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What is an interpretation?
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Interpretation in Science

* Interpretation requires grounding in a theory of world modeled

* Beliefs over entities that world consists of, relations among them,
process by which data collected data

* The interpretation of the models tied up in how it squares against
postulated, postulated significance of parameters.

* Ingredients of interpretation?
theory, environment, data collection process, measurement instruments,
model, algorithms, analysis, interpreter? (not just a model!)
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What “explanations” are on offer?




Interpretability is not a condiment

* Getting to an interpretation of
a models takes work.

* Doesn’t happen by accident.

* Requires commitments about (WEINZ] T\:;':TZOL_ |
1. What is being modeled SELow iff;‘“% |
2. What vars ought to be measured ' _
3. How they ought to be measured -
4. What relations exist among them .
5. What question is the model

intended to answer



What’s actually on offer: Feature Attribution

Pulmonary thromboendarterectomy
Intraperitoneal chemotherapy
Aortic valve repair by sternotomy
Coronary artery bypass graft

LVAD implantation

Whipple procedure

Spine fusion

Liver transplant

Lumbar Laminectomy

Craniotomy

Neck dissection

Hepatectomy

Abdominal hysterectomy

Anterior cervical discectomy (ortho)
Colectomy

Anterior cervical discectomy (neuro)
Parotid gland neoplasm excision
Tympanoplasty

Doctor 266

Endoscopic sinus surgery

Hip arthroplasty revision

Ureter stent insertion

Doctor 296

Cystoscopy

Humerus fracture ORIF

Tibial plateau fracture ORIF
Laparoscopic colectomy

Bladder tumor resection
Craniotomy

Doctor 75

Feature
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Regression Model Weight

Predicting Surgery Duration with Neural Heteroscedastic Regression—Ng, ..., Z (MLHC 2017)



https://arxiv.org/abs/1702.05386

Global Feature Attribution Methods

 Linear model feature weights
* Single-feature ablations
* Permutation feature importance tests

* Global Shapley values



What about nonlinear models, raw data

 What do we mean by features?
e Particular pixel locations?
* A particular pixel locations
in a particular image?

* Models “look at”/”use” all pixels
for every classification




A black box ML model is just a mapping




The Trouble with Local Explanations

e All there is to be said about a model
at an exact point x is f(x)

* Any additional information

about model must say smtg
about how f behaves on
some other inputs x’, x”’

e But which other inputs?

e Summarized how?




LIME

* Local linear approximation to function in vicinity of particular point
* Constructs “simplified representation” x’, e.g. BoW or superpixels

* In simplified representation, learns linear model in vicinity of x’

* Weights other points by local kernel 1t

* Qutput depends highly on choice of kernel, choice of points,
regularization of local “explanation” model

Why should | trust you?—Ribeiro et al.



https://arxiv.org/abs/1602.04938

SHAP

* Formalizes additive feature attribution methods

* Makes connection to Shapley values in cooperative game theory

* Shapley value avg value of a feature among all coalitions of features
* Instead of looking at value of feature, SHAP looks at value

* Poses a set of properties for which SHAP is the unique solution

* Relies on simplified features x'. Has nice properties when input can be perfectly
reconstructed from simplified features x = h(x’)

* But where do these “simplified representations” come from?
 And what happens when this representation is not reversible?

* Relies on reference to baseline “a feature not participating”:
WHAT DOES THIS MEAN? (choice is arbitrary and influences the answer)



Integrated gradients

Attempts to formalize properties that a local explanation should have.
Defines attribution in reference to a baseline.

1. Sensitivity—diff in 1 feature, diff output = attribute that feature
2. Implementation invariance—eq. fn, diff param = eq. attribution
3. Completeness—attributions add up to diff in fn value

Relies on fuzzy properties of choice of baseline:

1. “convey a complete absence of signal” € what does this mean?
2. Different attributions for black image vs noise image



Sanity Checks for Saliency Maps

Integrated Gradient
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Sanity Checks for Saliency Maps — Adebayo et al.



https://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf

Explaining the model, the data, or neither?

Cascading randomization
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“Sanity Checks for Saliency Maps” — Adebayo et al.



https://papers.nips.cc/paper/8160-sanity-checks-for-saliency-maps.pdf

Most current saliency maps tell you nothing
about the model (absent further info)
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Saliency approaches brittle to manipulation

Simple Gradient DeepLIFT Integrated Gradients
“Llama” : Confidence 55.4 Feature-Importance Map  “Monarch” : Confidence 99.9 Feature-Importance Map “Llama” : Confidence 71.1 Feature-Importance Map
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Interpretation of Neural Networks is Fragile—Ghorbani et al.



https://arxiv.org/pdf/1710.10547.pdf

Saliency Methods Disagree with Each Other

2202.01602v3 [cs.LG] 8 Feb 2022

arXiv

The Disagreement Problem in Explainable Machine Learning:

A Practitioner’s Perspective

Satyapriya Krishna*!, Tessa Han*!, Alex Gu?, Javin Pombral,
Shahin Jabbari®, Zhiwei Steven Wu*, and Himabindu Lakkaraju!

Harvard University
2Massachusetts Institute of Technology
3Drexel University
4Carnegie Mellon University

February 9, 2022

Abstract

As various post hoc explanation methods are increasingly being leveraged to explain complex models in
high-stakes settings, it becomes critical to develop a deeper understanding of if and when the explanations
output by these methods disagree with each other, and how such disagreements are resolved in practice.
However, there is little to no research that provides answers to these critical questions. In this work,
we introduce and study the disagreement problem in explainable machine learning. More specifically,
we formalize the notion of disagreement between explanations, analyze how often such disagreements
occur in practice, and how do practitioners resolve these disagreements. To this end, we first conduct
interviews with data scientists to understand what constitutes disagreement between explanations (feature
attributions) generated by different methods for the same model prediction, and introduce a novel
quantitative framework to formalize this understanding. We then leverage this framework to carry out a
rigorous empirical analysis with four real-world datasets, six state-of-the-art post hoc explanation methods,
and eight different predictive models, to measure the extent of disagreement between the explanations
generated by various popular post hoc explanation methods. In addition, we carry out an online user
study with data scientists to understand how they resolve the aforementioned disagreements. Our results
indicate that state-of-the-art explanation methods often disagree in terms of the explanations they output.
Worse yet, there do not seem to be any principled, well-established approaches that machine learning
practitioners employ to resolve these disagreements, which in turn implies that they may be relying on
misleading explanations to make critical decisions such as which models to deploy in the real world. Our
findings underscore the importance of developing principled evaluation metrics that enable practitioners
to effectively compare explanations.
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Disagreement between explanation methods for neural network model trained on COMPAS dataset

measured by rank agreement (top row) and signed rank agreement (bottom row) at top-k features for
increasing values of k. Each cell in the heatmap shows the metric value averaged over test set data points
for each pair of explanation methods, with lighter colors indicating stronger disagreement. Across all six
heatmaps, the standard error ranges between 0 and 0.003.



Purported Explanatory Powers of Attention

* Claimed to show what model Je suis étudiant </s>
“focuses on” while decoding

attention :
vector

* Proposed for seq2seq tasks context
but adapted to classification e
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Learning to Deceive with Attention

* Designate a set of impermissible tokens 1, ifw, €T
. . m; = i
* Can learn network trained to assign low 0 otherwise.
attention to these tokens
* Works even when the model provably R = —Alog(1 — o’ m)
continues to rely on those tokens
* If attention allows manipulability, what’s oo =i
special about the original weights? o <
(a) Gend:;t;(;ceu:;zﬁcation (b) Sentiment Analysis (SST + Wiki)

https://arxiv.org/abs/1909.07913



https://arxiv.org/abs/1909.07913

Systematic problems with the entire
enterprise of saliency maps

* Focus on some commonsense properties they should have,
but no coherent explanation of what problem they solve.

* Mirrors the axiomatic approach to equity (Young ‘95)

e Confirmation bias: “we found a much stronger agreement between human
explanations and SHAP than with other method” (—SHAP)

* Heavy reliance on unstated properties of the model & data
(smoothness? inductive bias of SGD + architecture?)

* Even if we knew true labeling function, would we want saliency?!

I"

 All involve some choice of “counterfactual” but provide no guidance or
coherent argument for what constitutes the relevant counterfactual




It Interpretable ML Were a Drug




Why do these problems persist once known?

The Mythos of Model Interpretability

Zachary C. Lipton !

Abstract no one has managed to set it in writing, or (ii) the term in-
terpretability is ill-defined, and thus claims regarding inter-
pretability of various models may exhibit a quasi-scientific
character. Our investigation of the literature suggests the
latter to be the case. Both the motives for interpretability
and the technical descriptions of interpretable models are
diverse and occasionally discordant, suggesting that inter-
pretability refers to more than one concept. In this paper,
we seek to clarify both, suggesting that interpretability is
not a monolithic concept, but in fact reflects several dis-

Supervised machine learning models boast re-
markable predictive capabilities. But can you
trust your model? Will it work in deployment?
What else can it tell you about the world? We
want models to be not only good, but inter-
pretable. And yet the task of interpretation ap-
pears underspecified. Papers provide diverse and
sometimes non-overlapping motivations for in-

Pup. i~

Mar 2017



Counterfactual Explanations (& caveats)

Counterfactual Examples

ML model’s decision boundary

Original class: Desired class:
Loan rejected Loan approved

Original input

(image source)

Hidden Assumptions (Barocas et al.) https://arxiv.org/abs/1912.04930



https://www.microsoft.com/en-us/research/blog/open-source-library-provides-explanation-for-machine-learning-through-diverse-counterfactuals/
https://arxiv.org/abs/1912.04930

Causal Formulations of Recourse
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Algorithmic Recourse: from Counterfactual Explanations to Interventions (Karimi, Scholkopf, Valera)



https://arxiv.org/pdf/2002.06278.pdf

Strategic Classification

* Conceives of strategic responses by decision subjects as “gaming”
* Tantamount to targeted adversarial attacks

1 Introduction

Studies have found that a student’s success at school is highly correlated with the number
of books in the parents’ household [EKST10]. Therefore, in theory, this attribute should be of
great value when using machine-learning techniques for student admission. However, this
statistical pattern is obviously open to manipulation: books are relatively cheap and, knowing
that their number matters, parents can easily buy an attic full of unread books in preparation
for admission decisions.

This behavior is often called gaming: the strategic use of methods that, while not dishonest
or against the rules, give the individual an unintended advantage The problem of gaming is
well known and can be seen as a consequence of a classical principle in financial policy making
known as Goodhart’s law:

“If a measure becomes the public’s goal, it is no longer a good measure.”

Strategic Classification --- Hardt et al. (ITCS 2016)



https://dl.acm.org/doi/abs/10.1145/2840728.2840730?casa_token=UPtveJLc2PwAAAAA:c_6PW5w_9EyfBFK9ThpdPIaswx01p9LfBulwR-vr5JNMXXAZQpjK2oGj1ZCcdsko4d--LgRbthY

Causal Strategic Classification

“How do Classifiers Induce Agents to Invest Effort Strategically?” (Raghavan, Kleinberg EC 2020)
https://dl.acm.org/doi/abs/10.1145/3417742

“Causal Strategic Linear Regression” (Shavit, Edelman, Axelrod ICML 2020)
https://arxiv.org/abs/2002.10066



https://dl.acm.org/doi/abs/10.1145/3417742
https://dl.acm.org/doi/abs/10.1145/3417742
https://arxiv.org/abs/2002.10066

General Causal Strategic Prediction

QO
8/
L

Discovering Optimal Scoring Mechanisms for Causal Strategic Prediction
Yan, Gupta, ZL (in preparation)




Thanks!!

* Contact
email: zlipton@cmu.edu
twitter: @zacharylipton
lab: http://acmilab.org

* Papers

* The Mythos of Model Interpretability (CACM), 2016
https://arxiv.org/abs/1606.03490

* Learning to Deceive with Attention-Based Explanations (ACL), 2019
https://arxiv.org/abs/1909.07913

* Learning the Difference that Makes a Difference w Counterfactually Augmented Data (ICLR), 2020
https://arxiv.org/abs/1909.12434

* Evaluating Explanations: How much do explanations from the teacher aid students? (TACL) 2021 _
https://direct.mit.edu/tacl/article/doi/10.1162/tacl a 00465/110436/Evaluating-Explanations-How-Much-Do-Explanations

* Explain, Edit, and Understand: Rethinking User Study Design for Evaluating Model Explanations (AAAI), 2022
https://arxiv.org/abs/2112.09669

* Funding Support: UPMC and Abridge Al via the Center for Machine Learning in Health, NSF, DARPA, SEl,
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