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* Announcements:

* HW1 released 9/6, due 9/20 at 11:59 PM
Front Matter - Recommended Readings:

* Bishop, Section 3.2

* Murphy, Sections 7.1-7.3
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https://www.microsoft.com/en-us/research/uploads/prod/2006/01/Bishop-Pattern-Recognition-and-Machine-Learning-2006.pdf
https://ebookcentral.proquest.com/lib/cm/reader.action?docID=3339490&ppg=248

* Learning to diagnose heart disease

as a (supervised) regression task

features targets

Recall: |
: Family

Regression History | Pressure
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= No Medium Normal $20
@)
- '< No Low Abnormal $30
T
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_ Yes High Abnormal | $5000
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* Learning to diagnose heart disease

as a (supervised) regression task
featu res ta rgets
IS| X1 X3
DECISlor.] Tree Family Restlng Blood Cholesterol Heart ) &J
Regre55|0n History | Pressure | Disease? | :jl\
»n — 7 Yes Normal
g — No Medium Normal $20
S~ No Low Abnormal | $30 t 1< @ @
(T
= — Yes Medium Normal $100
§e
—2 Yes High Abnormal | $5000
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1-NN

Regression
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* Suppose we have real-valued targets y € R and

one-dimensional inputs x € R
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* Suppose we have real-valued targets y € R and
one-dimensional inputs x € R

y

A

2-NN

Regression?
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* Suppose we have real-valued targets y € R and
D-dimensional inputs x = [ x4, ...,xp]" € RP

- Assume
y =wlx+w,

Linear

Regression
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* Suppose we have real-valued targets y € R and

D-dimensional inputs x = [1, x4, ..., xp]’T € RP*1 T
- Assume 7 w:)j\'dc),""l/”") l/‘”D—]
y=wlx

Linear

Regression
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Linear

Regression
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* Suppose we have real-valued targets y € R and

D-dimensional inputs x = [1, x4, ..., xp]T € RP*1

- Assume

y=wlx

 Notation: given training data D = {(x(n),y(n))}:ﬂ

—1 x(l)T- _1 x§1) . xl()l)_
@: 1 @7 _|1 0 L) e RNVXD+1
1 T 1 ™

is the design matrix

-@: [y, ...,y(N)]T € RY is the target vector



General
Recipe

for
Machine
Learning
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1. Define a model and model parameters

2. Write down an objective function

3. Optimize the objective w.r.t. the model parameters

10



1. Define a model and model parameters

ASQ\)MC, 7‘ = WK

6)0\(‘0\(‘«2%&—5 uJ"E‘*J W /f”/w’.Dj
Recipe 2. Write down an objective function
f(?r thm& ZQ_ 5“({‘v’="':'é
Linear - -

. R C“\
Regression L ( ) = T\I Z* (/
3. Optlmlze the objective w. rt the model Eqrameters

| Solve i closed ~orm ke den Jogg
&%%\U\@m\% OA_BU\/C

9/11/23
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Minimizing the

Squared Error
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4 VBZT\& (Koo ﬁTQNJ i ﬂ - wi“’/ |
= XK 2Ky £y /)

VAl 2 Ko - _2_>_§i/>
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Closed Form

Solution
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w=X"X)"1xTy

1. Is XTX invertible?

2. If so, how computationally expensive is mvertm%XTX?

N RNKCDH\} )(G ® O R(DAI

\csslca\ \(\\lfjﬂ 3 @(‘D7> ( L& we Can
/ ’\ﬂ =t O( 2*373)>

Jo ned b stoe X QWD)
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Gradient

Descent:
Intuition

9/11/23

* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent:
Intuition
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* An iterative method for minimizing functions

* Requires the gradient to exist everywhere
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Gradient

Descent
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- Suppose the current weight vector is w®

* Move some distance, n, in the “most downhil

wttD) = W) 4 9%

|”

direction, V:

19



Gradient

Descent:
Step Direction

9/11/23

* Move some distance, n, in the “most downhil

- Suppose the current weight vector is w®

|”

wttD) = W) 4 9%

* The gradient points in the direction of steepest increase ...

* ... S0 ¥ should point in the opposite direction:

. Vw'gy_) (W(t))
IV tp (w®)

AN

() =

direction, V:
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Gradient

Descent:
Step Size

Smalln Large 7
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Gradient

Descent:
Step Size

Smalln Large 7
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Gradient

Descent:
Step Size

Smalln Large 7
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Gradient

Descent:
Step Size

9/11/23

* Use a variable n(t) instead of a fixed n!

- Setn® = nO||v, 25 (WD)

[Vt (w®)|| decreases as £, approaches its minimum

- n(t) (hopefully) decreases over time

24



Gradient

Descent

9/11/23

- ) —

WD = O 4 pOF®

L wal) (W(t))
[Vwtp (w®)]

7 ® = O, £5 (WD)

vy )
= @ .lCOW WI!QD(‘W@W* °

TG L, (W)
— W C‘E\ - VLCO> vw QD (w)
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Gradient

Descent

9/11/23

* Input: D = {(x(i)»y(i))}i n©

(0)

1. Initialize w dsett =0

RMINATION CRITERION is not satisfied

a. Compute the gradi
waz) (W(t))
b. Update w: w1 « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®
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Gradient

Descent

9/11/23

* Input: D = {(x(i),y(i))}livzl,n(o), €
1. Initialize w® to all zeros and sett = 0

2. While ||V, £p (W®)|| > €
a. Compute the gradient:
wap (W(t))

b. Update w: w1 « w® _ pOy o (W(t))

c. Incrementt:t<t+1

- Qutput: w®)
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Gradient

Descent

9/11/23

* Input: D = {(x(i),y(i))}il,n(o),T
1. Initialize w© to all zeros and sett = 0

2. Whilet<T

a. Compute the gradient:
waz) (W(t))

b. Update w: w1 « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®
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Why
Gradient

Descent for
linear
regression’?

9/11/23

* Input: D = {(x(i),y(i))}li\’:l,n(o),T
1. Initialize w© to all zeros and sett = 0

2. While TERMINATION CRITERION is not satisfied

a. Compute the gradient:

( , _
Vwtp (Ww®) = 7\‘[( Z%T}QJ ’--—27<1 )/>
b. Update w: w1 « w® — Oy ¢ (w®)

c. Incrementt:t<t+1

- Qutput; w®
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Convexity
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* A function f:RP - Riis convex if

Ve eRP,x® eRPand0<c<1

flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)
(— e )
A f
Q) - -

cf(xM)+ (1 - o) ffx®
\(0\3

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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* A function f:RP - Riis convex if
Ve eRP,x® eRPand0<c<1
flex® + (1 -c)x@) < cf (W) + (1 = ) f(x?P)

! f

cf(x®)+ (1 =) f(x@) - | }

Flex® 4 (1= @) |- i L

( 1

X(l) Cx(l) + (1 . c)x(z) x(z)
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Convexity
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» A function f: RP — Ris strictly convex if
Vil e R x®D eRPand0<c< 1
flex® + (1 - )x@) < cf (x®) + (1 = ) f(x?P)

A f

cf(x®)+ (1 -o)f(x@)

flex® + (1 - c)x®@)

x @ x® (1-c)x® @
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Convexity
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¥  Convex functions

Non-convex functions

33



/-7 Given a function f: R” > R
* x* is a global minimum iff
fx)<f(x)vxeR?

Convexity

”' . . . .
* x* is a local minimum iff

Jest. f(x") < f(x)V

xst||lx—x"||, <€
\
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Convexity
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Convex functions:
Each local minimum is a

global minimum!

Non-convex functions:
A local minimum may or may

not be a global minimum...
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Convexity

9/11/23

Strictly convex functions:

There exists a unique global

minimum/!

Non-convex functions:
A local minimum may or may

not be a global minimum...

36



- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

\

Gradient
Descent & 4

Convexity

9/11/23 37



- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/11/23
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity
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- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

* Not ideal if the objective function is non-convex...

Gradient
Descent & 4

Convexity

9/11/23
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The squared
error for linear
regression is

convex (but
not strictly
convex)!

9/11/23

- Gradient descent is a local optimization algorithm — it

will converge to a local minimum (if it converges)

- Works great if the objective function is convex!

N\

Vi tp(W) = 2XTXw — 2XTy)

H,£p(w) = 2XTX which is positive semi-definite
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Closed Form

Solution

9/11/23

w=X"X)"1xTy
s XT x4 |ble?

74[ MDYL ) Wc—.)lg ( OS5 [D(Lj 55 C\’LDJ‘ES arc

sy JTM&A%)

If so, how computationally expensive is inverting X7 X?

« XTX € RPH1XP+1 o5 inverting XT X takes O(D3) time...
« Computing XT X takes O(ND?) time

* Can use gradient descent to (potentially) speed things

up when N and D are large!

46



Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

Y a

=Y
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Linear

Regression:
Unigqueness
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* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

=Y

48



Linear

Regression:
Unigqueness

9/11/23

* Consider a 1D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset?

Y a

® X O

=Y
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Linear

Regression:
Unigqueness

9/11/23

* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of parameters 0) are
there for the given

dataset? X,

50



Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset? X,
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Linear

Regression:
Unigqueness
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* Consider a 2D linear

regression model trained
to minimize the mean
squared error: how many
optimal solutions (i.e.,
sets of weights w) are
there for the given

dataset? X,

52



\CAELCEENR
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* Closed form solution for linear regression

* Setting the gradient equal to 0 and solving for critical

points

* Potential issues: invertibility and computational costs

* Gradient descent

* Effect of step size

* Termination criteria

* Convexity vs. non-convexity

- Strong vs. weak convexity

* Implications for local, global and unique optima

53



Bias-Variance

Tradeoff

9/11/23

- Suppose you have a regression task and your goal is to

minimize the true squared error:

err(h) = Eyp [(h(x) —f (x))2]

where f is the target function and
P)is some distribution of interest over all possible inputs

* Let hp be the hypothesis returned when the input training
dataset is D

* Assume each data point in D is drawn independently from P
_rf > e— )

54



cerr(hp) = Exop [(hD(x) B f(x))z]

" Eplerr(hp)]
?ia(sj—Vaf:ciance - g [(:XN?K% (%) ~ Q}\\?]Y
IH6E0 I€, ECu (- %)Zﬂm
q(:xw[g | ho 68' 2h (w%)**wp&)zﬁ

- £ o Df | h CX>] Q[j[\q Cxﬂ%\ﬂ"&
e WZ hy (x}



@[err(hp)][EDD‘ qu] Q\LGQQ}Q) %>J
s T 67T o) 2\«&3%>+@)j

[t: [h(0)™ 1) ]’f( W) =5 @3 J
weriancn o hefx) (bm £ W)~

Bias-Variance

Tradeoff




Bias-Variance

Tradeoff

9/11/23

How variable is hp?

N J
Y
Eplerr(hp)] = Exp [ED [hp(0)? ~ R(0)?] + (~(x) ~ <">)2]

A
4 A

How well, on average,
does hp approximate f?
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Bias-Variance

Tradeoff
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How well could hp approximate anything?

N J
Y
Eplerr(hp)] = Exp [ED [hp(0)? ~ R(0)?] + (~(x) ~ <">)2]

A
4 A

How well, on average,
does hp approximate f?
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Bias-Variance

Tradeoff
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How well could hp approximate random noise?

N J
Y
Eplerr(hp)] = Exp [ED [hp(0)? ~ R(0)?] + (~(x) ~ <">)2]

A
4 A

How well, on average,
does hp approximate f?

59



Bias-Variance

Tradeoff
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Increases as the model becomes more complex

N J
Y
Eplerr(hp)] = Exp [ED [hp(0)? ~ R(0)?] + (~(x) ~ <">)2]

A
4 A

Decreases as the model
becomes more complex

60



Bias-Variance
Tradeoff

(Example)
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- X = Rand P = Uniform(0, 27)
* f(x) = sin(x)
"N=2-D= {(x1; Sin(xl)): (Xz, Sin(xZ))}

* Consider two models:

* The “constant” model - Hy = {h : h(x) = b}

* Linear regression - H; = {h : h(x) = ax + b}

61



Bias-Variance
Tradeoff

(Example)
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Bias-Variance [ | 7~ S\
‘\Q NS

Tradeoft

(Example)

»

N
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Bias-Variance R(x) h(x)

Tradeoff
(Example) \/ &
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Bias-Variance R(x) )

Tradeoff
el N4

Bias of h(x) = 0.50 Bias of h(x) ~ 0.21
Variance of hp(x) = 0.25  Variance of hp(x) = 1.74
Eplerr(hp)]/= 0.75 Eplerr(hp)] = 1.95

i

9/11/23 65



Bias-Variance R(x) R(x)

Tradeoff
el N/

Bias of h(x) = 0.50 Bias of h(x) ~ 0.21
Variance of hp(x) = 0.10  Variance of hy(x) = 0.21

Eplerr(hp)] = 0.60 Eplerr(hp)]|= 0.42

9/11/23



k err(h)

I Generalization error

K err(h, 7)train)

Training error

-

err(h, 7)train)

\ Variance err(h)

Expected error
Expected error

Bias

Number of training points, N Number of training points, N

Generalization Bias-Variance analysis




_ k err(h) _
e —_———————— e
E - err(h, Dergin) E

S S err(h)
O O
v v
Q. Q.
x x
L Ll

Mﬂtrain)

Number of training points, N Number of training points, N

Simple model Complex model




