MACHINELLARNING DEPARTMENT

Convolutional Neural Networks II

Zachary Lipton & Henry Chai

10701 – October 30th

email: zlipton@cmu.edu

LeNet Architecture

Basic Components of CNN Architectures

slide source: <u>http://cs231n.stanford.edu/slides/2023/lecture_6.pdf</u>

From Fully-Connected to Convolutional (1D)

- Fully connected, m * n params
- No account for spatial structure

Step 1: Add Locality

- Locally connected, m * 3 params
- Spatial structure accounted for, but no invariance

Step 3: Invariance (via Weight Tying)

- Locally connected, weight tied, 3 params
- Spatial structure AND invariance accounted for

Lifting to 2D Convolutions on Image Input

slide source: http://cs231n.stanford.edu/slides/2023/lecture_6.pdf

Multiple Kernels \rightarrow Multiple Activation Maps

Review: Convolution

slide source: <u>http://cs231n.stanford.edu/slides/2023/lecture_6.pdf</u>

2-D "Convolution (Cross Correlation)

 $0 \times 0 + 1 \times 1 + 3 \times 2 + 4 \times 3 = 19,$ $1 \times 0 + 2 \times 1 + 4 \times 2 + 5 \times 3 = 25,$ $3 \times 0 + 4 \times 1 + 6 \times 2 + 7 \times 3 = 37,$ $4 \times 0 + 5 \times 1 + 7 \times 2 + 8 \times 3 = 43.$

(vdumoulin@ Github)

2-D Convolution Layer

- **X**: $n_h \times n_w$ input matrix
- **W**: $k_h \times k_w$ kernel matrix
- b: scalar bias

• **Y**:
$$(n_h - k_h + 1) \times (n_w - k_w + 1)$$
 output matrix

• W and b are learnable parameters

 $\mathbf{Y} = \mathbf{X} \star \mathbf{W} + b$

With Multiple Output Channels

- X: input volume (h x w x c_{in})
- **K**: 4d kernel (k_h , k_w , c_{in} , c_{out})
- **b**: one bias per output channel
- Y: output volume

slide source: http://cs231n.stanford.edu/slides/2023/lecture_6.pdf

Padding

Fills in rows/columns around input (with 0's)

 $0 \times 0 + 0 \times 1 + 0 \times 2 + 0 \times 3 = 0$

Strides – Skipping Spatial Locations in Conv

• Below: stride of 3 for height, 2 for width

 $0 \times 0 + 0 \times 1 + 1 \times 2 + 2 \times 3 = 8$ $0 \times 0 + 6 \times 1 + 0 \times 2 + 0 \times 3 = 6$ • Below: stride of 2 (= for height, width)

1x1 Point-wise Convolutions

Source: https://medium.com/hitchhikers-guide-to-deep-learning/6-introduction-to-deep-learning-with-computer-vision-3x3-is-a-lie-1x1-convolutions-9edd2baf7fd5

1x1 Convolutions

Convolutional Layer Summary

- Linear operations with few non-zero entries, tied weights
- Padding adds rows/columns to input dimension
- Strides skip spatial locations
- Spatial dimensions of output: (N – F) / stride + 1
- Convolutional layers can be applied on many dimensions
 - 1D (audio, text)
 - 2D (images, spectrograms)
 - 3D (MRI images, CT scans, video)
 - or even higher dimensions (4D convolutions for 3D video?)

2D Max Pooling

- Returns the maximal value in each sliding window
- Pooling windows of 2x2 most common

Exercise:

• Input: 100 x 100 x 3

→Conv (9x9), 48 filters, ReLU, Padding 0, Stride 1
→Conv (9x9), 96 filters, ReLU, Padding 4 (on both sides), Stride 1
→Conv (5x5), 192 filters, ReLU, Padding 0, Stride 2
→Max Pool (2x2), Stride 2
→Conv (1x1), 256 filters
→ fully connected layer (100 outputs)

- What are the dimensions after each layer?
- What's the total parameter count?

LeNet Architecture

ConvNetJS

<u>https://cs.stanford.edu/people/karpathy/convnetjs/</u>

......

۲

 \bigcirc

0

Progress in CNN Architecture via ILSVRC

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

Enduring Themes of CNN Design

- Convolutions replace FC layers, usually followed by activation fn
- Pooling layers between convolutional layers (dept—preserving)
- Max pooling favored (over mean pooling)
- Trends from input to output:
 - Spatial subsampling
 - Increased channel dimension
- Why?

AlexNet

<u>"AlexNet" — (Krizhevsky, Sutskever, Hinton 2012)</u>

AlexNet Architecture

Input: 224 x 224 x 3 images

Architecture:

(11x11), 96 filters, stride 4, ReLU Conv1 : (3x3), max, stride 2 Pool1: local response normalization Norm1: (5x5), 256 filters, stride 2, ReLU Conv2: (3x3), max, stride 2 Pool2: local response normalization Norm2: (3x3), 384 filters, stride 1, pad 1, ReLU Conv3: (3x3), 384 filters, stride 1, pad 1, ReLU Conv4: (3x3), 256 filters, stride 1, pad 1, ReLU Conv5: (3x3), max, stride 2 Pool3: 4096 neurons, ReLU FC6: 4096 neurons, ReLU FC7: 1000 neurons, Softmax FC8:

Comparison to LeNet

- From 5 \rightarrow 8 layers
- Input 224x224 (vs 28x28)
- Larger filters
- Higher-dimensional FC layers
- 1000 classes

AlexNet Implementation


```
class AlexNet(d2l.Classifier):
   def __init__(self, lr=0.1, num_classes=10):
        super().__init__()
        self.save hyperparameters()
        self.net = nn.Sequential(
           nn.LazyConv2d(96, kernel_size=11, stride=4, padding=1),
           nn.ReLU(), nn.MaxPool2d(kernel_size=3, stride=2),
           nn.LazyConv2d(256, kernel_size=5, padding=2), nn.ReLU(),
           nn.MaxPool2d(kernel_size=3, stride=2),
           nn.LazyConv2d(384, kernel_size=3, padding=1), nn.ReLU(),
           nn.LazyConv2d(384, kernel_size=3, padding=1), nn.ReLU(),
           nn.LazyConv2d(256, kernel_size=3, padding=1), nn.ReLU(),
           nn.MaxPool2d(kernel_size=3, stride=2), nn.Flatten(),
           nn.LazyLinear(4096), nn.ReLU(), nn.Dropout(p=0.5),
           nn.LazyLinear(4096), nn.ReLU(),nn.Dropout(p=0.5),
           nn.LazyLinear(num classes))
        self.net.apply(d2l.init_cnn)
```

Other Training Techniques

- Data augmentation:
 - Translations and horizontal reflections (extracting random 224x224 patches from underlying 256x256 images)
 - Altering intensities of the RGB channels
- Dropout:
 - Applied with dropout probability .5 to fully connected layers during training
- Batch Size: 128
- Weight Decay: .0005
- Weight initialization: zero-mean Gaussian w std dev .01
- Optimizer: SGD with momentum of .9
- Schedule: divide learning rate by 10 each time learning stagnated

ZFNet (Zeiler & Fergus ILSVRC winner 2013)

Same general structure as AlexNet, refined hyperparameters

- Conv1: (11×11) , stride 4 \rightarrow 7x7, stride 2
- Conv3,4,5: filter size (384, 484, 256) → (512, 1024, 512)
- **Top5 error:** 16.4% → **11.7%**

Key ideas:

- Visualization techniques to probe learned representations
- Retrain output layer, transfer representation, SOTA on Caltech101, Caltech256

VGG

Simonyan & Zisserman, ICLR 2015

VGG: Key Architectural Changes

- Smaller filters, deeper network (8 layers → 16–19 layers)
- All convs: 3x3 filters, stride 1, pad 1
- All pooling 2x2 max-pool, stride 2
- Adopts motifs, repeated blocks: of 3 conv layers + 1 pool
- Intuition:
 - Stack of 3x3 conv layers has same receptive field as one 7x7 conv layer
 - More depth, more non-linearities, fewer parameters

<u> </u>
Softmax
FC 1000
FC 4096
FC 4096
Pool
3x3 conv, 256
3x3 conv, 384
Pool
3x3 conv, 384
Pool
5x5 conv, 256
11x11 conv, 96
Input
AlexNet

Repeated Building Blocks

Batch Normalization Intuition

- Loss occurs at last layer
 - Last layers learn quickly
- Data is inserted at bottom layer
 - Bottom layers change everything changes
 - Upper layers need to adjust to inputs of wildly different dynamic range
 - Slow convergence
- Original Intuition: "internal covariate shift" (Ioffe, Szegedy 2015)
- Distributional stability hypotheses refuted by <u>Santurkar et al. 2018</u>, alternative hypothesis for benefits: "smoothen optimization landscape"

What BatchNorm Does

• During training, normalize by batch-wise means & variances

$$x_{i+1} = \gamma \frac{x_i - \mu_B}{\hat{\sigma}_B} + \beta$$

- Adds stochastic noise during training:
 - Random shift and scale (depends on minibatch!)
- Benefits tend not to be synergistic with Dropout (most ppl don't mix)
- Ideal minibatch size in range (64 to 256)
- At inference time, normalize using **fixed** batch stats: (running average of batch stats computed during training)

Batch Normalization

• Batch norm operation

$$\mathrm{BN}(\mathbf{x}) = oldsymbol{\gamma} \odot rac{\mathbf{x} - \hat{oldsymbol{\mu}}_{\mathcal{B}}}{\hat{oldsymbol{\sigma}}_{\mathcal{B}}} + oldsymbol{eta}.$$

• Means and variances computed on each minibatch:

$$\hat{oldsymbol{\mu}}_{\mathcal{B}} = rac{1}{|\mathcal{B}|} \sum_{\mathbf{x} \in \mathcal{B}} \mathbf{x} ext{ and } \hat{oldsymbol{\sigma}}_{\mathcal{B}}^2 = rac{1}{|\mathcal{B}|} \sum_{\mathbf{x} \in \mathcal{B}} (\mathbf{x} - \hat{oldsymbol{\mu}}_{\mathcal{B}})^2 + \epsilon.$$

- The γ and β are learnable parameters (1 per channel), restore the expressive power of the model
- Elements of γ initialized at 1, β initialized at 0

BatchNorm Implementation

GoogLeNet

"Going Deeper with Convolutions" Szegedy et al. 2014

GoogLeNet

- 22 layers
- No fully connected layers
- Global average pooling before classification layer
- Only 5M parameters
- 12x less params than AlexNet
- Brought ILSVRC error down from $11.7\% \rightarrow 6.7\%$

Inception Blocks

- Problem: how to choose the right dimension for convolutional filter?
- Answer: don't choose, just pick them all!
- Tricks:
 - Blow up depth dimension with high-channel conv filters
 - Reduce it back down via 1x1 conv "bottleneck" layers

Why add the 1x1 Convolutions?

(a) Inception module, naïve version

(b) Inception module with dimension reductions

Figure 2: Inception module

Residual Networks

"Deep Residual Learning for Image Recognition" He et al. 2015

ResNet

- Inspired a "revolution of depth"
- Brought down error below "human" performance on ILSVRC 3.57%
- Winning networks boasted 152 layers
- Insight: for deep nets, identity function should be easy to learn

Can we go deeper w "vanilla" conv layers?

Figure 1. Training error (left) and test error (right) on CIFAR-10 with 20-layer and 56-layer "plain" networks. The deeper network has higher training error, and thus test error. Similar phenomena on ImageNet is presented in Fig. 4.

Idea \rightarrow Just learn the residual

Residual Layers Applied to Convnet

Residual Block Implementation

```
PYTORCH
             MXNET
                        JAX
                                TENSORFLOW
class Residual(nn.Module): #@save
    """The Residual block of ResNet models."""
   def init (self, num channels, use 1x1conv=False, strides=1):
        super(). init ()
        self.conv1 = nn.LazyConv2d(num_channels, kernel_size=3, padding=1,
                                   stride=strides)
        self.conv2 = nn.LazyConv2d(num_channels, kernel_size=3, padding=1)
       if use_1x1conv:
            self.conv3 = nn.LazyConv2d(num channels, kernel size=1,
                                       stride=strides)
       else:
            self.conv3 = None
        self.bn1 = nn.LazyBatchNorm2d()
        self.bn2 = nn.LazyBatchNorm2d()
   def forward(self, X):
       Y = F.relu(self.bn1(self.conv1(X)))
       Y = self.bn2(self.conv2(Y))
       if self.conv3:
           X = self.conv3(X)
       Y += X
       return F.relu(Y)
```

G

Many Variants of ResNet Blocks

Wide ResNet

Compared to original ResNet

- Blows up number of channels
- Shrinks number of layers
- WideResNet with 50 layers outperformed ResNet with 152
- Explores value of depth vs width

https://towardsdatascience.com/review-densenet-image-classification-b6631a8ef803

Stochastic Depth

- Insight: randomly drop out depth
- Make model robust to (in-activity) of any one layer
- Adapts dropout to whole layers

Img src: https://towardsdatascience.com/review-stochastic-depth-image-classification-a4e225807f4a

ResNeXT (Xie et al 2016)

• Combines residual connections with Inception-style grouping

