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Front Matter

� Announcements: 

� HW1 released 9/6 (today!), due 9/20 at 11:59 PM 

� Recitation 1: Decision Trees and KNNs on 9/8 

� Same time and place as lecture

� Recommended Readings:

� Mitchell, Section 8.1 – 8.2: 𝑘-Nearest Neighbor Learning

� Daumé III, Chapter 3: Geometry and Nearest Neighbors
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http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf
http://ciml.info/dl/v0_99/ciml-v0_99-ch03.pdf


Recall: 
Decision 
Trees

� Pros

� Interpretable

� Efficient (computational cost and storage)

� Can be used for classification and regression tasks

� Compatible with categorical and real-valued features

� Cons
� Learned greedily: each split only considers the 

immediate impact on the splitting criterion

� Not guaranteed to find the smallest (fewest number 
of splits) tree that achieves a training error rate of 0. 

� Liable to overfit!
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Overfitting in 
Decision Trees

9/6/23 Figure courtesy of Tom Mitchell 7



Combatting
Overfitting in 
Decision Trees

� Heuristics:

� Do not split leaves past a fixed depth, 𝛿

� Do not split leaves with fewer than 𝑐 data points

� Do not split leaves where the maximal information 

gain is less than 𝜏

� Take a majority vote in impure leaves
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Combatting
Overfitting in 
Decision Trees

� Pruning:

1. First, learn a decision tree

2. Then, evaluate each split using a “validation” 
dataset by comparing the validation error rate 

with and without that split

3. Greedily remove the split that most decreases the 
validation error rate

� Break ties in favor of smaller trees

4. Stop if no split is removed
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Pruning
Decision Trees
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petal

Real-valued 
Features
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)

25

Species Sepal 
Length

Sepal 
Width

Petal 
Length

Petal 
Width

0 4.3 3.0 1.1 0.1

0 4.9 3.6 1.4 0.1

0 5.3 3.7 1.5 0.2

1 4.9 2.4 3.3 1.0

1 5.7 2.8 4.1 1.3

1 6.3 3.3 4.7 1.6

1 6.7 3.0 5.0 1.7

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  9/6/23
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Fisher Iris 
Dataset

Fisher (1936) used 150 measurements of flowers 
from 3 different species: Iris setosa (0), Iris virginica 
(1), Iris versicolor (2) collected by Anderson (1936)
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Species Sepal 
Length

Sepal 
Width

0 4.3 3.0

0 4.9 3.6

0 5.3 3.7

1 4.9 2.4

1 5.7 2.8

1 6.3 3.3

1 6.7 3.0

Source: https://en.wikipedia.org/wiki/Iris_flower_data_set  9/6/23

https://en.wikipedia.org/wiki/Iris_flower_data_set
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The Duck Test
9/6/23 28Source: https://en.wikipedia.org/wiki/Duck_test 

https://en.wikipedia.org/wiki/Duck_test


The Duck Test 
for Machine 
Learning

� Classify a point as the label of the “most similar” 

training point

� Idea: given real-valued features, we can use a distance 
metric to determine how similar two data points are

� A common choice is Euclidean distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙3 , = 4
45(

6

𝑥4 − 𝑥43 ,

� An alternative is the Manhattan distance: 

𝑑 𝒙, 𝒙′ = 𝒙 − 𝒙3 ( = 4
45(

6

𝑥4 − 𝑥43
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Example
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The Nearest 
Neighbor 
Model

� Requires no training!

� Always has zero training error! 

� A data point is always its own nearest neighbor

⋮

� Always has zero training error…
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Generalization 
of Nearest 
Neighbor 
(Cover and 
Hart, 1967)

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”

9/6/23 34Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 
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But why limit 
ourselves to 
just one 
neighbor?

� Claim: under certain conditions, as 𝑛 → ∞, with high 

probability, the true error rate of the nearest neighbor 
model ≤ 2	 ∗ the Bayes error rate (the optimal classifier)

� Interpretation: “In this sense, it may be said that half the 

classification information in an infinite sample set is 
contained in the nearest neighbor.”

9/6/23 35Source: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=1053964 
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𝑘-Nearest 
Neighbors 
(𝑘NN)

� Classify a point as the most common label among the 

labels of the 𝑘 nearest training points

� Tie-breaking (in case of even 𝑘 and/or more than 2 classes) 

� Weight votes by distance

� Remove furthest neighbor

� Add next closest neighbor

� Use a different distance metric
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𝑘NN on 
Fisher Iris 
Data

37Figure courtesy of Matt Gormley9/6/23
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Data
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𝑘NN on 
Fisher Iris 
Data
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𝑘NN on 
Fisher Iris 
Data



Aside: 𝑘NN 
and Categorical 
Features

� 𝑘NNs are compatible with categorical features, either by:

1. Converting categorical features into binary ones:

2. Using a distance metric that works over categorical 
features e.g., the Hamming distance: 

𝑑 𝒙, 𝒙3 = 4
45(

6

𝟙 𝑥4 = 𝑥43
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� What is the inductive bias of a 𝑘NN model that uses the 
Euclidean distance metric?

� Similar points should have similar labels and all features 
are equivalently important for determining similarity

� Feature scale can dramatically influence results!

𝑘NN: 
Inductive Bias
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Setting 𝑘

� When 𝑘 = 1:

� many, complicated decision boundaries 

� may overfit

� When 𝑘 = 𝑁:

� no decision boundaries; always predicts the most 
common label in the training data 

� may underfit

� 𝑘 controls the complexity of the hypothesis set ⟹ 𝑘 
affects how well the learned hypothesis will generalize
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Setting 𝑘

� Theorem: 

� If 𝑘 is some function of 𝑁 s.t. 𝑘 𝑁 → ∞ and 7 8
8 → 0 

as 𝑁 → ∞ … 

� … then (under certain assumptions) the true error of a 
𝑘NN model →	the Bayes error rate 

� Practical heuristics:

� 𝑘 = 𝑁

� 𝑘 = 3

� This is a question of model selection: each value of 𝑘 
corresponds to a different “model”
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Model 
Selection

� A model is a (typically 
infinite) set of classifiers 
that a learning algorithm 
searches through to find 
the best one (the 
”hypothesis space”)

� Model parameters are 
the numeric values or 
structure that are 
selected by the learning 
algorithm

� Hyperparameters are 
the tunable aspects of 
the model that are not 
selected by the learning 
algorithm

Example: Decision Trees
� Model = set of all 

possible trees, 
potentially narrowed 
down according to the 
hyperparameters (see 
below)

� Model parameters = 
structure of a specific 
tree e.g., splits, split 
order, predictions at leaf 
nodes, 

� Hyperparameters = 
splitting criterion, max-
depth, tie-breaking 
procedures, etc…
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Model 
Selection

� A model is a (typically 
infinite) set of classifiers 
that a learning algorithm 
searches through to find 
the best one (the 
”hypothesis space”)

� Model parameters are 
the numeric values or 
structure that are 
selected by the learning 
algorithm

� Hyperparameters are 
the tunable aspects of 
the model that are not 
selected by the learning 
algorithm

Example: 𝒌NN

� Model = set of all 
possible nearest 
neighbors classifiers

� Model parameters = 
none! 𝑘NN is a “non-
parametric model”

� Hyperparameters = 𝑘
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Model 
Selection 
with 
Test Sets

54

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟9=>9, suppose we have multiple 

candidate models: 
ℋ(,ℋ,, … ,ℋ?

� Learn a classifier from each model using only 𝒟9:&;<: 

ℎ( ∈ ℋ(, ℎ, ∈ ℋ,, … , ℎ? ∈ ℋ?

� Evaluate each one using 𝒟9=>9 and choose the one with 

lowest test error:

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟9=>9
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Model 
Selection 
with 
Test Sets?

55

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟9=>9, suppose we have multiple 

candidate models: 
ℋ(,ℋ,, … ,ℋ?

� Learn a classifier from each model using only 𝒟9:&;<: 

ℎ( ∈ ℋ(, ℎ, ∈ ℋ,, … , ℎ? ∈ ℋ?

� Evaluate each one using 𝒟9=>9 and choose the one with 

lowest test error:

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟9=>9

� Is 𝑒𝑟𝑟 ℎ F@, 𝒟9=>9 	a good estimate of 𝑒𝑟𝑟 ℎ F@ ?
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Model 
Selection 
with 
Validation Sets

56

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟%&' ∪ 𝒟9=>9, suppose we have 

multiple candidate models: 
ℋ(,ℋ,, … ,ℋ?

� Learn a classifier from each model using only 𝒟9:&;<: 

ℎ( ∈ ℋ(, ℎ, ∈ ℋ,, … , ℎ? ∈ ℋ?

� Evaluate each one using 𝒟%&' and choose the one with 

lowest validation error:

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟%&'

� Now 𝑒𝑟𝑟 ℎ F@, 𝒟9=>9 	is a good estimate of 𝑒𝑟𝑟 ℎ F@ !
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Hyperparameter 
Optimization
with 
Validation Sets

57

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟%&' ∪ 𝒟9=>9, suppose we have 

multiple candidate hyperparameter settings: 
𝜃(, 𝜃,, … , 𝜃?

� Learn a classifier for each setting using only 𝒟9:&;<: 

ℎ(, ℎ,, … , ℎ?

� Evaluate each one using 𝒟%&' and choose the one with 

lowest validation error: 

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟%&'

� Now 𝑒𝑟𝑟 ℎ F@, 𝒟9=>9 	is a good estimate of 𝑒𝑟𝑟 ℎ F@ !
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Setting 𝑘 
for 𝑘NN 
with 
Validation Sets

589/6/23 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data



599/6/23 Figure courtesy of Matt Gormley

𝑘NN train and validation errors on Fisher Iris data

How should 
we partition 
our dataset?



� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 
𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾4
;5(

G

𝑒;
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𝐾-fold 
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 
𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾4
;5(

G

𝑒;
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 
𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾4
;5(

G

𝑒;

629/6/23

𝐾-fold 
cross-validation

Fold 1

Fold 2

Fold 3

Fold 4
𝒟H,

𝒟,



� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 
𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾4
;5(

G

𝑒;
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 
𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾4
;5(

G

𝑒;
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� Given 𝒟, split 𝒟 into 𝐾 equally sized datasets or folds: 

𝒟(, 𝒟,, … , 𝒟G

� Use each one as a validation set once:

� Let ℎH; be the classifier learned using 

𝒟H; = 𝒟\𝒟; (all folds other than 𝒟;) 
and let 𝑒; = 𝑒𝑟𝑟 ℎH;, 𝒟;

� The 𝐾-fold cross validation error is

	 𝑒𝑟𝑟I%/=
1
𝐾
4
;5(

G

𝑒;

� Special case when 𝐾 = 𝑁: Leave-one-out cross-validation

� Choosing between 𝑚 candidates requires training 𝑚𝐾 times
659/6/23
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Summary

Input Output

Training • training dataset 
• hyperparameters

• best model 
parameters

Hyperparameter 
Optimization

• training dataset 
• validation dataset

• best 
hyperparameters 

Cross-Validation • training dataset
• validation dataset

• cross-validation 
error

Testing • test dataset
• classifier • test error
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Hyperparameter 
Optimization

67

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟%&' ∪ 𝒟9=>9, suppose we have 

multiple candidate hyperparameter settings: 
𝜃(, 𝜃,, … , 𝜃?

� Learn a classifier for each setting using only 𝒟9:&;<: 

ℎ(, ℎ,, … , ℎ?

� Evaluate each one using 𝒟%&' and choose the one with 

lowest validation error: 

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟%&'

� Train a new model on 𝒟9:&;< ∪ 𝒟%&' using 𝜃 F@, ℎ F@
J

� Now 𝑒𝑟𝑟 ℎ F@
J , 𝒟9=>9 	is a good estimate of 𝑒𝑟𝑟 ℎ F@

J !
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Pro tip: train 
your final model 
using both 
training and 
validation 
datasets

68

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟%&' ∪ 𝒟9=>9, suppose we have 

multiple candidate hyperparameter settings: 
𝜃(, 𝜃,, … , 𝜃?

� Learn a classifier for each setting using only 𝒟9:&;<: 

ℎ(, ℎ,, … , ℎ?

� Evaluate each one using 𝒟%&' and choose the one with 

lowest validation error: 

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟%&'

� Train a new model on 𝒟9:&;< ∪ 𝒟%&' using 𝜃 F@, ℎ F@
J

� Now 𝑒𝑟𝑟 ℎ F@
J , 𝒟9=>9 	is a good estimate of 𝑒𝑟𝑟 ℎ F@

J !
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How do we pick 
hyperparameter 
settings to try?

69

� Given 𝒟 = 𝒟9:&;< ∪ 𝒟%&' ∪ 𝒟9=>9, suppose we have 

multiple candidate hyperparameter settings: 
𝜃(, 𝜃,, … , 𝜃?

� Learn a classifier for each setting using only 𝒟9:&;<: 

ℎ(, ℎ,, … , ℎ?

� Evaluate each one using 𝒟%&' and choose the one with 

lowest validation error: 

G𝑚 = argmin
@∈{(,…,?}

𝑒𝑟𝑟 ℎ@, 𝒟%&'

� Train a new model on 𝒟9:&;< ∪ 𝒟%&' using 𝜃 F@, ℎ F@
J

� Now 𝑒𝑟𝑟 ℎ F@
J , 𝒟9=>9 	is a good estimate of 𝑒𝑟𝑟 ℎ F@

J !
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General 
Methods for 
Hyperparameter 
Optimization

� Idea: set the hyperparameters to optimize some 
performance metric of the model 

� Issue: if we have many hyperparameters that can all 
take on lots of different values, we might not be able to 
test all possible combinations

� Commonly used methods:
� Grid search

� Random search
� Bayesian optimization (used by Google DeepMind 

to optimize the hyperparameters of AlphaGo: 
https://arxiv.org/pdf/1812.06855v1.pdf)

� Evolutionary algorithms

� Graduate-student descent
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Grid Search vs. 
Random 
Search
(Bergstra and 
Bengio, 2012)

9/6/23 71Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 
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Grid Search vs. 
Random 
Search
(Bergstra and 
Bengio, 2012)

9/6/23 72Source: https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf 

Grid and random search of nine trials for optimizing a function 
𝑓(𝑥, 𝑦) = 𝑔(𝑥) + ℎ(𝑦) ≈ 𝑔(𝑥)	with low effective dimensionality. 
Above each square 𝑔(𝑥)	is shown in green, and left of each square 
ℎ(𝑦) is shown in yellow. With grid search, nine trials only test 𝑔(𝑥) 
in three distinct places. With random search, all nine trials explore 
distinct values of 𝑔. This failure of grid search is the rule rather than 
the exception in high dimensional hyper-parameter optimization.

https://jmlr.csail.mit.edu/papers/volume13/bergstra12a/bergstra12a.pdf


Key Takeaways

� Real-valued features and decision boundaries

� Nearest neighbor model and generalization guarantees

� 𝑘NN “training” and prediction

� Effect of 𝑘 on model complexity

� 𝑘NN inductive bias

� Differences between training, validation and test 
datasets in the model selection process

� Cross-validation for model selection

� Relationship between training, hyperparameter 
optimization and model selection
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