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US Al Insight Forum




US Al Insight Forum Topics

* Forum 1: Opening

* Forum 2: Innovation

* Forum 3: Workforce

* Forum 4: High Impact Al

* Forum 5: Democracy & Elections
* Forum 6: Privacy and Liability



Some Attendees

Session 1: Session 6
e Elon Musk  Mark Surman — Mozilla Foundation (President)
 Mark Zuckerberg e Bernard Kim — Match Group (CEO)
e Sundar Pichai e Arthur Evans Jr — American Psychological
+ Satya Nadella Association (CEQ)
e Eric Schmidt  Mutale Nkonde — Al for the People (CEO)
* Ganesh Sitaraman — Vanderbilt Law

* Jensen Huang Carv Shao! - echro)
e Bi * Gary Shapiro — Consumer Technology
Bill Gates Association (CEO)

* Tracy Pizzo Frey—Common Sense Media
e (ZL—10701 Co-Instructor)

e Sam Altman
* Deborah Raji



Executive Order

Administration  Priorities  The Record

OCTOBER 30, 2023

FACT SHEET: President Biden Issues
Executive Order on Safe, Secure, and
Trustworthy Artificial Intelligence

fmj » BRIEFING ROOM » STATEMENTS AND RELEASES

Today, President Biden is issuing a landmark Executive Order to ensure that
America leads the way in seizing the promise and managing the risks of
artificial intelligence (AI). The Executive Order establishes new standards for
Al safety and security, protects Americans’ privacy, advances equity and civil
rights, stands up for consumers and workers, promotes innovation and

competition, advances American leadership around the world, and more.



Blueprint for an Al Bill of Rights

BLUEPRINT FOR AN Al BILL
OF RIGHTS

MAKING AUTOMATED SYSTEMS WORK FOR
THE AMERICAN PEOPLE

Efim » OSsTP

A mong the great challenges posed to democracy today is the use of

technology, data, and automated systems in ways that threaten the
rights of the American public. Too often, these tools are used to

limit our opportunities and prevent our access to critical resources or



Back to Deep Generative Models

GAN: Adversarial / > el Generator | |
o x' || x z X
training D(x) G(z)

VAE: maximize X Encoder . Decoder | <
variational lower bound 94 (2(x) po(x|z)
Flow-based models: x —» Flow Ll oz . Inlnlarse o x!
Invertible transform of f(x) f (=)

distributions
Diffusion models:. X0 - X1 - Xo . 7z

Gradually add Gaussian nilieln - - ------- TR Dl
noise and then reverse

Img source: https://lilianweng.github.io/posts/2021-07-11-diffusion-models/



https://lilianweng.github.io/posts/2021-07-11-diffusion-models/

2014 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a way to

make a generative model by having two neural networks
compete with each other.

(fake)

The discriminator tries to
distinguish genuine data
from forgeries created by
the generator.

(Xreal data)] ( Xfa,ke ]

!

The generator turns
random noise into
immitations of the data,
in an attempt to fool the

( Z (noise) | discriminator.

Figure credit: Chris Olah
Generative Adversarial Networks (Goodfellow et al. NeuRIPS 2014)

G



https://twitter.com/ch402/status/793911806494261248
https://arxiv.org/abs/1406.2661

GANSs: original training setup

* Dispense with representing likelihood, settle for implicit generation

* Two-player game:
* Generator (w parameters )
* Discriminator (w parameters 0,)

* Minmax objective
I%il”l max Ez~datalog Do (7) +E,pz) log(l — Dy, (Go,(2)))
g d
 Discriminator works to classify real data as real, fake data as fake
* Generator works to make discriminator misclassify fake data as real



Pseudocode

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k£ steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {:c(l), 55 ,w(m)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [1ogD (+9) + 108 (1~ b (a (=)))].

=1
end for
e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p, (2).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.




iterative training, modified objective

1. Steps of gradient ascent to improve discriminator on

I%&X Ei~data log Deg (33) - Ezrvp(z) log(l — Dy, (Geg (Z)))
d

2. Steps of gradient ascent to improve generator on different objective

I%?X Ezwp(z) 1Og(D9d (G@g (Z)))



Optimizing GANs

* Ideally, at equilibrium:
1. Generator exactly matches the real data distribution
2. Discriminator cannot distinguish real from fake Dy (x) = .5, Vx

* In reality:
* Training is difficult and unstable
* Balance between discriminator and generator hard to maintain
» Susceptible to mode collapse: G(x) lacks diversity, D(x) super accurate



Mode Collapse




Deep Convolutional GANs

Radford et al. (ICLR 2015)



https://arxiv.org/pdf/1511.06434.pdf

UpConvolutional Architecture

Stride 2 16

Stride 2

CONV 2

Radford et al. (ICLR 2015)



https://arxiv.org/pdf/1511.06434.pdf

Tips & Tricks (DC-GANSs)

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

Radford et al. (ICLR 2015)



https://arxiv.org/pdf/1511.06434.pdf

Latent Vector Arithmetic

man man woman
with glasses without glasses without glasses

woman with glasses

Radford et al. (ICLR 2015)



https://arxiv.org/pdf/1511.06434.pdf

Many Variants of GAN Objectives

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN L3N = —E,p, [log(D())] — Egnp, log(1 — D(#))] LI = Ezrpgllog(l — D(2))]
NSGAN LYW = —E,_, [log(D(z))] — Eznp,[log(l — D(%))] LEN = —Egrp, [log(D(2))]
WGAN LY = —Egyp [D(2)] + Esmpy [D(2)] LI = —Egrpy [D(2)]

WGAN GP  LYCANCP = [WOAN 4 AEz p, [([|IVD(az + (1 — a)||2 — 1)%]  LFeMNeP = —Egznpy [D(2)]
LSGAN  LE = —Eop [(D(2) — 1)2] + Esrpy [D(2)?] LEMN = —Egmpy [(D(@ — 1))?]
DRAGAN LM = LOW 4 AE; o nv(0,0) [([[VD(#)]]2 — 1)] LU = Ez .y, [log(1 — D(2))]
BEGAN LI = Eonpylllz — AE(@)|[1] — ktEanpy (|12 — AE(@)|[1] L& = Eznpy[l|2 — AE(2)]]1]

figure credit: “Are GANs Created Equal? A Large-Scale Study” Lucic et al. 2018



https://arxiv.org/pdf/1711.10337.pdf

Some Confusion About What Really Matters

Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach* Marcin Michalski  Olivier Bousquet Sylvain Gelly
Google Brain

Abstract

Generative adversarial networks (GAN) are a powerful subclass of generative
models. Despite a very rich research activity leading to numerous interesting
GAN algorithms, it is still very hard to assess which algorithm(s) perform better
than others. We conduct a neutral, multi-faceted large-scale empirical study on
state-of-the art models and evaluation measures. We find that most models can
reach similar scores with enough hyperparameter optimization and random restarts.
This suggests that improvements can arise from a higher computational budget and
tuning more than fundamental algorithmic changes. To overcome some limitations
of the current metrics, we also propose several data sets on which precision and
recall can be computed. Our experimental results suggest that future GAN research
should be based on more systematic and objective evaluation procedures. Finally,
we did not find evidence that any of the tested algorithms consistently outperforms
the non-saturating GAN introduced in [9].

“Are GANs Created Equal? A Large-Scale Study” Lucic et al. 2018



https://arxiv.org/pdf/1711.10337.pdf

Progressive Growing of GANS

https://www.youtube.com/watch?v=XOxxPcy5Gr4
Progressive Growing (Karras et al., ICLR 2018)



https://www.youtube.com/watch?v=XOxxPcy5Gr4
https://arxiv.org/pdf/1710.10196.pdf

Progressive Growing

G Latent Latent Latent
v v v
[ 4x4 | L 4x4 | [ axa ]
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Training progresses >

Progressive Growing (Karras et al., ICLR 2018)



https://arxiv.org/pdf/1710.10196.pdf

Progressive Growing Details

e Start with 4x4 special resolution for both G and D
* As training advances, incrementally add layers, increasing resolution
* All layers remain trainable throughout the process

* Findings
* More stable synthesis in high resolutions
* Speeds up training considerably

Progressive Growing (Karras et al., ICLR 2018)



https://arxiv.org/pdf/1710.10196.pdf

Maintaining Equilibrium (BEGAN)

* Make the discriminator an autoencoder

* |Idea—low loss for autoencoding real data, but high loss for
autoencoding fake examples

* Adversarial game aims to match distribution of losses (vs pixels)
* Tune loss weighting dynamically to maintain parity

The BEGAN objective is:

EG = L’(G(zG)) for 9(;

Lp=L(x)— k.L(G(zp)) for 6p
ki1 = ki + Me(7L(x) — L(G(2¢))) for each training step ¢



Semantically Decomposing Latents (SD—GAN)

2 3 7 10 11 12 13 14
Z() ZO Z() ZO ZO Z() Z() ZO ZO Z() ZO ZO Z() Z()

Semantically Decomposing the Latent Spaces of Generative Adversarial Networks
(Donahue, Lipton et al. ICLR 2017)



SEMANTICALLY%20DECOMPOSING%20THE%20LATENT%20SPACES%20OF%20GENERATIVE%20ADVERSARIAL%20NETWORKS
SEMANTICALLY%20DECOMPOSING%20THE%20LATENT%20SPACES%20OF%20GENERATIVE%20ADVERSARIAL%20NETWORKS

The Key Idea




SD-GAN Pseudo-Code

Algorithm 1 Semantically Decomposed GAN Training

1: for n in 1:NumberOflterations do
2: for m in 1:MinibatchSize do

3: Sample one identity vector z; ~ Uniform([—1, 1]¢7).
4: Sample two observation vectors z},, z% ~ Uniform([—1, 1]¢0).
5: z! < [z1;25)], 2% + [zI;z%J.
6: Generate pair of images G(z' ), G(z?), adding them to the minibatch with label 0 (fake).
7 for m in 1:MinibatchSize do
8: Sample one identity ¢+ € Z uniformly at random from the real data set.
9: Sample two images of ¢ without replacement x;,x2 ~ Pr(x|] = 1).
10: Add the pair to the minibatch, assigning label 1 (real).
11: Update discriminator weights by 0p < 0p + Vg,V (G, D) using its stochastic gradient.
12: Sample another minibatch of identity-matched latent vectors z', z2.

13: Update generator weights by stochastic gradient descent 6 < 0 — V.V (G, D).
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Conditional Generation

* Input Generator gets context x, noise z, produces output y = G(x, 2)

* Discriminator tries to distinguish fake pairs {(G(ﬂha Z)) ?)z)}
from real input, target pairs { (x;, ¥;) }

Update the Generator model

------------------------------------
__________
- ik

Input vector
randomly

drawn from the (generated)
latent space \A Generator /v example \

\\
.

.

.

\}
1
/v Model '.

s \/m \ Classification
4 Discriminator outpul fromithe
—>

Fake

discrimnator
i Model model
Real example real / fake
taken from a
problem LN R
domain /M e aa="
Update the

Label Discriminator model



Pix2Pix

Labels to Street Scene Labels to Facade BW to Color

| N V——— —
| L
[ R D v

out 7 input output
Edges to Photo

input output

Pix2Pix Isola et al. 2017



https://arxiv.org/abs/1611.07004

The U-Net Architecture
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Pix2Pix Learning Setup Adversarial Learning

G* = argminmax L.gan (G, D) + ALr1(G). Lcgan(G, D) =Eq y[log D(z,y)]+
¢ D E, ,[log(l — D(z,G(z, 2))]

L11(G) = Eqgy:||ly — G(z,2)||1]-

D
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Measuring Sample Quality

* Inception Score: feed generated images through Inception v3 model,
measure entropy of outputs (lower better), diversity of labels. But what if
training data for generative model looks nothing like ImageNet?

* Frechet Inception Distance (FID): standard score, measures (mean &
variance) of nodes in deepest representation layer of Inception v3

* Discriminator-based metrics: train classifier to distinguish real from fake,
how easily can it do it (on frozen generator)

 Human-in-the-loop Evaluation: human assessments of quality are standard
in many papers on image and music generation. Useful for assessing
aesthetic properties but may not capture whether the model “learned the
distribution”



Contrastive Language-Image Pre-training

Jvl [cs.CV] 26 Feb 2021

Learning Transferable Visual Models From Natural Language Supervision

Alec Radford ™! Jong Wook Kim ! Chris Hallacy! Aditya Ramesh! Gabriel Goh! Sandhini Agarwal '
Girish Sastry! Amanda Askell! Pamela Mishkin! Jack Clark! Gretchen Krueger' Ilya Sutskever !

Abstract

State-of-the-art computer vision systems are
trained to predict a fixed set of predetermined
object categories. This restricted form of super-
vision limits their generality and usability since
additional labeled data is needed to specify any
other visual concept. Learning directly from raw
text about images is a promising alternative which
leverages a much broader source of supervision.
We demonstrate that the simple pre-training task
of predicting which caption goes with which im-
age is an efficient and scalable way to learn SOTA
image representations from scratch on a dataset
of 400 million (image, text) pairs collected from
the internet. After pre-training, natural language
is used to reference learned visual concepts (or
describe new ones) enabling zero-shot transfer
of the model to downstream tasks. We study
the performance of this approach by benchmark-

Task-agnostic objectives such as autoregressive and masked
language modeling have scaled across many orders of mag-
nitude in compute, model capacity, and data, steadily im-
proving capabilities. The development of “text-to-text” as
a standardized input-output interface (McCann et al., 2018;
Radford et al., 2019; Raffel et al., 2019) has enabled task-
agnostic architectures to zero-shot transfer to downstream
datasets removing the need for specialized output heads or
dataset specific customization. Flagship systems like GPT-3
(Brown et al., 2020) are now competitive across many tasks
with bespoke models while requiring little to no dataset
specific training data.

These results suggest that the aggregate supervision acces-
sible to modern pre-training methods within web-scale col-
lections of text surpasses that of high-quality crowd-labeled
NLP datasets. However, in other fields such as computer
vision it is still standard practice to pre-train models on
crowd-labeled datasets such as ImageNet (Deng et al., 2009).
Could scalable pre-training methods which learn directly



CLIP Fast Facts

Key idea: learn from natural language supervision
(appealing but hasn’t worked out in past

Source of data: “the internet” 400 million image-caption pairs from “a variety of
sources”

Rather than predicting captions, learn joint embeddings
Model:

* Two encoders, one for images, one for text
* L2 normalized outputs

* Training
e Sample a batch
Take all dot-products between examples
Calculate softmax + cross entropy along each row and column
Goal — predict the right caption for each image, right image for each caption
Add the two losses loss_i, loss_t, updated by gradient descent



CLIP Overview

(1) Contrastive pre-training

Pepper the
aussie pup

L%

———— 1

3 Text
T Encoder

Image
Encoder

T, T, T; Tn

—> I LTy | Ty | I'Ts I;'Tn
> I LT | LT, | Ty I Ty
I3 LTy | 3T, | 3Ty I3 Ty
—>» Iy INTy | INT, | IN'T3 IN'TN

(2) Create dataset classifier from label text

A photo of

a {object

(3) Use for zero-shot prediction

Image
Encoder

Text
Encoder

T, T T3 TN
LT | T, | I'Ts I'Tn
y
A photo of

a dog.

Figure 1. Summary of our approach. While standard image models jointly train an image feature extractor and a linear classifier to predict
some label, CLIP jointly trains an image encoder and a text encoder to predict the correct pairings of a batch of (image, text) training
examples. At test time the learned text encoder synthesizes a zero-shot linear classifier by embedding the names or descriptions of the

target dataset’s classes.



Key Results

Remarkable zero-shot acc. on new tasks
Simply encode the label names as caption “an image of a
Prompt engineering on template helps

Linear probes on CLIP outperform fully supervised pretrained!

Average Score (%)
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w
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50 A

45

RN50

-@— Prompt engineering and ensembling
—@— Contextless class names (Li et al. 2017)
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Greater robustness under task shift

Transfer Score (%)

% Linear probe average over Kornblith et al.'s 12 datasets
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Robustness Under “Natural” Distribution Shifts

ImageNet Zero-Shot

100 ResNet101  CLIP A Score

== Ideal robust model (y = x) p 4
-
951 @ Zero-ShotCLIP -7

® Standard ImageNet training o
9071 4 Exisiting robustness techniques ’,f’ ImageNet

85 1
80 |
75 4
70 1
65
60 1
55 1
50 4
45 A
40
354
304
25 4
20

76.2 76.2 0%

ImageNetV2 | § 643 704  +58%

ImageNet-R 37.7 889 +51.2%

ObjectNet 326 723  +39.7%

ImageNet

25.2 60.2 +35.0%
Sketch ’

Average on 7 natural distribution shift datasets (top-1, %)

T T T T T T 2.7 771 +74.4%
65 70 75 80 85 90 95 10
Average on class subsampled ImageNet (top-1, %)

o ImageNet-A BV
-

Figure 13. Zero-shot CLIP is much more robust to distribution shift than standard ImageNet models. (Left) An ideal robust model
(dashed line) performs equally well on the ImageNet distribution and on other natural image distributions. Zero-shot CLIP models shrink
this “robustness gap” by up to 75%. Linear fits on logit transformed values are shown with bootstrap estimated 95% confidence intervals.
(Right) Visualizing distribution shift for bananas, a class shared across 5 of the 7 natural distribution shift datasets. The performance of
the best zero-shot CLIP model, ViT-L/14@336px, is compared with a model that has the same performance on the ImageNet validation
set, ResNet-101.



LAION (5B image open dataset

LAION

Projects

Team

Blog

Notes

Press

About

FAQ

Donations
Privacy Policy
Dataset Requests

Impressum

LAION &

Large-scale Artificial Intelligence Open Network
TRULY OPEN Al. 100% NON-PROFIT. 100% FREE.

LAION, as a non-profit organization, provides datasets, tools and
models to liberate machine learning research. By doing so, we
encourage open public education and a more environment-friendly
use of resources by reusing existing datasets and models.

A CERN FOR OPEN SOURCE LARGE-SCALE Al RESEARCH!
Sign our petition for Open Source Al research!

Join our community on discord!

LAION-400M

An open dataset containing 400

million English image-text
pairs.

Clip H/"4

The largest CLIP (Contrastive

Language-Image Pre-training)
vision transformer model.

LAION-5B

A dataset consisting of 5.85

billion multilingual CLIP-
filtered image-text pairs.

LAION-Aesthetics

A subset of LAION-5B filtered

by a model trained to score
aesthetically pleasing images.




Scaling Up CLIP Training Helps

ImageNet-1k zero-shot classification

. Increase the amount of training 5 -
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with compute) g 73 LA 00N~
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Task: Given a fixed training budget, filter out the best training subset

DataComp Home Participate Tracks FAQs Workshop Team Leaderboard

4

W3 PooL

A. Choose Scale B. Select Data C. Train D. Evaluate E. Submit

Image Credits: Datacomp

Our Goal: Release a model whose vision embeddings become the de-facto
standard across domains



Current Filtering Strategy : CLIP Filtering

CLIP Filtering (previous SOTA)
e Use pre-trained CLIP to calculate similarity between image-caption pairs

e Pretrained CLIP has OCR capabilities, so samples without any visual features are
NOT discarded



Let’s dig deeper into Common Craw|

- For some image-caption pairs, caption don’t describe any visual features
« Model is asked to perform OCR

@ Visual: <> Caption
OCR Text: Not Exist

[0 Visual: Random J

OCR Text: Not Exist

"Orange
Color “"Chimp
Georgette Thinking"

Fabric"
] "8130- "Florida
'zgé"”“ villaggio-dr- lighthouse
;g'\_"‘.‘___.!. | millersville" with beach"

Proportion ~ 5% ] Proportion ~ 45%

© Vvisual: <> Caption

OCR Text: Random

"Worker
digging
with a

shovel."

"Wooden
Wedding
Book™"

Proportion ~ 10%

[ﬁ) Visual: <> Caption

OCR Text: <> Caption

Tops?"

Blow Their

[ Proportion ~ 20%

[@ Visual: Random 1

OCR Text: <> Caption

[ Proportion ~ 20%




Method: Text Masking and Re-

Text Detection — Text Ma

/ Unfiltered Pool ]}

“Vintage Wine”

“Urban Trans”

Score: 0.33 Score: 0.31

“Software” “Superman”

i

Qcore 0.31

Score: O.Sy

Scoring

sking — CLIP Score based F|Iter|ng

- Filtered Pool |

Masked Images

“Vintage Wine” “Urban Trans” “Vintage Wine”
Score: 0.32 Score: 0.25 Score: 0.33
“Software” “Superman” “Su perman”
Score: 0.26 Score: 0.34 Score: 0_35

T-MARS (Maini, Goyal et al)



https://arxiv.org/abs/2307.03132

Result: Samples removed by both text-matching and T-MARS
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RESU|tZ Gains over training on LAION increase logarithmically

-@- LAION =——e— C-RHO T-MARS (OURS)
—%— CLIP —4— C-SSFT —fl— T-MARS N C-RHO
—@— Text-Match wesfp— T-MARS N C-SSFT

"

(\)

A Accuracy over LAION

)

Pool Size



Result: state of Art on DataComp

Table 2: Zero-shot accuracies for various filtering strategies on the small and medium pools of
the DataComp benchmark. M denotes the intersection between two filtering strategies. T-MARS
outperforms the state-of-art on DataComp by a margin of 5% on the medium scale (ImageNet).

small (12.8M) medium (128M)
Filtering DaFaset ImageNet ImageNet VTAB Retrieval Da.taset ImageNet ImageNet VTAB Retrieval
size dist. shifts size dist. shifts
No filtering 12.8M 02.5 03.3 14.5 10.5 128M 17.6 15.2 25.9 17.4
Basic Filtering 3.0M 03.0 04.0 14.9 11.1 30M 22.6 19.3 28.4 19.2
LAION filtering 1.3M 03.1 04.0 13.6 08.5 13M 23.0 19.8 30.7 17.0
CLIP score (/14 30%) | 3.8M 05.1 05.5 19.0 10.8 38M 27.3 23.0 33.8 18.3
T-MARS 2.5M 06.4 06.7 20.1 11.8 25M 33.0 27.0 36.3 225
T-MARS N C-RHO 1.5M 05.6 05.9 17.8 10.6 15M 30.3 24.9 349 19.9
T-MARS N C-SSFT 2.3M 06.5 06.7 194 11.9 23M 33.8 27.4 37.1 23.1
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The Devil Is in the Details

T-MARS: Improving Visual Representations by Circumventing Text Feature Learning
TMARS + SSFT

The Devil Is in the Details - ImageNet best

SIEVE

Density-based Self-supervised Prototypes Pruning

OCR and Naive english filtering

WS (baselines)

Mixed rules

Baseline: Image-based n CLIP score (L/14 30%)

ImageNet
acc.

0.320
0.330
0.338
0.336
0.303
0.334
0.294
0.305
0.303
0.297

Average
perf.

0.371
0.361
0.357
0.355
0.354
0.345
0.343
0.342
0.337
0.328
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Diffusion Models

* Diffusion models consist of two processes
* Forward process where noise is iteratively added to an input
* Reverse (denoising) process that produces data given noise

Forward diffusion process (fixed)

S
>

Noise

Reverse denoising process (generative)

* Training idea: run forward process, learn to predict noise
 Start with random noise, iteratively apply de-noising model

slide credit: Kreis, Gao, Vahdat tutorial



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

Diffusion Kernel

Forward diffusion process (fixed)

Data Noise

Define ay = H(l —Bs)  m  q(x¢|xg) = N(x¢;v/arxg, (1 —ay)I))  (Diffusion Kernel)

s=]

For sampling: x; = oy xg+ /(1 —ay) ¢  where € ~N(0,I)
[3; values schedule (i.e., the noise schedule) is designed such that a7 — 0 and ¢(x7|xg) ~ N (x7;0,1))

slide credit: Kreis, Gao, Vahdat tutorial



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

What happens to a distribution in the forward diffusion?

So far, we discussed the diffusion kernel g(x¢|x) but what about ¢(x¢)?

Diffused Data Distributions

Data Noise
o) = [ o) i = [ o) abaxdx
T ~—— NN Q) S— t
Diffused Joint Input Diffusion
data dist. dist. data dist. kernel
The diffusion kernel is Gaussian convolution. Q(Xo) Q(Xl) Q(XQ) Q(X3) Q(XT)

We can sample X; ~ ¢(x;) by first sampling X ~ ¢(X() and then sampling x; ~ q(x¢|X() (i.e., ancestral sampling).

slide credit: Kreis, Gao, Vahdat tutorial



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

Generative Learning by Denoising

Recall, that the diffusion parameters are designed such that ¢(x7) ~ N (x7;0,1))

Diffused Data Distributions

Generation:
Sample x7 ~ N (x7;0,1)
Iteratively sample X;_1 ~ q(xX;—1|X¢) % X

Y X ® X
True Denoising Dist.

q(xo) q(xq) q(x,) qa(xs) q(xr)
e .7 W 0 B 7P B 0

q(xolxy) q(x[x,) q(xa[x3) q(xs/x4) q(xr.1[x7)
In general, q(x;_1|x¢) o< q(x;—1)q(x¢|x¢—1) is intractable.

Can we approximate ¢(x;_1|X¢)? Yes, we can use a Normal distribution if 3; is small in each forward diffusion step.

slide credit: Kreis, Gao, Vahdat tutorial



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

Reverse Denoising Process

Formal definition of forward and reverse processes in T steps:

_ Reverse denoising process (generative)

S

Data

p(xr) = N(x7;0,T)

po(x¢_1]x¢) = N (x¢_1; pg(xt, 1), 071)
H/_)

Trainable network
(U-net, Denoising Autoencoder)

slide credit: Kreis, Gao, Vahdat tutorial

= po(xo1) = p(xr) | | po(xe—11%¢)
=1

Noise
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https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

Connection to VAEs

Diffusion models can be considered as a special form of hierarchical VAEs.
However, in diffusion models:

The encoder is fixed

The latent variables have the same dimension as the data

The denoising model is shared across different timestep

The model is trained with some reweighting of the variational bound.

Vahdat and Kautz, NVAE: A Deep Hierarchical Variational Autoencoder, NeurlPS 2020 : h. : :
Sonderby, et al.. Ladder variational autoencoders, NeurlPS 2016. Sllde Credlt' Krels, Gao, Vahdat tutorlal 2



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

Conditioning a Diffusion Model

* Conditioned Diffusion: include the label / caption as an input

* Classifier Guidance: add the gradient of a (pre-trained) classifier wrt
to target class as sighal to the denoising model
(push diffusion process towards target class at each step)

* CLIP Guidance (similar to classifier guidance but with CLIP model)

e Classifier-Free Guidance: loss based on difference between
conditional vs unconditional likelihood



DALL-E 2 Architecture

CLIP objecti L [
- — s ! lemngoder
"a corgi
playing a H
flame [N W |
throwing = B o
7, - | ¥ ¥ ¥ >
trumpet 6(50@)0 BO O
L 8+8+
5 N
______________________________________ —_— 8-»0-» S E O O
O O

prior decoder



Cascaded Diffusion Models

256 X256

32x32

Class ID = 213 ;
“Irish Setter”
( J > >

Model 1 Model 2 e

Model 3 ’




Progressive distillation

« Distill a deterministic DDIM sampler to the same model architecture.
» At each stage, a “student” model is learned to distill two adjacent sampling steps of the “teacher” model to

one sampling step.

« At next stage, the “student” model from previous stage will serve as the new “teacher” model.

=1

Z1/2 = f(Z3/41,77)<

Z1/4 = f(Z1/2;77)<

I

Z3/4 = f(z1;n)4

X = f(zl/4;77)*

v
X

€

Distillation

Distillation

j>v
o

v
X

Distillation >

€

\

>x = f(z1;0)

V.
X

Distillation stage

Salimans & Ho, “Progressive distillation for fast sampling of diffusion models”, ICLR 2022.

slide credit: Kreis, Gao, Vahdat tutorial



https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

