T CRARLL e S R e E TR SRS N e
S - — e P s
v ;;; : e . I— 1711
o |- % i
E= =l dﬁgl ’
e e e a4 — e o — 3

5

e I

";- i |~:& ._: Tl '> 1 3 | ‘»~‘\

B N

em 0ls

Recap Unsupervised Learning

* Aims:
* Exploratory data analysis
* Leverage unlabeled data (e.g., for feature learning)

* Some unsupervised tasks:
* (Hard) Clustering
* Topic modeling (soft clustering)
* Dimensionality reduction
* Generative modeling

* Not cleanly distinguished from supervised learning by methodology

* Weird nugget: Whether what we are doing is “unsupervised” often
hangs precariously on what we choose to call a “label”)

Generative Al section of the class

* Generative Al today is a weird category

* Pulls together two separate concerns
1. Web-scale unsupervised (or loosely supervised) training.

2. Generative models, that produce not just point predictions of class labels,
regression targets, but representing distributions over complex media
artifacts (documents, images)

a) Unsupervised learning
b) Distribution learning

c) Latentvariable modeling
d) Dimensionality reduction

Foundation models

* Web-scale unsupervised learning

* Products =2 surprisingly general-purpose models used for many
downstream tasks

* Single model, unsupervised learning on massive amountso f
unstructured data used in many downstream tasks

e Examples:

* Language models:
» state of the art: GPT—-4, PaLM?2, Claude?2
 state of open source: LLaMA?2, Zephyr, Falcon, MPT

* Text—=>Image models: Midjourney, Stable Diffusion, DALL-E 3
 Joint-embedding models: CLIP, Open-CLIP

Generative Modeling 101

* A generative model on X, ..., X, is a statistical model of the joint
distribution of all modeled variables P(X,, ..., X))

* Classic generative models:
* Gaussian Mixture Models

* Probabilistic graphical models
* Directed Acyclic Graphs (DAGs)
* Hidden Markov Models (HMMs)
* Markov Random Fields (MRFs)

* Classic intro to (un)supervised learning “given {(x, y)}’ vs “given {(x)}”

o., 7

* But with generative modeling, any x;, can be your “y
* Different interpretation: we’re not given less, but rather asked to do more

Generative vs Discriminative Modeling

 Discriminative models focus on a particular conditional p(y|x)
* Typically, we only care about getting a point estimate, most likely ¥
* With generative models we typically want to “learn the distribution”

A very simple generative models

* Data consists of a single binary feature
* Draw some data from the real world

D={x,....,xn}

* Pose an appropriately expressive model of the data distribution
D ={z4,...,xy} ~ Bernoulli(6)

* Estimate the parameters of the model

e (D Z T

* Now we can draw synthetic data from our generative model:

r.,...,x ~ Bernoulli(0)

Slightly more interesting: GMM

K
pG) =) Wy N (xlp, %))
j=1

r~

L

140

120

r

100

&)

T
')Il T —_————_
7o]
‘r'(| IJ'I
: 4
s
I s
| 4
l 'I.l
| /
| I
1 S
| J
[/
|
|
|
|
|
|
|
444
3
s
[
P L
fa
-~ ()
~
.’.K_ 40
i
a
y L “
J) K] e A
&) £ 0

v

Some Familiar Generative Models

:?;@ @ E H—®

Bayes nets Markov Random Fields

Things We Sar Might do w Generative Models

* Density estimation: assessing the likelihood p(x)

e Sampling: draw data according to learned distribution x ~ p(x)

* Inference:
* Compute arbitrary marginal likelihoods p(x,=a, Xx3=b, x;=c)
* Compute arbitrary conditional likelihoods p(x;p=a|x3=b, x;7=C)

Can’t Always Have it All

* Some models make some operations easy but others hard
* For DAGs:

* Sampling is easy

* Exact likelihood calculation for a fully observed data point is easy
* General marginalization / conditional inference is in general hard
* Typically, people rely on approximate inference algorithms

* For MRFs
* Expressive set of conditional independencies
* Exact inference is #P-complete, generally intractable
e Approximated with MCMC methods

Deep Latent Generative Model

key idea: sample z from some “nice” distribution, learn a mapping from z ~ p(z) to samples G(z) ™~ pgata(X)

Dominant Methods

e Variational Autoencoders
e Generative Adversarial Networks
* Normalizing flows, score matching, deep diffusion

Super-resolution (Ledig et al. 2017)

bicubic SRResNet SRGAN
(21 59dB/O 6423) | (23.53B/O.7832) (21.15dB/0.6868)

https://arxiv.org/pdf/1609.04802.pdf

Infilling

Input

Figure 1. Semantic inpainting results by TV, LR, PM and our
method. Holes are marked by black color.

Yeh et al. 2016

Figure 1. Examples of Image Inpainting Applications. Image by Jiahui Yu et al. from their paper, DeepFill v2 [13]

Yu et al 2019

https://arxiv.org/pdf/1607.07539.pdf
https://arxiv.org/abs/1806.03589

Instantaneous lllustrations to Spec

“computer droid with giant funny eyeballs”

DALL-E3 (via ChatGPT)

A group of teddy bears in suit in a corporate office celebrating
the birthday of their friend. There is a pizza cake on the desk.

“Photorealistic Text-to-lmage Diffusion Models with Deep
Language Understanding”, Saharia et al., 2022

(Google Imagen)

Autoencoders

Encoder s 2 Decoder

1. Map the input to a compact representation z

2. Use the representation z to reconstruct the input

3. Canlearn encoder & decoder mappings without any labels
4. Learned z picks up the most important factors of variation

Autoencoders, abstractly

Encoder
eg(T)

Neural Network Autoencoders

* Typically trained to reduce dimensionality

* |ntuition:
e Learn compact (non-linear) representation
e Captures important factors of variation

* Objective: minimize reconstruction error (like PCA!)

min ||z — Z||?
0,¢

= min|[z — dy(es(x))

2
i1 |

Autoencoders for Semi-supervised Learning

1. Fit an autoencoder using unlabeled data
{x;}7 , — eg

2. Wrap compose the encoder with a task-appropriate output layer
(with randomly initialized parameters):

fo(eo)
3. Starting from this initialization, optimize on new task-specific data
min L (Yi, fo(eo)(x;))

®,0
x;,Y; €D

Variant: Denoising Autoencoders

* Encode input
 Randomly drop hidden nodes

Y

Ly(x,z

* Reconstruct from corrupted code , OOON,

-
-
-
-

* Denoising makes representation ORO Ol (O0000) (OO0
learning non-trivial i ’ z

Figure 1. An example x is corrupted to x. The autoen-

¢ Req u | res FEd u nda ncy in |ate nt Z coder then maps it to y and attempts to reconstruct x.

“Extracting and Composing Robust Features with Denoising Autoencoders” Vincent et al., ICML 2008

https://www.cs.toronto.edu/~larocheh/publications/icml-2008-denoising-autoencoders.pdf

Variant: Sparse Autoencoders

* Have large number of hidden nodes but coerce sparsity in latent code
* Methods:

1. k-sparse autoencoder: clamp all but k-highest hidden values to O

2. Relaxed sparse autoencoder: train with regularization loss to flush high
fraction of hidden nodes to O

Why Not Sample from a Vanilla Autoencoder?

Latent space of AE

80 9

60 -

40 ~

20

—20 1

-10 0 10 20 30 40 50 60 70

Blog post by Ageel Anwar 2021 Blog post by Irhum Shafkat 2018

https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2
https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

Autoencoder Latent Space

What we require What we may inadvertently end up with

Blog post by Irhum Shafkat 2018

https://towardsdatascience.com/intuitively-understanding-variational-autoencoders-1bfe67eb5daf

VAE vs Autoencoder Latent Space Visualized

Latent space of VAE with KL loss _ Latent space of VAE without KL loss

70

Blog post by Ageel Anwar 2021

https://towardsdatascience.com/difference-between-autoencoder-ae-and-variational-autoencoder-vae-ed7be1c038f2

Variational Autoencoder

NN encoder NN decoder

qo P

Auto-Encoding Variational Bayes (Kingma & Welling 2013)
Stochastic Backpropagation and Approximate Inference in Deep Generative Models (Rezende et al. 2014)

https://arxiv.org/abs/1312.6114
https://proceedings.mlr.press/v32/rezende14.html

Inferring the latent Code

NN encoder

Generating from VAE

NN decoder

Pg

z ~N(0,T) T = py(x|2)

VAE (Neural Network Perspective)

» Encoder: gy (z|x) 2z~ N(ug(x), diag((fg ()))
e Decoder: D¢ (37|Z)

* Objective:
* minimize reconstruction error + regularization term

n

L£(0,9) =) —E.ngo(zlonllogpe(zilz)] + KlL(go(z|zi)||p(2))

)

Backprop through VAE

* Recall, the forward pass through a VAE is stochastic
* How can we backpropagate through a stochastic operation?
* Solve with “reparameterization trick” treat noise as an input

* Original form:

* Reparameterized form:

Z2=Uu+0©E
e ~N(0,1)

The Reparameterization Trick Visualized

Z=U+0OE
e ~N(0,1)

A: Without Reparameterization B: With Reparameterization

Probabilistic Perspective

* Joint probability: p(aj, Z) — p(Z)p(QZ|Z)

* Generative process:
* Draw 25 ~~ p(Z) Assume p(z) multivariate Gaussian
* Draw I ~ p(az\zz)

* |dea: learn parameters to maximize the evidence, i.e., likelihood of our data

po() = / p(2)po(|2)dz

* Problem: intractable, cannot evaluate for all values z

Deriving the variational lower bound

log pg(#5) = E.rgy(z]a) 108 Pe (74)]

Deriving the variational lower bound

log pg(#5) = E.gy(z]a) 108 Py (74)]
dield
z|z;)

P

Deriving the variational lower bound

log pg (i) = Bz (z]2,) 108 Py (74)]

_E, [log 2eZil2)Pe(2)]
i p¢(z\ajz)

—E, -logp¢(xi‘z)p¢ Go (2|]
i pe(z|zi) qo(z|xs)

Deriving the variational lower bound

log pg (i) = Bz (z]2,) 108 Py (74)]

_E, [log 2eZil2)Pe(2)]
i p¢(z\ajz)

—E, -logp¢(xi‘z)p¢ Go (2|]
i pe(z|zi) qo(z|xs)

Deriving the variational lower bound

log pg (i) = Ezngy(z]2,) 108 Py (74)]

— . |log P 2P]
. p¢(z‘xz)
. [l nt
- pe(2lzi) qo(z]x;) -
ogarl ms

pe(2]T4)

Deriving the variational lower bound

log pg (i) = Bz (z]2,) 108 Py (74)]

— &, [log Pl EPe()]
: p¢(z\xz)

)
i Pap\< 37%) Z‘fcz) _
(2|2 (z|2;)
— E. [log ps(#:]2)] [1og o] {E. [1 ;]

‘mz

=E, [logps(xi|2)] — KL(qa(z|z;) Hp¢ 2 KIL(g |5’3z)”p¢(i)

Deriving the variational lower bound

log pg (i) = Bz (z]2,) 108 Py (74)]
= E. [log 2212 ””‘)W('Z]
==

=E, [logpgs(x;]2)] — [log] +E, llog 9o (2|]
Py (2)

‘mz

= E. [logpg(xi|2)] — KL(go(2|2;)||pe(2)) + KL(go(z]2:)||pg (2]x:))

reconstruction loss regularizer on latent encodings

Deriving the variational lower bound

log pe (i) = Ezngy (220 108 Py (%:)]
~ E. |log 22l ﬂ”’“’"]
o) el
z|x;) (z|x;)
(

=E, [logpgs(x;]2)] — [log] +E, llog 9o (2|]
Py (2)

Qo (2|
‘mz

= E. [logpg(xi|2)] — KL(go(2|2;)||pe(2)) + KL(go(z]2:)||pg (2]x:))

ELBO, easy to optimize, lower bound on data likelihood

Learned 2D Manifold on MINIST

VDUANNNNNANNANANAANNNNSNNNNS
QAP LLLLLLWNY NN~
QAN LLLVYYY NN~
QAVVUNININNEL L BLOIVVY e~~~
QAVDHLINNKVWWWBVIVIYY W W - —
QOAVODHINININMEBPIBDIVIY D W - - —
QAOQODIMHIMNMNMMONN DI ID D W@ - - —
QOO MNMMMNNM®DO DD D e e —
OODOMMM MMM WMDD DD e e —
QOMMM MM 0" 000000 O e on o oo —
QAN 00 000000 0 o~ o~ 0~~~ o~
R L G GG R R R
iAo~
Al odogorororororrraaanann~N
SdadadaddocrrrorrrTTIIIINN
SAddddgrrrrrrFFTITITRIRINN
SAdTTTTrrrrrr>rrr22RNN
S B g gl gl sl <l ool ool ol ol ol S L N N NN

Auto-Encoding Variational Bayes (Kingma & Welling 2013)

https://arxiv.org/abs/1312.6114

Frey Face Manifold

e e e e e e
ﬁxxﬁﬁ'wwﬁf
333?3333-~
32333333-

aaaaaﬂﬁnﬂa

Auto-Encoding Variational Bayes (Kingma & Welling 2013)

https://arxiv.org/abs/1312.6114

B-VAF

(a) Azimuth (rotation)

| (b) emotion (smile)

L0, $;x, z, 5) = Eqg, (%) [1ngo(XIZ)] - DKL(Q¢(Z|X)||P(Z))

“Learning Basic Visual Concepts with a Constrained Variational Framework” Higgins et al. ICLR 2017

https://openreview.net/forum?id=Sy2fzU9gl

2014 Generative Adversarial Networks

Generative Adversarial Networks (GANs) are a way to

make a generative model by having two neural networks
compete with each other.

(fake)

The discriminator tries to
distinguish genuine data
from forgeries created by
the generator.

(Xreal data)] (Xfa,ke]

!

The generator turns
random noise into
immitations of the data,
in an attempt to fool the

(Z (noise) | discriminator.

Figure credit: Chris Olah
Generative Adversarial Networks (Goodfellow et al. NeuRIPS 2014)

G

https://twitter.com/ch402/status/793911806494261248
https://arxiv.org/abs/1406.2661

GANSs: original training setup

* Dispense with representing likelihood, settle for implicit generation

* Two-player game:
* Generator (w parameters)
* Discriminator (w parameters 0,)

* Minmax objective
I%il”l max Ez~datalog Do (7) +E,pz) log(l — Dy, (Go,(2)))
g d
 Discriminator works to classify real data as real, fake data as fake
* Generator works to make discriminator misclassify fake data as real

Pseudocode

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used k£ = 1, the least expensive option, in our
experiments.
for number of training iterations do
for k£ steps do

e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p,(2).
e Sample minibatch of m examples {:c(l), 55 ,w(m)} from data generating distribution
pdata(m)-

e Update the discriminator by ascending its stochastic gradient:

Vo 3" [1ogD (+9) + 108 (1~ b (a (=)))].

=1
end for
e Sample minibatch of m noise samples {z(1), ..., z(™)} from noise prior p, (2).
e Update the generator by descending its stochastic gradient:

Vo, 3108 (10 (6 (=))).

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.

iterative training, modified objective

1. Steps of gradient ascent to improve discriminator on

I%&X Ei~data log Deg (33) - Ezrvp(z) log(l — Dy, (Geg (Z)))
d

2. Steps of gradient ascent to improve generator on different objective

I%?X Ezwp(z) 1Og(D9d (G@g (Z)))

Optimizing GANs

* Ideally, at equilibrium:
1. Generator exactly matches the real data distribution
2. Discriminator cannot distinguish real from fake Dy (x) = .5, Vx

* In reality:
* Training is difficult and unstable
* Balance between discriminator and generator hard to maintain
» Susceptible to mode collapse: G(x) lacks diversity, D(x) super accurate

Mode Collapse

Deep Convolutional GANs

Radford et al. (ICLR 2015)

https://arxiv.org/pdf/1511.06434.pdf

UpConvolutional Architecture

Stride 2 16

Stride 2

CONV 2

Radford et al. (ICLR 2015)

https://arxiv.org/pdf/1511.06434.pdf

Tips & Tricks (DC-GANSs)

Architecture guidelines for stable Deep Convolutional GANs

e Replace any pooling layers with strided convolutions (discriminator) and fractional-strided
convolutions (generator).

Use batchnorm in both the generator and the discriminator.
e Remove fully connected hidden layers for deeper architectures.

e Use ReLU activation in generator for all layers except for the output, which uses Tanh.

Use LeakyReLLU activation in the discriminator for all layers.

Radford et al. (ICLR 2015)

https://arxiv.org/pdf/1511.06434.pdf

Latent Vector Arithmetic

man man woman
with glasses without glasses without glasses

woman with glasses

Radford et al. (ICLR 2015)

https://arxiv.org/pdf/1511.06434.pdf

Many Variants of GAN Objectives

GAN DISCRIMINATOR LOSS GENERATOR LOSS

MMGAN L3N = —E,p, [log(D())] — Egnp, log(1 — D(#))] LI = Ezrpgllog(l — D(2))]
NSGAN LYW = —E,_, [log(D(z))] — Eznp,[log(l — D(%))] LEN = —Egrp, [log(D(2))]
WGAN LY = —Egyp [D(2)] + Esmpy [D(2)] LI = —Egrpy [D(2)]

WGAN GP LYCANCP = [WOAN 4 AEz p, [([|IVD(az + (1 — a)||2 — 1)%] LFeMNeP = —Egznpy [D(2)]
LSGAN LE = —Eop [(D(2) — 1)2] + Esrpy [D(2)?] LEMN = —Egmpy [(D(@ — 1))?]
DRAGAN LM = LOW 4 AE; o nv(0,0) [([[VD(#)]]2 — 1)] LU = Ez .y, [log(1 — D(2))]
BEGAN LI = Eonpylllz — AE(@)|[1] — ktEanpy (|12 — AE(@)|[1] L& = Eznpy[l|2 — AE(2)]]1]

fisure credit: “Are GANs Created Equal? A Large-Scale Study” Lucic et al. 2018

https://arxiv.org/pdf/1711.10337.pdf

Some Confusion About What Really Matters

Are GANs Created Equal? A Large-Scale Study

Mario Lucic* Karol Kurach* Marcin Michalski Olivier Bousquet Sylvain Gelly
Google Brain

Abstract

Generative adversarial networks (GAN) are a powerful subclass of generative
models. Despite a very rich research activity leading to numerous interesting
GAN algorithms, it is still very hard to assess which algorithm(s) perform better
than others. We conduct a neutral, multi-faceted large-scale empirical study on
state-of-the art models and evaluation measures. We find that most models can
reach similar scores with enough hyperparameter optimization and random restarts.
This suggests that improvements can arise from a higher computational budget and
tuning more than fundamental algorithmic changes. To overcome some limitations
of the current metrics, we also propose several data sets on which precision and
recall can be computed. Our experimental results suggest that future GAN research
should be based on more systematic and objective evaluation procedures. Finally,
we did not find evidence that any of the tested algorithms consistently outperforms
the non-saturating GAN introduced in [9].

“Are GANs Created Equal? A Large-Scale Study” Lucic et al. 2018

https://arxiv.org/pdf/1711.10337.pdf

Progressive Growing of GANS

https://www.youtube.com/watch?v=XOxxPcy5Gr4
Progressive Growing (Karras et al., ICLR 2018)

https://www.youtube.com/watch?v=XOxxPcy5Gr4
https://arxiv.org/pdf/1710.10196.pdf

Progressive Growing

G Latent Latent Latent
v v v
[4x4 | L 4x4 | [axa]
i | 8)'(8 | | |] |
: [|
[]
i [|
: [|
E l l
§ 1024x1024 |
see { :
ni i Reals & ; Reals
D B 1024x1024 |
B N 3
o |]
i ! |]
vV l]
vV I 8x8 l | l] I
L 44 | L 4x4 | [ax4 |
Training progresses >

Progressive Growing (Karras et al., ICLR 2018)

https://arxiv.org/pdf/1710.10196.pdf

Progressive Growing Details

e Start with 4x4 special resolution for both G and D
* As training advances, incrementally add layers, increasing resolution
* All layers remain trainable throughout the process

* Findings
* More stable synthesis in high resolutions
* Speeds up training considerably

Progressive Growing (Karras et al., ICLR 2018)

https://arxiv.org/pdf/1710.10196.pdf

Semantically Decomposing Latents (SD—GAN)

2 3 7 10 11 12 13 14
Z() ZO Z() ZO ZO Z() Z() ZO ZO Z() ZO ZO Z() Z()

Semantically Decomposing the Latent Spaces of Generative Adversarial Networks
(Donahue, Lipton et al. ICLR 2017)

The Key Idea

SD-GAN Pseudo-Code

Algorithm 1 Semantically Decomposed GAN Training

1: for n in 1:NumberOflterations do
2: for m in 1:MinibatchSize do

3: Sample one identity vector z; ~ Uniform([—1, 1]¢7).
4: Sample two observation vectors z},, z% ~ Uniform([—1, 1]¢0).
5: z! < [z1;25)], 2% + [zI;z%J.
6: Generate pair of images G(z'), G(z?), adding them to the minibatch with label 0 (fake).
7 for m in 1:MinibatchSize do
8: Sample one identity ¢+ € Z uniformly at random from the real data set.
9: Sample two images of ¢ without replacement x;,x2 ~ Pr(x|] = 1).
10: Add the pair to the minibatch, assigning label 1 (real).
11: Update discriminator weights by 0p < 0p + Vg,V (G, D) using its stochastic gradient.
12: Sample another minibatch of identity-matched latent vectors z', z2.

13: Update generator weights by stochastic gradient descent 6 < 0 — V.V (G, D).

Examples

gjg ; a: ‘“‘3
o v e O P
‘.v’.. ‘.1 AN 4

-

Conditional Generation

* Input Generator gets context x, noise z, produces output y = G(x, 2)

* Discriminator tries to distinguish fake pairs {(G(ﬂha Z)) ?)z)}
from real input, target pairs { (x;, ¥;) }

Update the Generator model

- ik

Input vector
randomly

drawn from the (generated)
latent space \A Generator /v example \

\\
.

.

.

\}
1
/v Model '.

s \/m \ Classification
4 Discriminator outpul fromithe
—>

Fake

discrimnator
i Model model
Real example real / fake
taken from a
problem LN R
domain /M e aa="
Update the

Label Discriminator model

Pix2Pix

Labels to Street Scene Labels to Facade BW to Color

| N V——— —
| L
[R D v

out 7 input output
Edges to Photo

input output

The U-Net Architecture

€PT—>

Encoder-decoder

V

v

V

v

Vv

U-Net
.................... >
|

Pix2Pix Learning Setup Adversarial Learning

G* = argminmax L.gan (G, D) + ALr1(G). Lcgan(G, D) =Eq y[log D(z,y)]+
¢ D E, ,[log(l — D(z,G(z, 2))]

L11(G) = Eqgy:||ly — G(z,2)||1]-

D

\
4’ H H i_' real
",j_"_—_—_‘;-;;,l |
/ 7
R R
2 «>A‘.JI ||
N) |
% \
} 1
]

Measuring Sample Quality

* Inception Score: feed generated images through Inception v3 model,
measure entropy of outputs (lower better), diversity of labels. But what if
training data for generative model looks nothing like ImageNet?

* Frechet Inception Distance (FID): standard score, measures (mean &
variance) of nodes in deepest representation layer of Inception v3

* Discriminator-based metrics: train classifier to distinguish real from fake,
how easily can it do it (on frozen generator)

 Human-in-the-loop Evaluation: human assessments of quality are standard
in many papers on image and music generation. Useful for assessing
aesthetic properties but may not capture whether the model “learned the
distribution”

Current State of the Art: Diffusion Models

* Diffusion models consist of two processes
* Forward process where noise is iteratively added to an input

* Reverse (denoising) process that produces data given noise

Forward diffusion process (fixed)

Noise

Reverse denoising process (generative)

* Training idea: run forward process, learn to predict noise

 Start with random noise, iteratively apply de-noising model

slide credit: Kreis, Gao, Vahdat tutorial

https://drive.google.com/file/d/1DYHDbt1tSl9oqm3O333biRYzSCOtdtmn/view

