10-701: Introduction to Machine Learning Lecture 2 - Decision Trees

Henry Chai \& Zack Lipton

8/30/23

- Announcements:
- Recitations will be held on Fridays, at the same time and place as lecture
- No recitation Friday, September 1st
- Office hours will start next week
- Recommended Readings:
- Mitchell, Chapter 3: Decision Tree Learning
- Daumé III, Chapter 1: Decision Trees
- Alright, let's actually (try to) extract a pattern from the data

Recall:
 Our second Machine Learning Classifier

	x_{2} Resting Blood Pressure	x_{3} Cholesterol	Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

- Decision stump on x_{1} :

$$
h\left(x^{\prime}\right)=h\left(x_{1}^{\prime}, \ldots, x_{D}^{\prime}\right)=\left\{\begin{array}{l}
\text { "Yes" if } x_{1}^{\prime}=\text { "Yes" } \\
\text { "No" otherwise }
\end{array}\right.
$$

- Alright, let's actually (try to) extract a pattern from the data

Recall:
 Our second Machine Learning Classifier

Decision
 Stumps:
 Questions

1. How can we pick which feature to split on?
2. Why stop at just one feature?

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.

Splitting Criterion

Training error
rate as a
Splitting
Criterion

x_{1} Family History	Resting Blood Pressure	$\begin{gathered} x_{3} \\ \text { Cholesterol } \end{gathered}$	y Heart Disease?
Yes \rightarrow	Low	Normal	No
No \rightarrow	Medium	Normal	No
No \rightarrow	Low	Abnormal	Yes
Yes \rightarrow	Medium	Normal	Yes
Yes	High	Abnormal	Yes

Training error

rate as a Splitting Criterion?

x_{1}	x_{2}	y
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

- Which feature would you
split on using training error rate as the splitting criterion?

both have training

$$
\text { error rate }=2 / 8
$$

- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
- Training error rate (minimize)
- Gini impurity (minimize) \rightarrow CART algorithm
- Mutual information (maximize) \rightarrow ID3 algorithm
- A splitting criterion is a function that measures how good or useful splitting on a particular feature is for a specified dataset
- Insight: use the feature that optimizes the splitting criterion for our decision stump.
- Potential splitting criteria:
- Training error rate (minimize)
- Gini impurity (minimize) \rightarrow CART algorithm
- Mutual information (maximize) \rightarrow ID3 algorithm
- Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$
H(S)=-\sum_{v \in V(S)} \frac{\left|S_{v}\right|}{|S|} \log _{2}\left(\frac{\left|S_{v}\right|}{|S|}\right)
$$

Entropy

where S is a collection of values,
$V(S)$ is the set of unique values in S
S_{v} is the collection of elements in S with value v

- If all the elements in S are the same, then

$$
H(S)=-1 \log _{2}(1)=0
$$

- Entropy describes the purity or uniformity of a collection of values: the lower the entropy, the more pure

$$
H(S)=-\sum_{v \in V(S)} \frac{\left|S_{v}\right|}{|S|} \log _{2}\left(\frac{\left|S_{v}\right|}{|S|}\right)
$$

Entropy

where S is a collection of values,

$$
V(S) \text { is the set of unique values in } S
$$

S_{v} is the collection of elements in S with value v

- If S is split fifty-fifty between two values, then

$$
\mathrm{H}(S)=-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)=-\log _{2}\left(\frac{1}{2}\right)=1
$$

- Mutual information describes how much information or clarity a particular feature provides about the label

Mutual
 Information

$$
I\left(x_{d} ; Y\right)=H(Y)-\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right)
$$

where x_{d} is a feature

$$
Y \text { is the collection of all labels }
$$

$V\left(x_{d}\right)$ is the set of unique values of x_{d}
f_{v} is the fraction of inputs where $x_{d}=v$
$Y_{x_{d}=v}$ is the collection of labels where $x_{d}=v$

Mutual
Information:
Example

x_{d}	y
1	1
1	1
0	0
0	0

$$
\begin{aligned}
I\left(x_{d}, Y\right) & =H(Y)-\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& =1-\frac{1}{2} H\left(Y_{x_{d}=0}\right)-\frac{1}{2} H\left(Y_{x_{d}=1}\right) \\
& =1-\frac{1}{2}(0)-\frac{1}{2}(0)=1
\end{aligned}
$$

Mutual
Information:
Example

x_{d}	y
1	1
0	1
1	0
0	0

$$
\begin{aligned}
I\left(x_{d}, Y\right) & =H(Y)-\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& =1-\frac{1}{2} H\left(Y_{x_{d}=0}\right)-\frac{1}{2} H\left(Y_{x_{d}=1}\right) \\
& =1-\frac{1}{2}(1)-\frac{1}{2}(1)=0
\end{aligned}
$$

Mutual
 Information as a
 Splitting Criterion

x_{1}	x_{2}	y
1	0	0
1	0	0
1	0	1
1	0	1
1	1	1
1	1	1
1	1	1
1	1	1

- Which feature would you split on using mutual information as the splitting criterion?

Mutual Information: 0

Decision Stumps: Questions

1. How can we pick which feature to split on?
2. Why stop at just one feature?

From Decision		x_{2} Resting Blood Pressure	x_{3} Cholesterol	y Heart Disease?
Stump	Yes	Low	Normal	No
	No	Medium	Normal	No
.	No	Low	Abnormal	Yes
	Yes	Medium	Normal	Yes
	Yes	High	Abnormal	Yes

From
 Decision Stump
 to
 Decision Tree

x_{1} Family History	x_{2} Resting Blood Pressure	x_{3} Cholesterol	Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

From
 Decision Stump
 to
 Decision Tree

x_{1} Family History	x_{2} Resting Blood Pressure	$\begin{gathered} x_{3} \\ \text { Cholesterol } \end{gathered}$	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes
No	High	Normal	No

From
 Decision Stump
 to
 Decision Tree

x_{1} Family History	x_{2} Resting Blood Pressure	x_{3}	Cholesterol Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes
No	High	Normal	No

From
 Decision Stump
 to
 Decision Tree

From
 Decision Stump
 to
 Decision Tree

x_{1} Family History	x_{2} Resting Blood Pressure	x_{3} Cholesterol	y Heart Disease?
Yes	Low	Normal	No
No	Medium	Normal	No
No	Low	Abnormal	Yes
Yes	Medium	Normal	Yes
Yes	High	Abnormal	Yes

No High Normal No

Decision Tree Prediction: Pseudocode

def predict($\left.\boldsymbol{x}^{\prime}\right)$:

- walk from root node to a leaf node while(true):
if current node is internal (non-leaf): check the associated attribute, x_{d}
go down branch according to x_{d}^{\prime} if current node is a leaf node:
return label stored at that leaf

```
def train(\mathcal{D}):
    store root = tree_recurse(D)
def tree_recurse('D'):
    q = new node()
    base case - if (SOME CONDITION):
    recursion - else:
    find best attribute to split on, x
        q.split = x 
        for v in V (xd), all possible values of }\mp@subsup{x}{d}{}\mathrm{ :
        \mathcal{D}
        q.children(v) = tree_recurse( (\mathcal{D}}
    return q
```

def train(\mathcal{D}):
def tree_recurse('D'):
q = new node()
base case - if (\mathcal{D}}\mp@subsup{}{}{\prime}\mathrm{ is empty OR
all labels in }\mp@subsup{\mathcal{D}}{}{\prime}\mathrm{ are the same OR
all features in (D' are identical OR
some other stopping criterion):
q.label = majority_vote(D')
recursion - else:
return q

```
- How is Henry getting to work?
- Label: mode of transportation
- \(y \in \mathcal{Y}=\{\) Bike, Drive, Bus \(\}\)

\section*{Decision \\ Tree: \\ Example}
- Features: 4 categorial features
- Is it raining? \(x_{1} \in\{\) Rain, No Rain \(\}\)
- When am I leaving (relative to rush hour)? \(x_{2} \in\{\) Before, During, After\}
- What am I bringing?
\(x_{3} \in\{\) Backpack, Lunchbox, Both \(\}\)
- Am I tired? \(x_{4} \in\{\) Tired, Not Tired \(\}\)

\section*{Data}
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}

\section*{Which feature}
would we split on
first using mutual
information as
the splitting
criterion?
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}

\[
\begin{aligned}
H(Y)= & -\frac{3}{16} \log _{2}\left(\frac{3}{16}\right) \\
& -\frac{6}{16} \log _{2}\left(\frac{6}{16}\right) \\
& -\frac{7}{16} \log _{2}\left(\frac{7}{16}\right)
\end{aligned}
\]
\(\approx 1.5052\)
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & & \(x_{3}\) & \(x_{4}\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Recall: } I\left(x_{d} ; Y\right)=H(Y) \\
& -\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& I\left(x_{1}, Y\right)=
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Recall: } I\left(x_{d} ; Y\right)=H(Y) \\
& -\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& I\left(x_{1}, Y\right) \approx 1.5052
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Recall: } I\left(x_{d} ; Y\right)=H(Y) \\
& -\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& I\left(x_{1}, Y\right) \approx 1.5052 \\
& -\frac{6}{16}(1)
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Recall: } I\left(x_{d} ; Y\right)=H(Y) \\
& -\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& I\left(x_{1}, Y\right) \approx 1.5052 \\
& -\frac{6}{16}(1) \\
& -\frac{10}{16}\left(-\frac{3}{10} \log _{2}\left(\frac{3}{10}\right)\right. \\
& \left.-\frac{3}{10} \log _{2}\left(\frac{3}{10}\right)-\frac{4}{10} \log _{2}\left(\frac{4}{10}\right)\right)
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & & \(x_{3}\) & \(x_{4}\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}
\[
\begin{aligned}
& \text { Recall: } I\left(x_{d} ; Y\right)=H(Y) \\
& -\sum_{v \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{x_{d}=v}\right)\right) \\
& I\left(x_{1}, Y\right) \approx 1.5052 \\
& -\frac{6}{16}(1) \\
& -\frac{10}{16}(1.5710) \\
& \quad \approx 0.1482
\end{aligned}
\]
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}

\section*{Recall: \(I\left(x_{d} ; Y\right)=H(Y)\) \\ - \\ \(\sum_{\nu \in V\left(x_{d}\right)}\left(f_{v}\right)\left(H\left(Y_{d}=v\right)\right)\)}
\begin{tabular}{ll}
\multicolumn{2}{c}{\(I\left(x_{d}, Y\right)\)} \\
\(x_{1}\) & 0.1482 \\
\(x_{2}\) & 0.1302 \\
\(x_{3}\) & 0.5358 \\
\(x_{4}\) & 0.5576
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Both & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline
\end{tabular}

\section*{Recall: \(I\left(x_{d} ; Y\right)=H(Y)\) \\ - \\ \(\sum_{\nu \in V\left(x_{d}\right)}\left(H\left(Y_{v}\right)\left(x_{d}=v\right)\right)\)}
\begin{tabular}{ll}
\multicolumn{2}{c}{\(I\left(x_{d}, Y\right)\)} \\
\(x_{1}\) & 0.1482 \\
\(x_{2}\) & 0.1302 \\
\(x_{3}\) & 0.5358 \\
\(x_{4}\) & 0.5576
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Tired & Drive \\
\hline
\end{tabular}

\section*{Recall: \(I\left(x_{d} ; Y\right)=H(Y)\) \\ - \\ }
\begin{tabular}{ll}
\multicolumn{2}{c}{\(I\left(x_{d}, Y\right)\)} \\
\(x_{1}\) & 0.1482 \\
\(x_{2}\) & 0.1302 \\
\(x_{3}\) & 0.5358 \\
\(x_{4}\) & 0.5576
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Tired & Metro \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Tired & Drive \\
\hline
\end{tabular}

\section*{Recall: \(I\left(x_{d} ; Y\right)=H(Y)\) \\ }
\begin{tabular}{ll}
\multicolumn{2}{c}{\(I\left(x_{d}, Y\right)\)} \\
\(x_{1}\) & 0.1482 \\
\(x_{2}\) & 0.1302 \\
\(x_{3}\) & 0.5358 \\
\(x_{4}\) & 0.5576
\end{tabular}
\begin{tabular}{|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & & \(x_{4}\) \\
\hline Rain & During & Both & Not Tired & Bus \\
\hline Rain & After & Backpack & Not Tired & Bus \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus \\
\hline No Rain & During & Backpack & Not Tired & Bus \\
\hline No Rain & After & Backpack & Not Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus \\
\hline No Rain & After & Lunchbox & Not Tired & Bus \\
\hline Rain & Before & Both & Tired & Drive \\
\hline Rain & During & Both & Tired & Drive \\
\hline Rain & After & Backpack & Tired & Bus \\
\hline Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & During & Both & Tired & Drive \\
\hline No Rain & After & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Tired & Drive \\
\hline
\end{tabular}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) & & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & During & Both & Not Tired & Bus & & Rain & Before & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus & & Rain & During & Both & Tired & Drive \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus & & Rain & After & Backpack & Tired & Bus \\
\hline No Rain & During & Backpack & Not Tired & Bus & & Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike & & No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus & & No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus & & No Rain & During & Both & Tired & Drive \\
\hline & & & & & & No Rain & After & Backpack & Tired & Bike \\
\hline
\end{tabular}

\section*{Decision Tree: Example}
\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|c|c|}
\hline\(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) & & \(x_{1}\) & \(x_{2}\) & \(x_{3}\) & \(x_{4}\) & \(y\) \\
\hline Rain & During & Both & Not Tired & Bus & & Rain & Before & Both & Tired & Drive \\
\hline Rain & After & Backpack & Not Tired & Bus & & Rain & During & Both & Tired & Drive \\
\hline No Rain & Before & Lunchbox & Not Tired & Bus & & Rain & After & Backpack & Tired & Bus \\
\hline No Rain & During & Backpack & Not Tired & Bus & & Rain & After & Lunchbox & Tired & Drive \\
\hline No Rain & After & Backpack & Not Tired & Bike & & No Rain & Before & Backpack & Tired & Bike \\
\hline No Rain & After & Both & Not Tired & Bus & No Rain & Before & Lunchbox & Tired & Drive \\
\hline No Rain & After & Lunchbox & Not Tired & Bus & & No Rain & During & Both & Tired & Drive \\
\hline
\end{tabular}






- The inductive bias of a machine learning algorithm is the principal by which it generalizes to unseen examples
- What is the inductive bias of the ID3 algorithm i.e., decision tree learning with mutual information maximization as the splitting criterion?
- Try to find the shortest tree that achieves
zero (or the Iowest possible) traine
error
high mith
mal informction features at the top
- Occam's razor: try to find the "simplest" (e.g., smallest decision tree) classifier that explains the training dataset
- Pros
- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks
- Compatible with categorical and real-valued features
- Cons

\section*{Decision Trees: \\ Pros \& Cons}

\title{
Real-Valued \\ Features: \\ Example - \\ \(x=\) Outside \\ Temperature ( \({ }^{\circ} \mathrm{F}\) )
}
\begin{tabular}{|c|c|c|c|}
\hline \(x\) & \(y\) & \(x\) & \(y\) \\
\hline 74 & Drive & 33 & Drive \\
\hline 55 & Metro & 44 & Metro \\
\hline 63 & Bike & 45 & Metro \\
\hline 33 & Drive & 51 & Metro \\
\hline 80 & Drive & 55 & Metro \\
\hline 81 & Drive & 63 & Bike \\
\hline 44 & Metro & 74 & Drive \\
\hline 45 & Metro & 78 & Drive \\
\hline 78 & Drive & 80 & Drive \\
\hline 51 & Metro & 81 & Drive \\
\hline
\end{tabular}

\section*{Real-Valued}

Features:
Example -
\(x=\) Outside
Temperature ( \({ }^{\circ} \mathrm{F}\) )
\begin{tabular}{|c|c|}
\hline\(x\) & \multicolumn{1}{|c|}{\(y\)} \\
\hline 74 & Drive \\
\hline 55 & Metro \\
\hline 63 & Bike \\
\hline 33 & Drive \\
\hline 80 & Drive \\
\hline 81 & Drive \\
\hline 44 & Metro \\
\hline 45 & Metro \\
\hline 78 & Drive \\
\hline 51 & Metro \\
\hline
\end{tabular}


\section*{Real-Valued}

Features:
Example -
\(x=\) Outside
Temperature ( \({ }^{\circ} \mathrm{F}\) )
\begin{tabular}{|c|c|}
\hline\(x\) & \(y\) \\
\hline 74 & Drive \\
\hline 55 & Metro \\
\hline 63 & Bike \\
\hline 33 & Drive \\
\hline 80 & Drive \\
\hline 81 & Drive \\
\hline 44 & Metro \\
\hline 45 & Metro \\
\hline 78 & Drive \\
\hline 51 & Metro \\
\hline
\end{tabular}

\section*{Real-Valued}

Features:
Example -
\(x=\) Outside
Temperature ( \({ }^{\circ} \mathrm{F}\) )


- Pros
- Interpretable
- Efficient (computational cost and storage)
- Can be used for classification and regression tasks

\section*{Decision}

Trees:
Pros \& Cons
- Compatible with categorical and real-valued features
- Cons
- Learned greedily: each split only considers the immediate impact on the splitting criterion
- Not guaranteed to find the smallest (fewest number of splits) tree that achieves a training error rate of 0.
- Liable to overfit!
- Overfitting occurs when the classifier (or model)...
- is too complex
- fits noise or "outliers" in the training dataset as opposed to the actual pattern of interest
- doesn't have enough inductive bias pushing it to

\section*{Overfitting} generalize
- Underfitting occurs when the classifier (or model)...
- is too simple
- can't capture the actual pattern of interest in the training dataset
- has too much inductive bias
- Training error rate \(=\operatorname{err}\left(h, \mathcal{D}_{\text {train }}\right)\)
- Test error rate \(=\operatorname{err}\left(h, \mathcal{D}_{\text {test }}\right)\)
- True error rate \(=\operatorname{err}(h)\)

\section*{Different Kinds of Error}
- In machine learning, this is the quantity that we care about but, in most cases, it is unknowable.
- Overfitting occurs when \(\operatorname{err}(h)>\operatorname{err}\left(h, \mathcal{D}_{\text {train }}\right)\)
- \(\operatorname{err}(h)-\operatorname{err}\left(h, \mathcal{D}_{\text {train }}\right)\) can be thought of as a measure of overfitting




This tree only misclassifies one training data point!
- Decision tree prediction algorithm
- Decision tree learning algorithm via recursion

Key Takeaways
- Inductive bias of decision trees
- Overfitting vs. Underfitting
- How to combat overfitting in decision trees```

