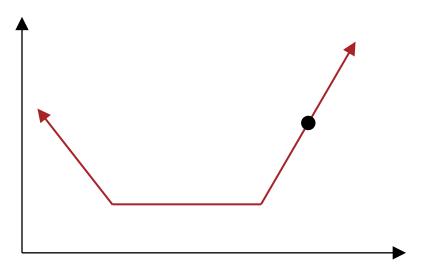


Gradient Descent & Convexity

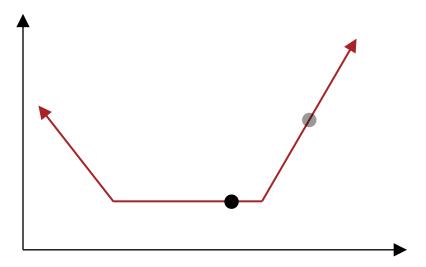
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!



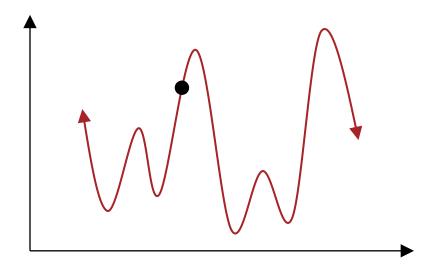
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!



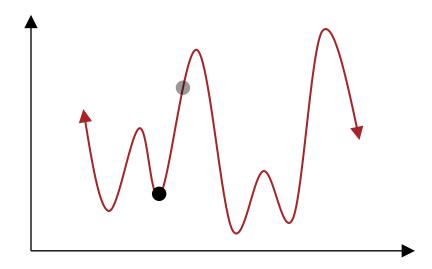
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!



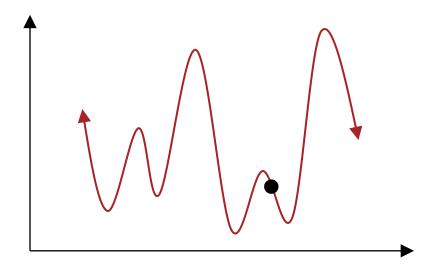
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...



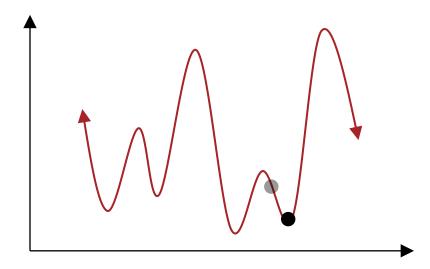
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...



- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...

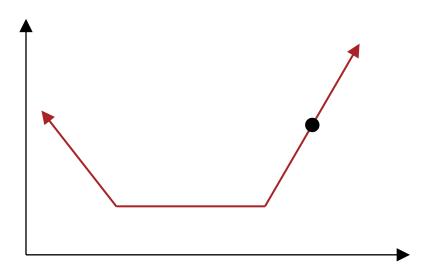


- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Not ideal if the objective function is non-convex...



The squared error for linear regression is convex (but not strictly convex)!

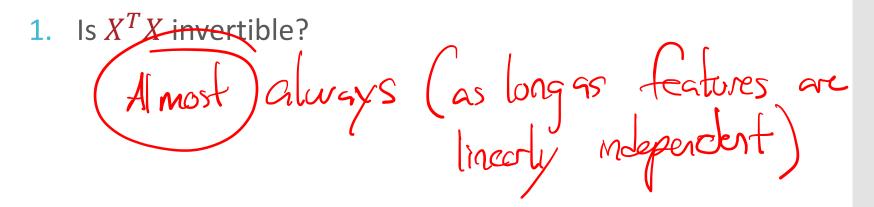
- Gradient descent is a local optimization algorithm it will converge to a local minimum (if it converges)
 - Works great if the objective function is convex!



$$\nabla_{\boldsymbol{w}} \ell_{\mathcal{D}}(\boldsymbol{w}) = (2X^T X \boldsymbol{w} - 2X^T \boldsymbol{y})$$

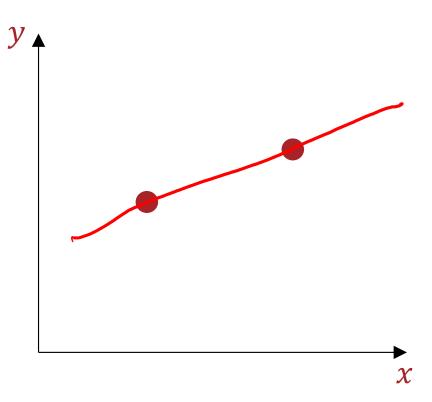
 $H_{\mathbf{w}}\ell_{\mathcal{D}}(\mathbf{w}) = 2X^TX$ which is positive semi-definite

$$\widehat{\boldsymbol{w}} = (X^T X)^{-1} X^T \boldsymbol{y}$$

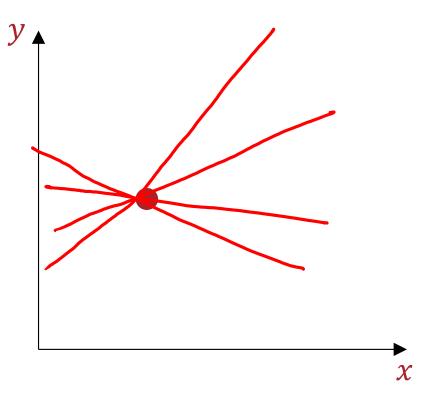


- 2. If so, how computationally expensive is inverting X^TX ?
 - $X^TX \in \mathbb{R}^{D+1 \times D+1}$ so inverting X^TX takes $O(D^3)$ time...
 - Computing X^TX takes $O(ND^2)$ time
 - Can use gradient descent to (potentially) speed things up when N and D are large!

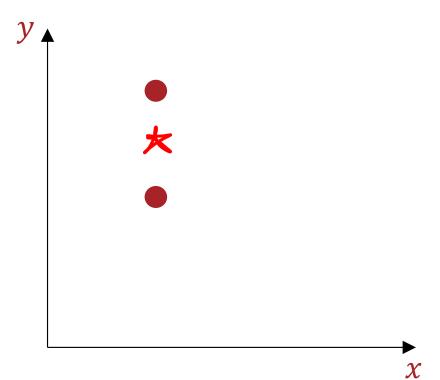
 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?



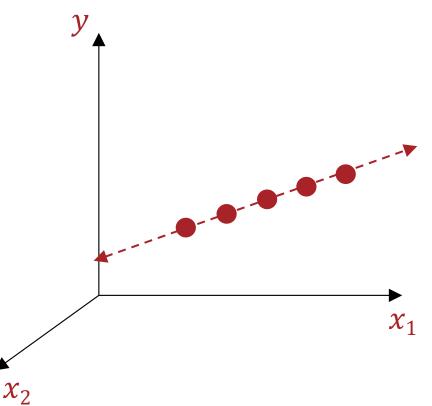
 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?



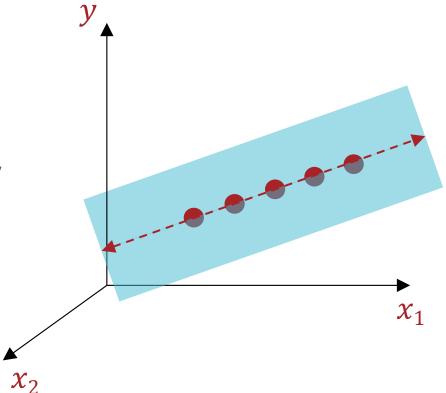
 Consider a 1D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?



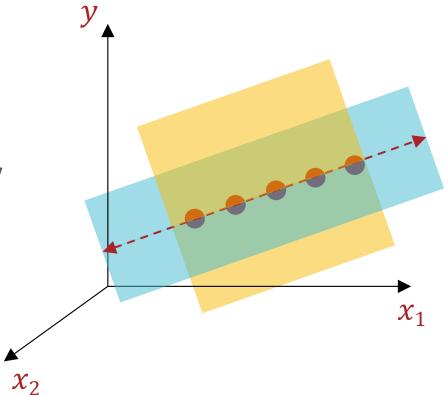
 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of parameters θ) are there for the given dataset?



 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w) are there for the given dataset?



 Consider a 2D linear regression model trained to minimize the mean squared error: how many optimal solutions (i.e., sets of weights w are there for the given dataset?



Key Takeaways

- Closed form solution for linear regression
 - Setting the gradient equal to 0 and solving for critical points
 - Potential issues: invertibility and computational costs
- Gradient descent
 - Effect of step size
 - Termination criteria
- Convexity vs. non-convexity
 - Strong vs. weak convexity
 - Implications for local, global and unique optima

9/11/23 **53**

 Suppose you have a regression task and your goal is to minimize the *true* squared error:

$$err(h) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}} \left[\left(h(\boldsymbol{x}) - f(\boldsymbol{x}) \right)^2 \right]$$

where f is the target function and

- $\stackrel{\textstyle \sim}{\mathcal{P}}$ is some distribution of interest over all possible inputs
- Let $h_{\mathcal{D}}$ be the hypothesis returned when the input training dataset is \mathcal{D}
- Assume each data point in ${\mathcal D}$ is drawn independently from ${\mathcal P}$

•
$$err(h_{\mathcal{D}}) = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}} \left[\left(h_{\mathcal{D}}(\boldsymbol{x}) - f(\boldsymbol{x}) \right)^2 \right]$$

•
$$\mathbb{E}_{D}[err(h_{D})]$$

= $E_{D}[E_{x\sim p}(h_{D}(x) - P(x))^{2}]$

= $E_{x\sim p}[E_{D}[(h_{D}(x) - P(x))^{2}]]_{f(x)}$

= $E_{x\sim p}[E_{D}[h_{D}(x)^{2}] - 2h_{D}(x)^{2}]$

= $E_{x\sim p}[E_{D}[h_{D}(x)^{2}] - 2E[h_{D}(x)]f(x) + f(x)^{2}]$
 $h(x) = E_{D}[h_{D}(x)] \sim \frac{1}{C} \sum_{i=1}^{\infty} h_{D_{i}}(x)$

$$\begin{split} & \mathbb{E}_{D}[err(h_{D})] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} \right] - 2h(x) f(x) + f(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} \right] - h(x)^{2} + h(x)^{2} - 2h(x) f(x) + f(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + \left(h(x) - f(x) \right)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p} \left[\mathbb{E}_{D} \left[h_{D}(x)^{2} - h(x)^{2} \right] + h(x)^{2} \right] \\ & = \mathbb{E}_{x-p}$$

How variable is $h_{\mathcal{D}}$?

$$\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\boldsymbol{x})^2 - \bar{h}(\boldsymbol{x})^2] + \left(\bar{h}(\boldsymbol{x}) - f(\boldsymbol{x})\right)^2\right]$$

How well, on average, does h_D approximate f?

How well could $h_{\mathcal{D}}$ approximate anything?

$$\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\boldsymbol{x})^{2} - \bar{h}(\boldsymbol{x})^{2}] + (\bar{h}(\boldsymbol{x}) - f(\boldsymbol{x}))^{2}\right]$$

How well, on average, does h_D approximate f?

How well could $h_{\mathcal{D}}$ approximate random noise?

$$\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\boldsymbol{x})^2 - \bar{h}(\boldsymbol{x})^2] + \left(\bar{h}(\boldsymbol{x}) - f(\boldsymbol{x})\right)^2\right]$$

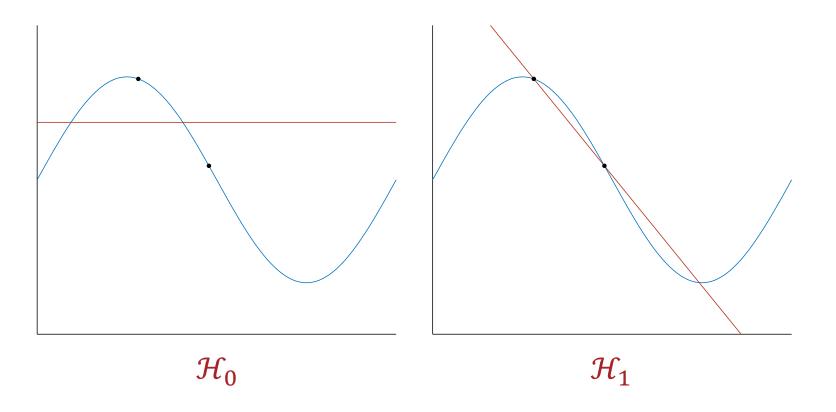
How well, on average, does h_D approximate f?

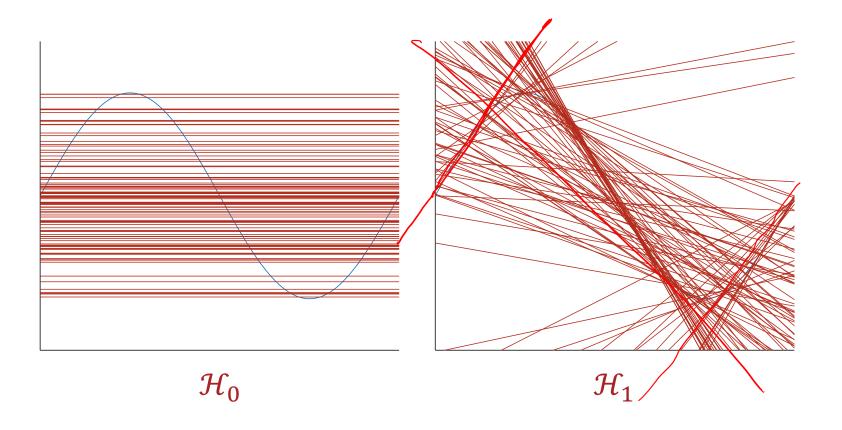
Increases as the model becomes more complex

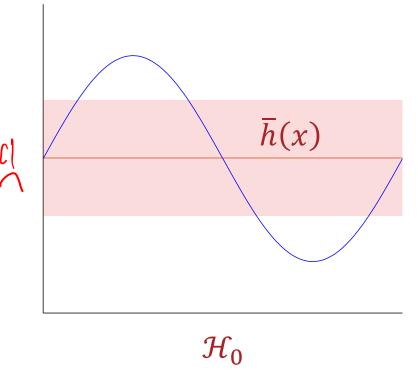
$$\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] = \mathbb{E}_{\boldsymbol{x} \sim \mathcal{P}}\left[\mathbb{E}_{\mathcal{D}}[h_{\mathcal{D}}(\boldsymbol{x})^2 - \bar{h}(\boldsymbol{x})^2] + \left(\bar{h}(\boldsymbol{x}) - f(\boldsymbol{x})\right)^2\right]$$

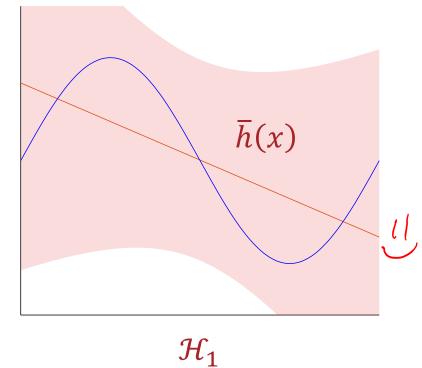
Decreases as the model becomes more complex

- $\mathcal{X} = \mathbb{R}$ and $\mathcal{P} = \text{Uniform}(0, 2\pi)$
- $f(x) = \sin(x)$
- $N = 2 \rightarrow \mathcal{D} = \{(x_1, \sin(x_1)), (x_2, \sin(x_2))\}$
- Consider two models:
 - The "constant" model $\mathcal{H}_0 = \{h : h(x) = b\}$
 - Linear regression $\mathcal{H}_1 = \{h : h(x) = ax + b\}$

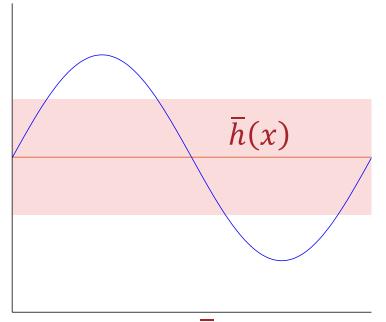




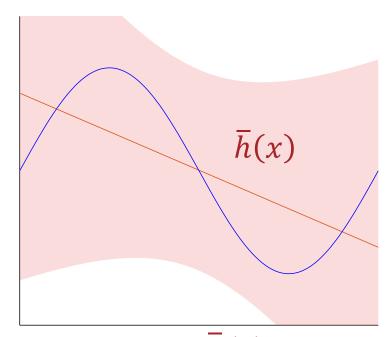




Bias-Variance Tradeoff (N = 2)

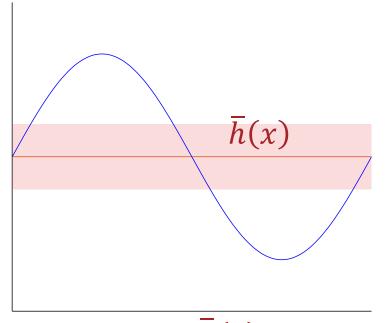


Bias of $\bar{h}(x) \approx 0.50$ Variance of $h_{\mathcal{D}}(x) \approx 0.25$ $\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] \approx 0.75$

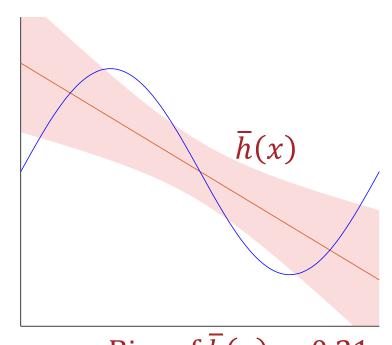


Bias of $\bar{h}(x) \approx 0.21$ Variance of $h_{\mathcal{D}}(x) \approx 1.74$ $\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] \approx 1.95$

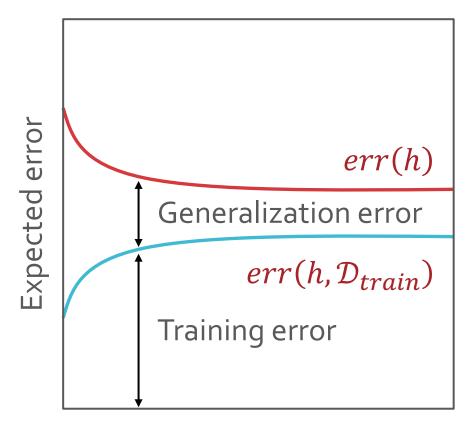
Bias-Variance Tradeoff (N = 5)



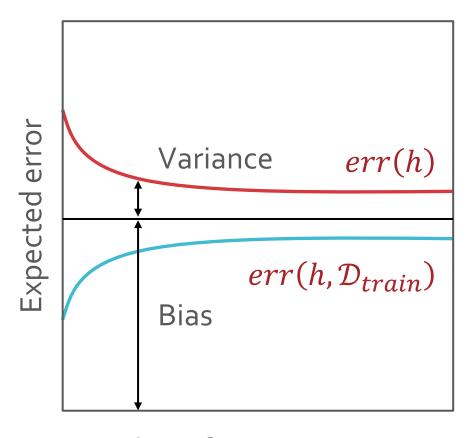
Bias of $\bar{h}(x) \approx 0.50$ Variance of $h_{\mathcal{D}}(x) \approx 0.10$ $\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] \approx 0.60$



Bias of $\bar{h}(x) \approx 0.21$ Variance of $h_{\mathcal{D}}(x) \approx 0.21$ $\mathbb{E}_{\mathcal{D}}[err(h_{\mathcal{D}})] \approx 0.42$



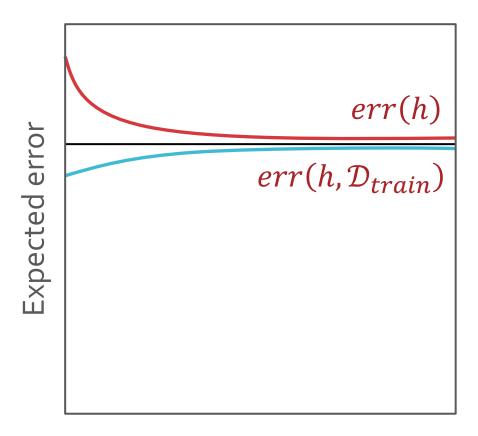
Number of training points, N



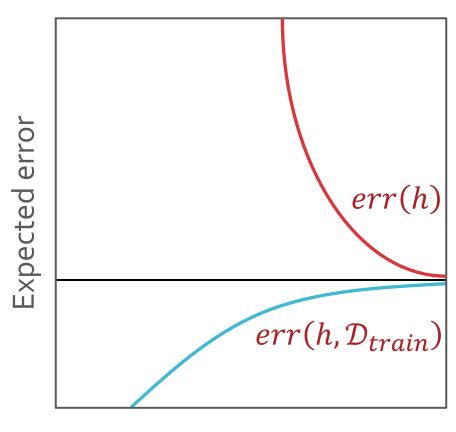
Number of training points, N

Generalization

Bias-Variance analysis



Number of training points, N



Number of training points, N

Simple model

Complex model