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Adversarial Examples

il o2

pig “airliner”

(Szegedy et al 2014 https://arxiv.org/abs/1312.6199)



https://arxiv.org/abs/1312.6199

Targeted vs Untargeted Attacks

* Untargeted: search for a perturbation (under constraint) that

maximizes loss

maximize £(hg(x + 6), y)
0€A

* Targeted: search for a perturbation (under constraint) that maximizes
original loss AND probability assigned to target class

ma%ﬂguze(f(hg(m + 5), y) — f(he(fL‘ + 5)7 ytarget))
S



Adversarial Training

1. For each x,y € B, solve the inner maximization problem (i.e., compute an adversarial
example)

6 (s) = argmax {(hg(z + 6)), y)
JeA(x)

1. Compute the gradient of the empirical adversarial risk, and update 6

9::9—% N Vellho(z + 5%(2))), y)-

‘ ‘ (z,y)eB

Tutorial (excerpted): https://adversarial-ml-tutorial.org/introduction/
Papers:
1. Original adversarial training paper: https://arxiv.org/abs/1412.6572
2. State of the art (iterated attack): https://arxiv.org/abs/1706.06083



https://adversarial-ml-tutorial.org/introduction/
https://arxiv.org/abs/1412.6572
https://arxiv.org/abs/1706.06083

Adversarial Misspellings (Char-Level Attack)

Against BERT for sentiment, 1-char attack send error from 90.3%—>45.8%

Alteration Movie Review Label

A triumph, relentless and beautiful

Original in its downbeat darkness

S A triumph, relentless and beuatiful _
wap in its downbeat darkness

D A triumph, relentless and beautiful
Top in its dwnbeat darkness B

Combating Adversarial Misspellings with Robust Word Recognition
Danish Pruthi, Bhuwan Dhingra, Z. (ACL 2019)
https://arxiv.org/abs/1905.11268



https://arxiv.org/abs/1905.11268

Training Tasks Can Fail to Represent Reality

E.g., how much reading does reading comprehension require?

[ Which team has won the most Super Bowl titles? ]

Pittsburgh Steelers

/The Pittsburgh Steelers have the most Super Bowl )
championship titles, with six. The New England Patriots
have the most Super Bowl appearances, with ten.
Charles Haley and Tom Brady both have five Super
Bowl rings, which is the record for the most rings won by a

\single player -
https://arxiv.org/abs/1808.04926 (Kaushik, Z—EMNLP 2018)



https://arxiv.org/abs/1808.04926

Feedback Loops

* Insidiously, the very deployment of a model can invalidate it
* E.g., recommender system, trained on user behavior, applied to alter it

Crime TV Shows »
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NEW EPISODES




One classifier to rule them all!

INPUTS Outputs



Mission Impossible




Impossibility absent assumptions

* No classifier will work well on all distributions

* Guaranteed performance under shift possible w. strong assumptions
* Typical: bounded divergence or invariant conditionals, shared support
* Most familiar assumption: covariate shift p(y|x) = g(y|x)

* But when x doesn’t cause y & absent realizability, p(y|x) does change
* Practical benefits under unstated / implicit / murky assumptions?



The Landscape of Distribution Shift
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The Landscape of Distribution Shift
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theoretically coherent work
on idealized shift models

Structured Shifts
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white noise
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shot noise  impulse noise
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brightness contrast __elastic transform

empirical deep learning efforts
benchmark evaluation, heuristics

Fuzzy Shifts

defocus blur

unpredictable shifts, limited
faithfulness to any assumption
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The Landscape of Distribution Shift

brightness contrast

theoretically coherent work empirical deep learning efforts unpredictable shifts, limited
on idealized shift models benchmark evaluation, heuristics faithfulness to any assumption
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For problems, see: Domain Adaptation with Asymmetrically-Relaxed Distribution Alignment (ICML 2019): (https://arxiv.org/abs/1903.01689)


https://arxiv.org/abs/1903.01689

The Landscape of Distribution Shift
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on idealized shift models benchmark evaluation, heuristics faithfulness to any assumption



Anatomy of a structured shift problem

Domains/Environments—how many? how much data from each?
Structure—model of data generating process
Visibility— which variables are observed in each environment?

Manipulation rules
* What parts can/can’t change?
* By what amount?
* In vs out—of-support?

Objective (what to estimate)

Statistical Capabilities
* What relationships are estimable (& how well)?

Source Distribution Target Distribution

OOl [O—




Some Examples of Structured Shift

* Covariate Shift — P(Y|X) invariant, overlapping support q(x) € p(x)

* Label Shift — P(X|Y) invariant, overlapping classes q(y) € p(y)

* PU Learning — P(X]Y) invariant, + 1 new class: P(Y=N) =0, Q(Y=N) >0
* Open Set Label Shift — P(Y|X) invariant, many prev classes, one new
* Latent Label Shift — P(X|Y) invariant, many domains Q;, all unlabeled
* Missingness shift — Source data missing at random according to m..



Two Obstacles to Practicality

* |dentification is nice but we need
practical estimators for high-dim data

= Ak )
e e A—
=

N ——

* Assumptions too rigid, performance
under fuzzy violations unknown



The Move: Leveraging Black Box Predictors

* No theory says we should be able to predict well (even on iid data)
w high-dimensional, arbitrarily non-linear data (e.g. images, speech)

* However, we want to show that when it’s possible to learn good iid
classifiers, we can leverage these black boxes to get target classifiers

Q@'@O



Motivation 1: Pneumonia prediction

* August: we train pneumonia predictor f
* Prevalence is .05% in population

* We run classifier on training data
* Model predicts ~.05% positive

e We run it on validation data
* Model predicts ~.05% positive

* We run it in the wild
* Model predicts ~.05% positive




Epidemic

* We run classifier in January
* |t predicts 5% (vs .05%) positive
* How many ppl really have pneumonia?

* If i.i.d. violated, then why should
we trust f at all?




Motivation 2: Image Classification

* Train a classifier to recognize objects with uniform p(y)
* Get 70% accuracy, say with balanced errors
* Deploy in wild with some randomly-chosen g(y)

* No real-life data distribution will have equal numbers of axolotl,
golden retriever, mortarboard, ice cream, couch

* We still get 70% accuracy even though this is an easier problem



The test-ltem effect

* Humans can update priors without supervision * %
Zhu, Xiaojin et al. “Cognitive models of test-item _, _;
effects in human cateqgory learning” (ICML 2010)

¢ o

Figure 1. Example stimuli

 Randomly select people
* Show identical training items

* Finding: “one can then manipulate them into classifying some test
items in opposite ways, simply depending on what other test items
they are asked to classify (without label feedback)”


http://pages.cs.wisc.edu/~jerryzhu/pub/tie.pdf
http://pages.cs.wisc.edu/~jerryzhu/pub/tie.pdf

Domain Adaptation — Formal Setup

* Probabilities
e Source distribution p(x,y)

e Target distribution g(x,y)
* Data
+ Training examples (Xy, Y1), ..., (X, Yo) ~ P(X,y)
* Test examples (x'y, ..., X,,') ~ q(x)
* Objective
* Predict well on the test distribution, WITHOUT seeing any labels y; ~ q(y)



Our goals

 When the distribution p(f(x)) shifts then we know

p(X, y) # Q(Xa y) because p(X) 7& Q(X)

e Under distribution shift we would like to Black Box Shift Correction on CIFARLO
1. Detect that a shift has occurred *1__ BBSE-hard
2. Estimate the new label distribution g(y) "1 — Unweighted

© o
~ o
1 1

3. Correct the classifier f

* All without seeing new labels 5 ) -
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Label Shift (aka Target Shift)

* Assume p(x,y) changes, but the conditional p(x]|v) is fixed
q(y,x) = q(y)p(x|y)

* Corresponds to anticausal assumption, (disease causes symptoms)

* Assumptions: for all y such that gq(y) >0, p(y) >0

Labeled Source Distribution Unlabeled Target Distribution

OO [O—

Detecting and Correcting for Label Shift with Black Box Predictors (Z.”, Wang~, Smola—ICML 2018)
Scholkopf et al “On Causal and Anticausal Learning” (ICML 2012)



https://arxiv.org/abs/1802.03916
https://icml.cc/2012/papers/625.pdf

Contrast with Covariate Shift

* Assume that p(x,y) changes, but conditional p(y|x) is fixed
q(y,x) = q(x)p(y[x)

e Implicitly assumes that x causes y

* Appealing because we have samples x; ~ p(x) and x;' ~ g(x)
* Natural to estimate g(x)/p(x) -> use for importance-weighted ERM
* But symptoms don’t causes diseases & pixels don’t cause cats!

* Under an epidemic, p(y|x) should change!



Label Shift Identification

P(X|Y=1)




Black Box Shift Estimation (BBSE)

* Consistent estimator with intuitive error bounds
* Accuracy does not depend directly on data dimension

* Exploit black box predictors for dimensionality reduction (d 2 1)
* Much easier than two sample-tests in high-dim spaces (Ramdas et al., 2015)

* Adaptive method
* For stronger f, we get provably tighter error bounds
* Lousy (inaccurate, uncalibrated, biased) f = BBSE still consistent


https://arxiv.org/abs/1406.2083

Assumptions

A.1 The label shift (also known as target shift) assumption

p(zly) =q(zly) Vzek,ye.

A.2 For every y € Y with ¢(y) > 0 we require p(y) > 0.2
A.3 Access to a black box predictor f : X — Y where the expected confusion matrix C,(f) is
invertible.

Cr(f) := p(f(x),y) € RYIXVI

* Explanation
* A.1-our premise, appropriate under anti-causal learning
e A.2 —identifiability assumption, can’t recognize class y if p(y) =0
* A.3 —says our confusion matrix is not degenerate



Confusion matrices

* Let’s look at the expected confusion matrices

Y




Applying the label shift assumption...

. Cmy - column-normalized is identical in under P and Q

* We can estimate confusion Yy
matrix on P

 Don’t need to observe
labels from Q




What do we do with the target data?

* We observe black box predictor outputs on examples 517; ~ Q)

Y

Same on Pand Q Can estimate on Q
Can estimateon P by running f(x’)



Black box shift estimation

* Because Cyy issame on P and Q, we can solve for q(y)
by solving a linear system

* We just need: Yy
1. Confusion matrix converges
2. Mean (target) output converges
3. Confusion matrix invertible Y

e Can solve same system but
without normalizing columns
to get back importance weights




The estimator

* Gives us a vector of importance weights g(y)/p(y)

N
N\

__ =1~
W = C@,y'uy

e Either switch with normalized C or multiply element-wise by p(y) (or
its MLE estimate if unknown to get an estimator of g(y)

A

i, = diag(v, )W



Consistency

* Easy to show, just need
1. empirical confusion matrix converges to its expectation
2. average classifier response (on test data) converges to its expectation
3. empirical confusion matrix is invertible

* By Strong law of large numbers, as n > oo
C@,y >C?)7y

Mg — Hg
e Can show via Borel-Cantelli lemma that as as n = oo, probability that
empirical confusion matrix is not invertible approaches 0.



Error bound

| — w5 <

9 I
Umin T T

C (Hw||210gn | klogm)



