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Recap: Multi-Modal Pretraining

What exactly goes on inside this “text encoder”?

(1) Contrastive pre-training (2) Create dataset classifier from label text
Pepper the T l
aussie pup —> A photo of Text
Encoder l l l l a {obje . ™| Encoder
T, T, Ts Tn
—> I L'Ty | LTy | T3 | . | I'Ty -
(3) Use for zero-shot prediction v v v v
—> L LT | LTy | LTy | .. | LTy T, | T, | T; Ty
Image . . d .
—+—> I3 LT |I3T, | T3 | .. |I3Ty |
Encoder L=z I L'T, | T, | T ;T
Encoder —>» h v | Il |4yl 1IN
—» Iy INT) | INTy | INT3 INn'TN A pahOto‘ of

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the
target dataset’s classes.



ResNet as Gradient “Superhighway”

Activation function

Weight layer

Activation function

Weight layer
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"Deep Residual Learning for Image Recognition" He et al. 2015



https://arxiv.org/pdf/1512.03385.pdf

Question: How to Learn Distributions on
Discrete Domains?

"Born and raised in North Carolina, Coltrane moved to Philadelphia after graduating from high school,
where he studied music. Working in the bebop and hard bop idioms early in his career, Coltrane helped
pioneer the use of modes and was one of the players at the forefront of free jazz. He led at least fifty
recording sessions and appeared on many albums by other musicians, including trumpeter Miles Davis and
pianist Thelonious Monk. Over the course of his career, Coltrane's music took on an increasingly spiritual
dimension, as exemplified on his most acclaimed album A Love Supreme (1965) and others.”




Sequentially Structured Data

* Have been focusing on data with fixed-length inputs
 But how should we deal with video, text, audio, time series data?

Enter qu‘n/r!.

Pol. 1 heare him comming, with-draw my Lord,

Ham. Tobe, or notto be, that is the quelltion,
Whether tis nobler in the minde to (uffer
The flings and arrowes of outragious fortune,
Or to take Armes again{tafea of troubles,
Andby oppofing, end them, to dic to flcepe
No more, and by a fleepe, to fay we end
‘The hart-ake, and the thoufand naturall (hocks -
‘That fle(h is heire to tis a confumaticn
Deuvoutly to be wilht to dic to fleepe,
To fleepe, perchance to dreame, I there’s the rub,
Forinthat fleepe of death what dreames may come
When we haue (huffled off this mortall coyle +
Mouft give vs paule, there’s therefpeét
That makes calamitie of (o long life :




Feedforward Nets work for Fixed-Size Data

Output Saxophone musician shirt
Machine Learning Machine Learning
Model Model

Input




How to Handle Raw Text as Input (or output)?

Output

T

Machine Learning
Model

“Hi there”

“John Coltrane is a saxophone player”

“This significantly longer sentence must
lnpUt somehow fit into a vector representation of

the same size as the prior two in order to be

processed by our simple machine learning
model”



Traditional Approach for Text Classification

Bag-of-words representations

* Represent each document as vector of word counts I & R|V|
* Dimension | V| = vocab size

* Loses all information about word order.

* Reasonably effective for spam detection but cannot differentiate:
i.  “Scientist exterminated by raging virus!”
ii.  “Virus exterminated by raging scientist!”

* Limited ability to tackle complex language tasks (e.g., translation)
* No clear output mechanism



Complex Object =2 Sequence of Simple Ones

* Hard to represent sentence as fixed-length vector

* Easier to represent characters (or words) as fixed-length vectors
* Breaking up the inputs: ingest a word at each step

* Break up the outputs: predict next token at each step



Archetypal Sequence Learning Tasks

one to one one to many many to one many to many many to many
! ol i [T Pt 1
! ! B it ol Pt ¢

slide credit: Andrej Karpathy



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Archetypal Sequence Learning Tasks

one to one one to many many to one many to many many to many

Text tagging tasks:

fimkpl-eﬁprildlimotnh Image Sentiment \I\/lidte? CIaIF’:o”;ni' Part-of-speech detection,
tasks: tixed-leng captioning analysis aturalfanguag Named entity recognition,
input & output translation

Semantic Role Labeling

slide credit: Andrej Karpathy Language Modeling



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Architecture Strategy: Recurrent Layers

(h)
w==n

Img credit: Chris Olah blog post (Understanding LSTMs)



https://colah.github.io/posts/2015-08-Understanding-LSTMs/

Two Views (Self-connection vs Unrolled)
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Img credit: Chris Olah blog post (Understanding LSTMs)
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https://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Hopfield Nets (Hopfield, 1982)

e Parametrization

e Each node pair i,j connected
by edge with weight w;

* No self connections (w;=0)

* Updates via Hebbian rule
* Fire together - wire together




Hopfield nets (cont’d)

* Updates: 6 {+1,for D Wik > 0;

—1, otherwise

* Two ways to “run” the net:
* Asynchronously — update one at a time
* Synchronously — simultaneously update all

* Learning:

n
Wi — 1/TL E 6?6?
u=1

* |dea: Minimize the “energy”



Jordan Nets (1986)




Jordan Nets (Michael I. Jordan, 1986)

* Pass output from previous step into hidden nodes at current step
e Used for planning

e Didn’t use backpropagation owing to biological implausibility



Elman Nets (1990)




Elman’s Experiments
(Finding Structure in Time, 1990)

* Trained net to perform temporal version of XOR
* Input:0,0,0,1,0,1,0,1,1
* Every third character is the XOR of the previous two
* Goal: predict next bit (first two are random)
* System correctly guessed each third character with 85% accuracy

* Trained net to predict next character in text

* Accurately predicted next char
» 21 years before recent resurgence in auto-regressive text modeling



Sequence Model

* Dependent random variables
(X1, - X7) ~ P(X)
* Conditional probability expansion
p(x) = p(x1) - p(x2]|x1) - P(X3]x1, X%2) * . D(X7|2Xq, o X7 1)
* So why bother?
p(x) =p(xr) - per_qlxr) - D(Xr_2|X7_1,X7) * . (X1 | X2, oo XT)



Sequence Model

p(x) = p(x1) - p(xzlxy) - p(x3]%1, X2) oo (X7 [X1, oo X7 1)

o0 0 0 00

p(x) =p(xr)  p(Xr_1|x7) - D2 |X7-1,X7) . D(X1 [ X2, oo X7)

o0 0 0 00

e Causality (physics) prevents the reverse direction
* ‘wrong’ direction often much more complex to model
* Typically more useful to predict text in left-to-right fashion




Sequence Mode
p(x) = p(xq) - p(x2|x1) - p(x3]|xq, X2) * e D(XT|X1, o X 1)

o0 0 0 00

* Autoregressive model

P(Xe|X1, o Xp—1) = PO S (X1 0 Xp—1))

Some function of previously seen data




Why Not (Hidden) Markov Models?

@ : {®...@}

T




Why Not (Hidden) Markov Models?

* For Markov models, inference is quadratic in number of states

* RNNSs representational expressivity grows exponentially in
latent dimension, computation scales linearly

@ : {@...@}

T




Classic n-gram Language Models

* Make (incorrect) Markov assumption

m

P(wi,...,wm) = [[ P(w; | wy,...,wim1) = [ [ P(w; | wi_n_1),- .- wi—1)
=1 =1

* Estimate probabilities by counting exact occurrences of n-grams

count(wq, wo) count(ws, wo, w3)

p(wa|wy) = p(ws|wy, we) =

count (w1 ) count(wi, ws)

* Smoothing: give some mass to unseen n-grams so loss doesn’t > oo

The equation for bigram probabilities is as follows:

max(c(w;_;,w;) — 4,0)
PKN (/wr "wi -1 ) = , + Aur| y PKN ('UJ,) (4]
> clwig,w')

Where the unigram probability px  (w; ) depends on how likely it is to see the word w; in an unfamiliar context, which is estimated as the number of times
it appears after any other word divided by the number of distinct pairs of consecutive words in the corpus:

Kneser-Ney wiki page



https://en.wikipedia.org/wiki/Kneser%E2%80%93Ney_smoothing

RNN-based Language Modeling

(smen ] (8 ) [ e ] (e ]|




Recurrent Neural Networks

- o, =t Ty
Ve ~ N\
/ \
/ \
| Hidden )
\ Layer /
\ /
N - *® 7/
Sy e —~—
Edge to next

time step




Recurrent Neural Network (Unfolded)

t=1 t=2

) = c(Wiea'® + Winh™Y + by,)
4" = softmax(W,rh® + b,)



RNN-based LMs at Train Time

At Each sequence step t:
* Input is current token x;
* Target is subsequent token x,,,

* Sample sequences up to
some maximum length

* Backprop across compute graph

target chars:

output layer

hidden layer

input layer

input chars:

slide credit: Andrej Karpathy
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http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Backpropagation Through Time

_— NS

slide credit: Andrej Karpathy



http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Truncated Backpropagation Through Time

Loss

TEEEN

> > >

slide credit: Andrej Karpathy



http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

RNN-based LMs at Prediction Time

“e!l
Sample ¢,\

* Feed in some input prefix x; .,

* At each step t, predict next token

. . . Softmax
e Sample from soft-max distribution
* Feed that token back to model output layer
as the subsequent input
hidden layer
input layer
input chars:

slide credit: Andrej Karpathy
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http://cs231n.stanford.edu/slides/2023/lecture_8.pdf

Vanishing / Exploding Gradients

* Recurrent neural networks are very deep Output
along the sequence axis

* Depending on properties of recurrent weights, ’7 N

can lead to gradients exploding or vanishing ) .
. . . . . . [ Hidden
* Manny key innovations and training tricks in \ Layer
RNNs motivated by this problem ¥

Edge to next
time step

Input — >



Gradient Clipping

* One strategy to mitigate the exploding gradient problem:
e Set an upper limit on the norm of the gradient
* Whenever gradient exceeds this norm, scale it down

* Apply SGD update on the rescaled gradient

VL Vﬁj 1f||VLw||1 gmax
w max - VL /||[VL||l, if ||[VE]]1 > max



Vanishing Gradients

Output

Hidden
Layer

Edge to next
time step

——>

Input




RNN Training Details

* |Initial value for hidden state h,typically set to O
e Traditional RNNs used tanh activation, random init
* Some modern RNNs initialize weights as Identity matrix & use RelLU

Le, Jaitly, Hinton (2015)



https://arxiv.org/abs/1504.00941

Long Short-Term Memory Cell

 Each hidden node replaced by a memory cell
* Desighed to deal with learn long range time dependencies

* Internal state S gets residual self-connection (fixed weight of 1)
(similar idea to residual connections in ResNets)

* Input gate / determines when to let activation into the cell
* Qutput Gate 0 determines when to let activation out of the cell

Hochreiter & Schmidhuber 1997



https://www.bioinf.jku.at/publications/older/2604.pdf

LSTM Memory CeHA

o® =is® 0o o)

o @#) p(t-1)

s = g® 5@ {51

Edge to next
time step

NS Edge from previous
AN time step

- t) AN (and current input)
2 \

L
((:t) weight fixed at 1

Hochreiter & Schmidhuber 1997



https://www.bioinf.jku.at/publications/older/2604.pdf

Memory Cell with a Forget Gate

A

v® =5 . o) o®

’
’
’
’
/ -
g K
~
~
\ ~
\
\
\
\

Edge to next

/
/
/ -
O‘ - time step
\ S
\

: t) AN Edge from previous
? \ time step
(and current input)

_>
weight fixed at 1

Gers et al., Neural Computation 2000



https://ieeexplore.ieee.org/abstract/document/6789445

LSTM Forward Pass

g®) = g(Wyez® + Winh "~V + by)

¢(
i) — = o(Wiz () 1+ Wi, R (t—1) + b;)
7 = o(Wioa! + Wenh ™Y + by)
0® = o(Wopx® + W,,h""Y 4+ b,)
S(t) — g(t) @ Z.(?') _|_ S(t_l) @ f(t)

Rt — g(t) ® ot)



Memory Cell Update ~
C,=F,OC_1+1, O C,

Memory f N\
¢ -©- * > Ci
t-1 -
Output
gate
Forget Input ( Candidate
gate gate | memory T T
Fi ) kl o C; tanh o
Hidden state
e 11T
G | y
Input Xt

FC layer with Element-wise c Concatenat
o activation fuction Operator J , oW [ oncatenate




Generating Memory Cell Output
H, =0;(© tanh(C,;)

Memory (
Ct.1 -@ -@ -

>
Forget Input ( Candidate Output:

ate ate
gFt g It memory T gate

Et tanh O;

f
Hidden state } } ) -
e UL Y

Input Xt

FC layer with Element-wise c
g activation fuction Operator 1 s [ Concatenate

\_>q




Wiring together the LSTM cells

Output
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Deep LSTMs (stack layers vertically)

oD oD D O o &
t ¢+ + + t 1
[ LSTM2 ]—»[ LSTM2 ]—’[ LSTM2 ]—»[ LSTM2 ]—’[ LSTM2 ]—»[ LSTM2 ]

A B SR SRR SRR

[ LSTM1 ]—»[ LSTM1 ]—»[ LSTM1 ]—»[ LSTM1 ]—»[ LSTM1 ]—»[ LSTM1 }

t ¢+t + t 1
(O CoOCoOCoCoco




Gated Recurrent Unit (GRUSs)

 Simplified version of LSTM cell R,=oc(XW, +H,_ W, +b,),
Zt = O-(Xthz + Ht—Ith + bz)

H,=tanhX,W,, + (R,0 H,_;) W, + b))
H=Z0H_+(1-Z)0H,

* Only two gates (not 3)
* Less parameters than LSTM

e Similar performance

Hidden state

* Keeps core ideas Hy.

Candidate
|. . Hidden state

Hy




Training & Generating Shakespeare

PANDARUS:

Alas, | think he shall be come approached and the day
When little srain would be attain'd into being never fed,

And who is but a chain and subjects of his death, Training Data:
| should not sleep. All of Shakespeare
Second Senator: Size: 4.4MB

They are away this miseries, produced upon my soul,
Breaking and strongly should be buried, when I perish
The earth and thoughts of many states.

DUKE VINCENTIO:
Well, your wit is in the care of side and that.

Second Lord:

They would be ruled after this chamber, and
m¥1fair nues begun out of the fact, to be conveyed,
Whose noble souls I'll have the heart of the wars.

Clown:
Come, sir, | will make did behold your worship.

VIOLA:
I'll drink it.

Unreasonable Effectiveness of RNNs (Karpathy 2015)



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Further RNN Architecture Exploration

Stacked LSTM (2013) ON THE STATE OF THE ART OF EVALUATION IN
G . d LSTM (2015) NEURAL LANGUAGE MODELS
Il
Géboxl' Melis, Chris Dyer', Phil Blunsom
Recurrent Hichway Nets fgiipﬁii’Cdyer’pbl“s"m}@g"""le'c‘”m
. University of Oxford
(Zilly et al 2016)

NAS-based memory cell

Ongoing innovations in recurrent neural network architectures have provided a

(ZO p h et a | R 2 O 1 6) steady influx of apparently state-of-the-art results on language modelling bench-
l marks. However, these have been evaluated using differing codebases and limited
computational resources, which represent uncontrolled sources of experimental

{ Poi n te r Se nti n a | LST M S variation. We reevaluate several popular architectures and regularisation meth-

ods with large-scale automatic black-box hyperparameter tuning and arrive at the

. somewhat surprising conclusion that standard LSTM architectures, when properly
( M e r I tv et a | . 2 O 1 6) regularised, outperform more recent models. We establish a new state of the art
on the Penn Treebank and Wikitext-2 corpora, as well as strong baselines on the
Hutter Prize dataset.

ABSTRACT



https://arxiv.org/abs/1308.0850
https://arxiv.org/abs/1507.01526
https://arxiv.org/abs/1607.03474
https://arxiv.org/abs/1607.03474
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1611.01578
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/1609.07843

BRNN
(Schuster & Paliwal, 1997)

hgct) = U(Wh
h = o(Wh,ox® + Wiy n, oD + by,)
9 = softmax(Wyp, hs® + Wyn,he® +b,)



Applying Dropout to RNNs

e Recurrent Dropout (Gal & Gharamani 2015):
* Apply same dropout mask at each time step.

* Another variant Semeniuta et al. (2016):
* Apply dropout to LSTM “update vector” g, not to hidden state.

Ct = ft ¥ Ct—1 + it * (](gt)

e Zoneout (Krueger et al. 2017):
e Rather than zero—out units, replace with previous step’s activations.
* Gradient still glows through zone-out units.



https://proceedings.mlr.press/v48/gal16.html
https://arxiv.org/abs/1603.05118
https://arxiv.org/abs/1606.01305

