
Encoder-Decoder Architectures,
Attention & Transformers

Zachary Lipton & Henry Chai

10701 — November 15th

Acknowledgments

• Major thanks to Dr. Bhuwan Dhingra (Duke) & Graham Neubig
for fantastic transformer slides!

RNN Tips & Tricks

A Brief Review of RNN Tips & Tricks

• Gradient Clipping
• Gated Units
• Bidirectional layers
• Regularization (L2)
• Batch normalization between layers
• Padding (zero padding to match lengths)
• Bucketing (group similar-length sequences)

Encoder–Decoder Architectures

slide credit: Andrej Karpathy

http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Sequence to Sequence
(Sutskever et al. 2014)

Sequence to Sequence Learning with Neural Networks (Sutskever et al. 2014)

https://arxiv.org/abs/1409.3215

Scale

• Sutskever et al. trained Deep LSTMs with four layers.

• Each layer had 1000 cells

• 384M parameters

• Vocabulary 160,000 words (input) and 80,000 words (output)

• Training Algo: Vanilla SGD, attenuated learning rate

• Other tricks: load the input sentence backwards

• Training time: 10 days with 4 GPUS

Evaluating (Conditional) Language Models

• Perplexity—exponentiated entropy
• BLEU score—average n-gram precision
• ROUGE score—Like BLEU but focused on recall
• METEOR score—incorporates synonyms and paraphrases
• Human evals—Likert scale, preferences among candidates, etc.

Sequence 2 Sequence Results

• Achieved BLEU (measure of translation quality) comparable to best
state of the art systems
• Hybrid approaches and ensembling LSTMS led to scores even better

than state of the art systems
• No information about language was explicitly modeled or hardwired

Image Captioning: CNN Encoders + RNN Decoders

Karpathy et al. (CVPR 2015)

https://www.cv-foundation.org/openaccess/content_cvpr_2015/papers/Karpathy_Deep_Visual-Semantic_Alignments_2015_CVPR_paper.pdf

Still a Ways to Go

Simulating Code Execution

Standard
supervised
learning

Image
captioning

Sentiment
analysis

Video captioning,
Natural language
translation

Part of speech
tagging

Generative models
for text

Learning to Execute

• RNN reads programs at character level, predicts program output
• Curriculum learning: introduce operators one at a time
• Results: learned to add 9 digits integers with 99% accuracy

Zaremba & Sutskever 2015

https://arxiv.org/abs/1410.4615

Problems with RNNs / LSTMs

● The entire word history is represented by one (or two) vectors
○ Though increasing the size of the vector(s) helps

"You can't cram the meaning of a whole %&!$# sentence
into a single $&!#* vector!"

Ray Mooney
NLP Prof @ UT Austin

Problems with RNNs / LSTMs
● The entire word history is represented by one (or two) vectors

(Though increasing the size of the vector(s) helps)

● We cannot parallelize computation across different words

⇒ Transformer Networks (Attention is all you need, Vaswani et al, 2017)

"You can't cram the meaning of a whole %&!$# sentence
into a single $&!#* vector!"

Ray Mooney
NLP Prof @ UT Austin

https://arxiv.org/abs/1706.03762

Neural attention

● Compare a set of items based on a query

Input items query

Score can be computed in
other ways, e.g. using a

feedforward network

Neural attention

● Compare a set of items based on a query

Items to
compare

query

Score can be computed in
other ways, e.g. using a

feedforward network

Softmax

Attention from query to item i

Neural attention
● Compare a set of items based on a query
● Aggregate items based on attention weights

Items to
compare

query

Score can be computed in
other ways, e.g. using a

feedforward network

Softmax

Aggregated
representation

based on query

Attention Score Functions (1)
• q is the query and k is the key

• Multi-layer Perceptron (Bahdanau et al. 2015)

• Flexible, often very good with large data

• Bilinear (Luong et al. 2015)

W�k��(; q�
1 n]ha�,�=k)�[(

W�k��() k�,�

Attention Score Functions (2)
• Dot Product (Luong et al. 2015)

• No parameters! But requires sizes to be the same.

• Scaled Dot Product (Vaswani et al. 2017)

• Problem: scale of dot product increases as dimensions get
larger

• Fix: scale by size of the vector

,�k��() k��

,�k��()
k���

���

Attention Applied to Encoder-Decoder

Implicitly Learning Alignments

Image from Bahdanau et al. (2015)

A Graphical Example

Self-Attention & the Transformer Architecture

https://arxiv.org/pdf/1706.03762.pdf

https://arxiv.org/pdf/1706.03762.pdf

Self Attention
(Cheng et al. 2016, Vaswani et al. 2017)
• Each element in the sentence attends to other
elements→ context sensitive encodings!

this is an example
this
is
an

example

Self-attention layers

● Items and queries come from the same sequence

Attention from
item j to item i

Output for
item j

● Items and queries come from the same sequence

Self-attention layers

Attention from
item j to item i

Output for
item j

● Items and queries come from the same sequence

Self-attention layers

Attention from
item j to item i

Output for
item j

● Items and queries come from the same sequence

Self-attention layers

Attention from
item j to item i

Output for
item j

Self-attention layers

● Let’s add some parameters to the layer to model how the items
interact with each other

Project each item to three different roles:
queries, keys and values

Self-attention layers

● Let’s add some parameters to the layer to model how the items
interact with each other

Project each item to three different roles:
queries, keys and values

Compare queries and keys

● Let’s add some parameters to the layer to model how the items interact
with each other

Self-attention layers

Project each item to three different roles:
queries, keys and values

Compare queries and keys

Take attention-weighted sum of the values

Self-attention layers

SelfAttention

Project each item to three different roles:
queries, keys and values

Compare queries and keys

Take attention-weighted sum of the values

● Same computation performed at each sequence position

Parallelization across the sequence

Applied to each
row separately

For numerical
stability

Multihead–Attention

SelfAttentionSelfAttention

Multi-head attention
● Use multiple self-attention layers, each with its own set of

parameters

SelfAttention

SelfAttentionSelfAttention

… & keeping dimensionality under control

SelfAttention

Concatenate and project back to size d

Transformer layers

Multi-Head Attention Layer

Add & Normalize

2-Layer FeedForward Net

Add & Normalize

Input

Output

Transformer layers

Multi-Head Attention Layer

Add & Normalize

2-Layer FeedForward Net

Add & Normalize

Input

Output

Normalize vectors to zero
mean and unit standard dev

Applied to each
vector in parallel

What if we switch the order of the inputs?

Multi-Head Attention Layer

Add & Normalize

2-Layer FeedForward Net

Add & Normalize

? ? ? ?

Self-attention:

What if we switch the order of the inputs?

Multi-Head Attention Layer

Add & Normalize

2-Layer FeedForward Net

Add & Normalize

Self-attention:

Permuting the inputs produces
the same representations,

with bidirectional self-attention
all information about order lost

Common Transformer Tricks

• Layer Normalization
• Specialized Training Schedule (usually based on Adam optimizer)
• Label Smoothing

Positional encodings
● Add an embedding to each input which depends on its position

● We can either learn a separate embedding for each position [1, max-length]

● Or we can use a fixed function which maps integers to real vectors and
preserves distances
○ The transformer paper used sin and cos of various frequencies

Figure credit: Jay Alammar’s blog

Teach you Yoda

http://jalammar.github.io/illustrated-transformer/

Variants of Positional Embeddings

• Sinusoidal (Vaswani et al 2017)
• Absolute position embeddings (e.g. BERT)
• Relative Position Embeddings (Shaw et al 2018)
• Better relative position embeddings (Transformer XL paper, XLNet0
• Rotary Position Embeddings
• Alibi embeddings (e.g. Train Short, Test Long)
• No Position Embeddings (NoPos)

https://arxiv.org/abs/2104.09864
https://arxiv.org/pdf/2108.12409.pdf
https://arxiv.org/pdf/2203.16634.pdf

Sinusoidal Embeddings

• Sinusoidal embeddings:

• Learned positional embeddings:
 Randomly initialize, look up embedding based on time step t

What about tokenization?

• WordPiece (BERT paper, Fast WordPiece:
https://arxiv.org/abs/2012.15524)
• Byte-Pair Encodings (https://arxiv.org/pdf/1508.07909.pdf)
• Unigram LM (https://arxiv.org/abs/1804.10959)
• Adaptive softmax (Baevski and Auli, 2018) and adaptive inputs (Joulin

et al., 2017).
• vocabulary-free models like ByT4 (Xue et al., 2022) and CANINE (Clark

et al., 2022)
• Better multilingual vocabularies (XLM-V):

https://arxiv.org/abs/2301.10472)

https://arxiv.org/abs/2012.15524
https://arxiv.org/pdf/1508.07909.pdf
https://arxiv.org/abs/1804.10959
https://arxiv.org/abs/2301.10472

Wordpiece Embeddings / Vocabs

Greedy algorithm — basic idea:
1. Initialize the word unit inventory with all characters
2. Build a (n-gram) language model on the training data,

using the inventory from 1.
3. ”Generate a new word unit by combining two units out of the current

word inventory to increment the word unit inventory by one. Choose the
new word unit out of all the possible ones that increases the likelihood
on the training data the most when added to the model.” (text src)

4. “Go to 2 until a predefined limit of word units is reached or the likelihood
increase falls below a certain threshold.” (text src)

Wu et al. 2016 (Google NMT), used by BERT

https://paperswithcode.com/method/wordpiece
https://paperswithcode.com/method/wordpiece
https://arxiv.org/abs/1609.08144
https://arxiv.org/abs/1810.04805

Byte Pair Encoding

1. Initialize the word unit inventory with all characters
2. Build a language model on the training data using the inventory

from 1.
3. “Count all symbol pairs and replace each occurrence of the most

frequent pair (‘A’, ‘B’) with a new symbol ‘AB’”
4. Iterate until a predefined limit of word units is reached.
Old compression algorithm, adapted by Sennrich et al. 2016 to NLP.

https://arxiv.org/pdf/1508.07909.pdf

Transformers for language modeling

●

● We need to prevent attention mechanism from using words after
position t

● Attention masking:

Transformers for language modeling

From Jurafsky & Martin, Chapter 9

GPT3

● 175 billion parameter transformer LM trained on roughly 500 billion tokens of text

● Perplexity on Penn Treebank: 20.5

Language Models are Few-Shot Learners, Brown et al, 2020

https://arxiv.org/abs/2005.14165

“Here is the image representing the phrase "The End," designed for use as the closing slide of a PowerPoint presentation.”

