10-701: Introduction to Machine Learning

 Lecture 17: Unsupervised LearningHenry Chai \& Zack Lipton
11/1/23

- Announcements
- Project Proposals due 11/3 (Friday!)
- Each group should only submit one PDF to Gradescope (see Piazza for instructions on making group submissions)
- Recommended Readings
- Murphy, Chapters 12.2.1-12.2.3
- Murphy, Chapters 25.5.1-25.5.2
- Daumé III, Chapter 15: Unsupervised Learning

Learning Paradigms

- Supervised learning - $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}, y^{(n)}\right)\right\}_{n=1}^{N}$
- Regression - $y^{(n)} \in \mathbb{R}$
- Classification $-y^{(n)} \in\{1, \ldots, C\}$
- Reinforcement learning - $\mathcal{D}=\left\{\left(\boldsymbol{s}^{(n)}, \boldsymbol{a}^{(n)}, r^{(n)}\right)\right\}_{n=1}^{N}$
- Unsupervised learning - $\mathcal{D}=\left\{\boldsymbol{x}^{(n)}\right\}_{n=1}^{N}$
- Clustering
- Dimensionality reduction
- Clustering: split an unlabeled data set into groups or partitions of "similar" data points
- Use cases:
- Organizing data
- Discovering patterns or structure
- Preprocessing for downstream tasks
- Dimensionality Reduction: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
- Decreasing computational costs
- Improving generalization
- Visualizing data

Recall:

Similarity for kNN

- Intuition: predict the label of a data point to be the tabe of the "most similar" training point two points are "similar" if the distance between them is small
- Euclidean distance: $d\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\left\|\boldsymbol{x}-\boldsymbol{x}^{\prime}\right\|_{2}$
- Partition-based clustering: Given a desired number of clusters, K, return a partition of the data set into K groups or clusters, $\left\{C_{1}, \ldots, C_{K}\right\}$, that optimize some objective function
- Define a model and model parameters
- Assume K clusters and use the Euclidean distance
- Parameters: $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ and $z^{(1)}, \ldots, z^{(N)}$

Recipe
 for
 K-means

- Write down an objective function

$$
\sum_{n=1}^{N}\left\|x^{(n)}-\mu_{z^{(n)}}\right\|_{2}
$$

- Optimize the objective w.r.t. the model parameters
- Use (block) coordinate descent
- Goal: minimize some objective

$$
\widehat{\boldsymbol{\theta}}=\operatorname{argmin} J(\boldsymbol{\theta})
$$

- Idea: iteratively pick one variable and minimize the objective w.r.t. just that variable, keeping all others fixed.

Coordinate Descent

- Goal: minimize some objective

$$
\widehat{\boldsymbol{\alpha}}, \widehat{\boldsymbol{\beta}}=\operatorname{argmin} J(\boldsymbol{\alpha}, \boldsymbol{\beta})
$$

- Idea: iteratively pick one block of variables ($\boldsymbol{\alpha}$ or $\boldsymbol{\beta}$) and

Block
 Coordinate Descent

 minimize the objective w.r.t. that block, keeping the other(s) fixed.- Ideally, blocks should be the largest possible set of variables that can be efficiently optimized simultaneously

$$
\widehat{\boldsymbol{\mu}}_{1}, \ldots, \widehat{\boldsymbol{\mu}}_{K}, z^{(1)}, \ldots, z^{(\mathrm{N})}=\operatorname{argmin} \sum_{n=1}^{N}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}_{z^{(n)}}\right\|_{2}
$$

Optimizing the K-means objective

- If $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ are fixed

$$
\hat{z}^{(n)}=\underset{k \in\{1, \ldots, K\}}{\operatorname{argmin}}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}_{k}\right\|_{2}
$$

- If $Z^{(1)}, \ldots, Z^{(N)}$ are fixed

$$
\begin{aligned}
\widehat{\boldsymbol{\mu}}_{k} & =\underset{\boldsymbol{\mu}}{\operatorname{argmin}} \sum_{n: z^{(n)}=k}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}\right\|_{2} \\
& =\frac{1}{N_{k}} \sum_{n: z^{(n)}=k} \boldsymbol{x}^{(n)}
\end{aligned}
$$

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}\right)\right\}_{n=1}^{N}, K$

1. Initialize cluster centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$

2. While NOT CONVERGED

a. Assign each data point to the cluster with the nearest cluster center:

$$
z^{(n)}=\underset{k}{\operatorname{argmin}}\left\|\boldsymbol{x}^{(n)}-\boldsymbol{\mu}_{k}\right\|_{2}
$$

b. Recompute the cluster centers:

$$
\boldsymbol{\mu}_{k}=\frac{1}{N_{k}} \sum_{n: z^{(n)}=k} \boldsymbol{x}^{(n)}
$$

where N_{k} is the number of data points in cluster k

- Output: cluster centers $\boldsymbol{\mu}_{1}, \ldots, \boldsymbol{\mu}_{K}$ and cluster assignments $z^{(1)}, \ldots, Z^{(N)}$

K-means:
Example (K = 3)

K-means:
Example
(K = 3)

K-means:

 Example (K = 3)

K-means:

 Example ($K=3$)

K-means:

 Example (K = 3)

K-means:

Example (K = 3)

K-means:

Example (K = 3)

K-means:

Example (K = 3)

- Idea: choose the value of K that minimizes the objective function

- Look for the characteristic "elbow" or largest decrease when going from $K-1$ to K

Initializing K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)

Initializing K-means

- Common choice: choose K data points at random to be the initial cluster centers (Lloyd's method)
- Lloyd's method converges to a local minimum and that local minimum can be arbitrarily bad (relative to the optimal clusters)
- Intuition: want initial cluster centers to be far apart from one another

K-means++ (Arthur and Vassilvitskii, 2007)

1. Choose the first cluster center randomly from the data points.
2. For each other data point \boldsymbol{x}, compute $D(\boldsymbol{x})$, the distance between \boldsymbol{x} and the closest cluster center.
3. Select the next cluster center proportional to $D(\boldsymbol{x})^{2}$.
4. Repeat 2 and $3 K-1$ times.

- K-means++ achieves a $O(\log K)$ approximation to the optimal clustering in expectation
- Both Lloyd's method and K-means++ can benefit from multiple random restarts.
- Clustering: split an unlabeled data set into groups or partitions of "similar" data points
- Use cases:
- Organizing data
- Discovering patterns or structure
- Preprocessing for downstream tasks
- Dimensionality Reduction: given some unlabeled data set, learn a latent (typically lower-dimensional) representation
- Use cases:
- Decreasing computational costs
- Improving generalization
- Visualizing data

Feature Elimination

Feature Reduction

Which projection do you prefer?

- To be consistent, we will constrain principal components to be orthogonal unit vectors that begin at the origin
- Preprocess data to be centered around the origin:

1. $\boldsymbol{\mu}=\frac{1}{N} \sum_{n=1}^{N} x^{(n)}$
2. $\widetilde{\boldsymbol{x}}^{(n)}=\boldsymbol{x}^{(n)}-\boldsymbol{\mu} \forall n$
3. $X=\left[\begin{array}{c}\widetilde{\boldsymbol{x}}^{(1)^{T}} \\ \widetilde{\boldsymbol{x}}^{(2)^{T}} \\ \vdots \\ \widetilde{\boldsymbol{x}}^{(N)^{T}}\end{array}\right]$

Centering the Data

- The projection of $\widetilde{\boldsymbol{x}}^{(n)}$ onto a vector \boldsymbol{v} is

Reconstruction Error

$$
\mathbf{z}^{(n)}=\left(\frac{\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}}{\|\boldsymbol{v}\|_{2}}\right) \frac{\boldsymbol{v}}{\|\boldsymbol{v}\|_{2}}
$$

- The projection of $\widetilde{\boldsymbol{x}}^{(n)}$ onto a unit vector \boldsymbol{v} is

$$
\begin{array}{r}
\mathbf{z}^{(n)}=\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v} \\
\widehat{\boldsymbol{v}}=\underset{v:\|v\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N}\left\|\widetilde{\boldsymbol{x}}^{(n)}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}\right\|_{2}^{2}
\end{array}
$$

Error

$$
\begin{aligned}
& \left\|\widetilde{\boldsymbol{x}}^{(n)}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}\right\|_{2}^{2} \\
& \quad=\widetilde{\boldsymbol{x}}^{(n)^{T}} \widetilde{\boldsymbol{x}}^{(n)}-2\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}+\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}^{T} \boldsymbol{v} \\
& \quad=\widetilde{\boldsymbol{x}}^{(n)^{T}} \widetilde{\boldsymbol{x}}^{(n)}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)} \\
& \quad=\left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)^{2}
\end{aligned}
$$

Minimizing the
 Reconstruction
 Error

π

Maximizing the Variance

$$
\begin{aligned}
\widehat{\boldsymbol{v}} & =\underset{v:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N}\left\|\widetilde{\boldsymbol{x}}^{(n)}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right) \boldsymbol{v}\right\|_{2}^{2} \\
& =\underset{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmin}} \sum_{n=1}^{N}\left\|\widetilde{\boldsymbol{x}}^{(n)}\right\|_{2}^{2}-\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \\
& =\underset{v:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \sum_{n=1}^{N}\left(\boldsymbol{v}^{T} \widetilde{\boldsymbol{x}}^{(n)}\right)^{2} \longleftarrow \quad \begin{array}{l}
\text { Variance of projections } \\
\left(\widetilde{\boldsymbol{x}}^{(n)} \text { are centered }\right)
\end{array} \\
& =\underset{v:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T}\left(\sum_{n=1}^{N} \widetilde{\boldsymbol{x}}^{(n)} \widetilde{\boldsymbol{x}}^{(n)^{T}}\right) \boldsymbol{v} \\
& =\underset{v:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T}\left(X^{T} X\right) \boldsymbol{v}
\end{aligned}
$$

$$
\widehat{\boldsymbol{v}}=\underset{\boldsymbol{v}:\|\boldsymbol{v}\|_{2}^{2}=1}{\operatorname{argmax}} \boldsymbol{v}^{T}\left(X^{T} X\right) \boldsymbol{v}
$$

$$
\begin{aligned}
\mathcal{L}(v, \lambda) & =v^{T}\left(X^{T} X\right) v-\lambda\left(\|v\|_{2}^{2}-1\right) \\
& =v^{T}\left(X^{T} X\right) v-\lambda\left(\boldsymbol{v}^{T} v-1\right) \\
\frac{\partial \mathcal{L}}{\partial v} & =\left(X^{T} X\right) v-\lambda v \\
& \rightarrow\left(X^{T} X\right) \widehat{v}-\lambda \widehat{v}=0 \rightarrow\left(X^{T} X\right) \widehat{v}=\lambda \widehat{v}
\end{aligned}
$$

Maximizing the Variance

- $\hat{\boldsymbol{v}}$ is an eigenvector of $X^{T} X$ and λ is the corresponding eigenvalue! But which one?

Maximizing the Variance

$$
\begin{aligned}
\widehat{\boldsymbol{v}}= & \underset{v}{\operatorname{vargmax}}\|\boldsymbol{v}\|_{2}^{2}=1 \\
& \left(X^{T} X\right) \widehat{\boldsymbol{v}}=\lambda \widehat{\boldsymbol{v}} \rightarrow \widehat{\boldsymbol{v}}^{T}\left(X^{T} X\right) \widehat{\boldsymbol{v}}=\lambda \widehat{\boldsymbol{v}}^{T} \widehat{\boldsymbol{v}}=\lambda
\end{aligned}
$$

- The first principal component is the eigenvector $\widehat{\boldsymbol{v}}_{1}$ that corresponds to the largest eigenvalue λ_{1}
- The second principal component is the eigenvector $\widehat{\boldsymbol{v}}_{2}$ that corresponds to the second largest eigenvalue λ_{1}
- $\widehat{\boldsymbol{v}}_{1}$ and $\widehat{\boldsymbol{v}}_{2}$ are orthogonal
- Etc ...
- λ_{i} is a measure of how much variance falls along $\widehat{\boldsymbol{v}}_{i}$

Principal
 Components: Example

How can we efficiently find principal components (eigenvectors)?

- Every real-valued matrix $X \in \mathbb{R}^{N \times D}$ can be expressed as

$$
X=U S V^{T}
$$

Singular Value Decomposition (SVD) for PCA

where:

1. $U \in \mathbb{R}^{N \times N}$ - columns of U are eigenvectors of $X X^{T}$
2. $\quad V \in \mathbb{R}^{D \times D}$ - columns of V are eigenvectors of $X^{T} X$
3. $S \in \mathbb{R}^{N \times D}$ - diagonal matrix whose entries are the eigenvalues of $X \rightarrow$ squared entries are the eigenvalues of $X X^{T}$ and $X^{T} X$

- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}\right)\right\}_{n=1}^{N}, \rho$

1. Center the data
2. Use SVD to compute the eigenvalues and eigenvectors of $X^{T} X$

PCA Algorithm

3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
4. Project the data into the space defined by $V_{\rho}, Z=X V_{\rho}$

- Output: Z, the transformed (potentially lowerdimensional) data
- Input: $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(n)}\right)\right\}_{n=1}^{N}, \rho$

1. Center the data
2. Use SVD to compute the eigenvalues and eigenvectors of $X^{T} X$
3. Collect the top ρ eigenvectors (corresponding to the ρ largest eigenvalues), $V_{\rho} \in \mathbb{R}^{D \times \rho}$
4. Project the data into the space defined by $V_{\rho}, Z=X V_{\rho}$

- Output: Z, the transformed (potentially lowerdimensional) data

How many PCs should we use?

- Define a percentage of explained variance for the $i^{\text {th }}$ PC:

$$
\lambda_{i} / \sum \lambda_{j}
$$

Choosing the number of PCs

- Select all PCs above some threshold of explained variance, e.g., 5\%
- Keep selecting PCs until the total explained variance exceeds some threshold, e.g., 90%
- Evaluate on some downstream metric
PCA Example:
MNIST Digits

784 components

Original Image

784 components

$\begin{array}{lll}5 & 10 & 15 \\ 154 \text { components }\end{array}$

$\begin{array}{ll}0 & 5{ }^{10}{ }^{15}{ }^{20} \\ & 154 \text { components }\end{array}$
 154 components
$87{ }^{10}{ }^{15}{ }^{15} \stackrel{20}{20}$

87 components

87 components

43 components

43 components

43 components

$\begin{array}{lll}11 & 10 & 15 \\ 1 c^{20} & 20 \\ \text { components }\end{array}$

11 components

11 components

PCA Example: MNIST Digits

PCA Example: MNIST Digits

Shortcomings of PCA

- Claim: Principal components can be expressed as linear combinations of the (centered) data
- Proof:

$$
\begin{aligned}
\left(X^{T} X\right) \widehat{\boldsymbol{v}}=\lambda \widehat{\boldsymbol{v}} & \rightarrow\left(\sum_{i=1}^{N} \widetilde{\boldsymbol{x}}^{(i)} \widetilde{\boldsymbol{x}}^{(i)^{T}}\right) \widehat{\boldsymbol{v}}=\lambda \widehat{\boldsymbol{v}} \\
& \rightarrow \frac{1}{\lambda} \sum_{i=1}^{N} \widetilde{\boldsymbol{x}}^{(i)}\left(\widetilde{\boldsymbol{x}}^{(i)^{T}} \widehat{\boldsymbol{v}}\right)=\widehat{\boldsymbol{v}} \\
& \rightarrow \widehat{\boldsymbol{v}}=\frac{1}{\lambda} \sum_{i=1}^{N} \hat{a}_{i} \widetilde{\boldsymbol{x}}^{(i)}=\frac{1}{\lambda} X^{T} \widehat{\boldsymbol{a}}
\end{aligned}
$$

- Claim: Principal components can be expressed as linear combinations of the (centered) data
- Consequence:

$$
\begin{aligned}
\left(X^{T} X\right) \widehat{\boldsymbol{v}}=\lambda \widehat{\boldsymbol{v}} & \rightarrow\left(X^{T} X\right)\left(\frac{1}{\lambda} X^{T} \widehat{\boldsymbol{a}}\right)=\lambda\left(\frac{1}{\lambda} X^{T} \widehat{\boldsymbol{a}}\right) \\
& \rightarrow X^{T} X X^{T} \widehat{\boldsymbol{a}}=\lambda X^{T} \widehat{\boldsymbol{a}} \\
& \rightarrow X X^{T} X X^{T} \widehat{\boldsymbol{a}}=\lambda X X^{T} \widehat{\boldsymbol{a}}
\end{aligned}
$$

$X X^{T}$ only consists of inner products between data points!

- Approach: instead of computing $\Phi(\boldsymbol{x})$, find some function K_{Φ} s.t. $K_{\Phi}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)=\Phi(\boldsymbol{x})^{T} \Phi\left(\boldsymbol{x}^{\prime}\right) \forall \boldsymbol{x}, \boldsymbol{x}^{\prime} \in \mathcal{X}$
- $K_{\Phi}\left(\boldsymbol{x}, \boldsymbol{x}^{\prime}\right)$ should be cheaper to compute than $\Phi(\boldsymbol{x})$

Recall: The Kernel Trick

- Given some data set $\mathcal{D}=\left\{\left(\boldsymbol{x}^{(i)}\right)\right\}_{i=1}^{N}$, define the Gram matrix of a kernel K as

$$
\mathrm{K}=\left[\begin{array}{cccc}
K\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(1)}\right) & K\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(2)}\right) & \cdots & K\left(\boldsymbol{x}^{(1)}, \boldsymbol{x}^{(N)}\right) \\
K\left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(1)}\right) & K\left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(2)}\right) & \cdots & K\left(\boldsymbol{x}^{(2)}, \boldsymbol{x}^{(N)}\right) \\
\vdots & \vdots & \ddots & \vdots \\
K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(1)}\right) & K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(2)}\right) & \cdots & K\left(\boldsymbol{x}^{(N)}, \boldsymbol{x}^{(N)}\right)
\end{array}\right]
$$

$$
K K \widehat{\boldsymbol{a}}=\lambda K \widehat{\boldsymbol{a}} \rightarrow K \widehat{\boldsymbol{a}}=\lambda \widehat{\boldsymbol{a}}
$$

- Principal components are the eigenvectors of the Gram matrix K if the data is centered in the transformed space

Kernel PCA

- We can center the transformed data without explicitly computing the transformations (see Bishop 12.3 for complete details):

$$
\widetilde{\mathrm{K}}=\mathrm{K}-\frac{1}{N} I \mathrm{~K}-\frac{1}{N} \mathrm{~K} I+\frac{1}{N^{2}} I \mathrm{~K} I
$$

Kernel PCA: Example

PCs are still orthogonal...

- Assume our data is a linear transformation of arbitrary (not necessarily orthogonal) components ("signals")

$$
\boldsymbol{x}^{(i)}=A \boldsymbol{s}^{(i)}
$$

- Typically assume $\boldsymbol{s}^{(i)}$ is the same size as $\boldsymbol{x}^{(i)}$
- Goal: find components that are as statistically independent as possible:

$$
p\left(s_{1}^{(i)}, \ldots, s_{D}^{(i)}\right) \approx p\left(s_{1}^{(i)}\right) \ldots p\left(s_{D}^{(i)}\right)
$$

- Common approach: minimize the mutual information between $s_{1}^{(i)}, \ldots, s_{D}^{(i)}$

PCA vs. ICA

Autoencoders

Autoencoders

- Learn the weights by minimizing the reconstruction loss:

$$
e(\boldsymbol{x})=\left\|\boldsymbol{x}-\boldsymbol{o}^{(L)}\right\|_{2}^{2}
$$

Autoencoders

Encoder
Decoder

Deep
 Autoencoders

PCA (A) vs. Autoencoders (B) (Hinton and Salakhutdinov, 2014)

- K-means partitions the dataset into K groups using block coordinate descent
- The K-means objective function is non-convex
- K-means++ can help avoid poor initializations
- PCA finds an orthonormal basis where the first principal component maximizes the variance \Leftrightarrow minimizes the reconstruction error
- Can be kernelized
- ICA finds statistically independent, not orthogonal components
- Autoencoders use neural networks to automatically learn a latent representation that minimizes the reconstruction error

