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Participating Disciplines

* Psychology

* Cognitive science
* Neuroscience

* Machine Learning
* Statistics

* Physics

* Mathematics

* Philosophy

Aims:

* Understand biological brains
e Simulate biological brains

* Applications in Al

* Non-parametric hammer for
statistical inference
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|
B Why study the history?

R EEEE P ¢\ N OnOUK DON\GLW AN S F 0 TE TEEEE

| * Technology as it happens
* A complicated process
Competing ideas
Many different goals

¥ * Technology in the textbooks
 Story told by the victors

* Can forget there even was a story [}
» Declarative “here is a thing, here is |} |
Frequent rediscovery another thing™
Promising directions abandoned | Hard to figure out “why these

; . ings”?

Many important ideas premature ¢ thlngs ¥ |
Massive uncertainty Stra{g.ht lines from past t.o present
Guided by intuition g Intuition often lost / buried

W3




Why especially for
neural networks

* Everything is {new/old} is {old/new}

* The field moves fast! (but not in a
straight line)

* Mathematical facts are universal, but
engineering facts are ephemeral

* NN knowledge consists of a lot of what,
not a lot of why

* The literature has never been settled




Everything {old/new} is {new/old}

* RelLU activations (1967 - 2010)
* Backprop (1763 = 1960 - 1962 —> 1970 - 1982 - 1986
* Data Augmentation (1958 = 2012)

* The deep-ification of everything:
* Q-learning (1989) - Deep Q-learning (2013)
* Double Q-learning (2010) = Deep Double Q-learning (2015)



Engineering facts change quickly!
What’s the best way to train an image classifier?

* 1958 - Perceptron

* 1980 = Optics-based features

* 1989 > Convolutional Neural Networks

* 1990s =2:Optical features + SVMs

* 2010 - Pre-trained unsupervised- nets, fine-tuned to labeled data

e 2012-2020.~> - Supervised models trained from scratch,
or fine-tuned from-larger supervised models

* 2020s =2 Pre-trained unsupervised and/or (differently supervised)
multimodal nets, fine-tuned to labeled data



What’s the best way to build a text classifier?

* Rules!

e 1990-2010: linear models with TF-IDF / ngram features!

e 2014: LSTM neural networks

e 2015: Convolutional neural networks

e 2016: LSTM neural networks

e 2017: pre-trained LSTM neural networks, finetuned on labeled data

e 2018: pre-trained Transformer models, fine-tuned onlabeled data
e 2023: Just-ask ChatGPT!
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Goals for the
second half of
semester

* Cover prevailing ideas and methods in
deep learning / generative Al.

* Diginto the key results that have
driven practice.

* Cover competing ideas, including
recently outmoded techniques.

* Present material through the lens of a
living, breathing literature.

* Prepare you to ingest new knowledge
as it arrives




A Super-brief History
of Machine Intelligence
(& Mostly, Neural Nets)
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Probabilistic Classification
Emerges

1934 — probit Regression

* Linear model using the probit activation function
(CDF of a normal)

* Parameters estimated by MLE by Fischer in 1935

1943 — logistic regression proposed as an alternative

* Logistic function previously used in 1930s to model
population growth

 Later refined by statistician David Cox in 1958



WWII — Emergence of “Cybernetics”

* Led by Norbert Weiner, who publishes “Cybernetics” in 1948
* Interdisciplinary group of scientists

* Observes similarities between organisms and machines

* Develops technical language for describing both as “systems”
* Focused on feedback loops, statistical principles, information



1943 — McCulloch & Pitts Artificial Neuron

Bulletin of Mathematical Biology Vol. 52, No. 1/2, pp. 99-115, 1990 0092-8240/9053.00+ 0.00
Printed in Great Bntain Pergamon Press plc
Society for Mathematical Biology

A LOGICAL CALCULUS OF THE IDEAS IMMANENT IN
NERVOUS ACTIVITY*

® WARREN S. McCuLLOCH AND WALTER PITTS
University of Illinois, College of Medicine,
Department of Psychiatry at the Illinois Neuropsychiatric Institute,
University of Chicago, Chicago, U.S.A.

Because of the “all-or-none” character of nervous activity, neural events and the relations among
them can be treated by means of propositional logic. It is found that the behavior of every net can
be described in these terms, with the addition of more complicated logical means for nets
containing circles; and that for any logical expression satisfying certain conditions, one can find a
net behaving in the fashion it describes. It is shown that many particular choices among possible
neurophystological assumptions are equivalent, in the sense that for every net behaving under
one assumption, there exists another net which behaves under the other and gives the same
results, although perhaps not in the same time. Various applications of the calculus are
discussed.
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1950—Turing asks, “Can machines think?”










First Neural Network Hype Cycle Kicks Off

(New York Times — July, 1958)

—_—

Eléctronic ‘Brain’ Teaches Iiself

The Navy last week demonstrated
the embryo of an electronic com-
puter named the Perceptron which,
when completed in about a year, is
expected to be the first non-living
mechanism able to “perceive, recog-
nize and identify its surroundings
without human training or control.”
Navy officers demonstrating a pre-
liminary form of the device in
Washington said they hesitated to
call it a machine because it is so
much like a “human being without
life.”

Dr. Frank Rosenblatt, research
psychologist at the Cornell Aero-
nautical Laboratory, Inc., Buffalo,
N. Y., designer of the Perceptron.
conducted the demonstration, The
machine, he said, would be the first
electronic device to think as the
human brain. Like humans, Per-
ceptron will make mistakes at first,
“but it will grow wiser as it gains
experience,” he said.

recognize the difference between
right and left, almost the way a
child learns.

When fully developed, the Per-
ceptron will be designed to remem-
ber images and information it has
perceived itself, whereas ordinary
computers remember only what is
fed into them on punch cards or
magnetic tape.

Later Perceptrons, Dr Rosenblatt
sald, will be able to recognize ped-
ple and call out their names. Printed
pages, longhand letters and even
speech commands are within its
reach. Only one more step of devel-
opment, a difficult step, he said, is
needed for the device to hear speech
in one language and instantly
translate it to speech or writing in
another language.

Self-Reproduction

In principle, Dr. Rosenblatt said,
it would be possible to build Per-

- ——— . 2%l a8 .. 8. a8 .



1959—Hubel & Wiesel
Propose Model of
Simple & Complex
Neurons

e Simple cells have smaller
receptive fields, act like
edge detectors

 Complex cells have larger
receptive fields, less
sensitive todeviations in
exact position of objects

simple units combine afferer

s with different select

ere different onentatio

s

1

M
VITICS

V2NV 4-hke simple units
tuned to the non-
linear combination of
multiple orientations

Vi-like complex unit
tuned to a single
orientation and toler-
ant with respect to the
exact position and
scale of the bar within
its receptive field

N



1965 — Deep Learning Begins Quietly

 First non-linear networks trained by stochastic gradient descent (Amari et al)

* Layer-by-layer training of deep models by Grigorivech & Ivakhenko

IEEE TRANSACTIONS ON ELECTRONIC COMPUTERS, VOL. EC-16, NO. 3, JUNE 1967 299

A Theory of Adaptive Pattern Classifiers

SHUNICHI AMARI

Abstract—This paper describes error-correction adjustment pro-
cedures for determining the weight vector of linear pattern classifiers
under general pattern distribution. It is mainly aimed at clarifying
theoretically the performance of adaptive pattern classifiers. In the
case where the loss depends on the distance between a pattern vector
and a decision boundary and where the average risk function is
unimodal, it is proved that, by the procedures proposed here, the
weight vector converges to the optimal one even under nonseparable
pattern distributions. The speed and the accuracy of convergence
are analyzed, and it is shown that there is an important tradeoff be-
tween speed and accuracy of convergence. Dynamical behaviors,
when the probability distributions of patterns are changing, are also
shown. The theory is generalized and made applicable to the case
with general discriminant functi including pi ise-li dis-
criminant functions.

Index Terms—Accuracy of learning, adaptive pattern classifier,
convergence of learning, learning under nonseparable pattern dis-
tribution, linear decision function, piecewise-linear decision function,
rapidity of learning.

needs a parametric treatment, that is, the distributions
must be limited to those of a certain known kind whose
distributions can be specified by a finite number of
parameters. Moreover, the discriminant functions thus
obtained depend directly on all of the past patterns so
that they are not able to quickly follow the sudden
change of the distributions. In order to avoid these
shortcomings, we shall propose nonparametric learning
procedures, by which the present discriminant function
is modified according only to the present misclassified
pattern.

The steepest-descent method is often used in order to
minimize a known function. However, in our learning
situation, we cannot obtain the descending directions of
the average risk which we intend to minimize, because
the probability distributions of the patterns are un-
known. What we can utilize is the present pattern only,

CYBERNETICS AND FORECASTING

Cybernetics and Forecasting Techniques

By A. G. Tvakhnenko and V. G. Lapa. Translated by
Scripta Technica, Ine. Translation edited by Robert N.
MeDonough. (Modern Analytic and Computational
Methods in Seicnee and Mathematics.) Pp. xxvii + 168,
{(New York: American Elsevier Publishing Co. ; Amsterdam
and London : Elsevier Publishing Co., 1967.) 130s.

THIS 18 an intriguing and exasperating book. The field
of knowledge encompassed by the term cybernetics is
embarrassingly wide and there i1z some danger that in
England this book's title will appeal primarily to the
atatistician and the operations rescarch worker whereas in
fact its background is strictly that of the communications
and control systems engineer.



Backpropagation Developed in Control Theory

* Ahead of its time. Didn’t make quite the splash.

Gradient Theory of Optimal
Flight Paths HENRY J. KELLEY!

Grumman Aireraft Engineering Corp.
Bethpage, N. Y.

An analytical development of flight performance optimization according to the method of gradi-
ents or “*‘method of steepest descent™ is presented. Construction of a minimizing sequence of flight
paths by a stepwise process of descent along the local gradient direction is deseribed as a computa-
tional scheme. Numerical application of the technique is illustrated in a simple example of orbital
transfer via solar sail propulsion. Successive approximations to minimum time planar flight paths
from Earth’s orbit to the orbit of Mars are presented for cases corresponding to free and fixed bound-
ary conditions on terminal velocity components.



Minsky & Papert
Publish
Perceptrons

e Credited (rightly or wrongly) with

quelling enthusiasm for line of Perceptr()ns

research

e Demonstrated limitations of
simpler (single-layer) perceptrons

* Subject of confusion in lore.




1970s—Expert Systems all the Rage

* DARPA funds massive projects around “Knowledge Engineering”

* Herb Simon and Alan Newell win Turing Award in 1975, focused on
modeling psychological systems as collections of “if-then”statements

* Focused on applying logical deduction to curated collections of facts
(knowledge-bases)



-ukushima introduces Cognitron architecture,
Rectified Linear Unit (ReLU) activation (1975)

X \\ ——<] : modifiable (Hebb synapse)

¢; Increases

P if x,>0nz>0
Z

Fig. 1a—c. Hitherto-proposed three hypotheses on the modification
of synapses



Fukushima Proposes Neocognitron:
inventing Convolutional Architecture (1980)
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Fig. 3. lllustration showing the input interconnections to the cells
within a single cell-plane



Werbos reinvents Backpropagation (1974),
Applies to MLPs (1982)

The name back propagation actually comes from the term employed by
Rosenblatt (1962) for his attempt to generalize the perceptron learning algorithm
to the multilayer case. There were many attempts to generalize the perceptron
learning procedure to multiple layers during the 1960s and 1970s, but none of
them were especially successful. There appear to have been at least three inde-
pendent inventions of the modern version of the back-propagation algorithm:
Paul Werbos developed the basic idea in 1974 in a Ph.D. dissertation entitled

From Backpropagation: The Basic Theory — Rumelhart,. Durbin, Golden, Chauvin



1986—Rumelhart & Hinton Popularize
Backpropagation,

train larger nets

Learning representations
by back-propagating errors

David E. Rumelhart*, Geoffrey E. Hintont
& Ronald J. Williams*

* Institute for Cognitive Science, C-015, University of California,
San Diego, La Jolla, California 92093, USA

t Department of Computer Science, Carnegie-Mellon University,
Pittsburgh, Philadelphia 15213, USA

We describe a new learning procedure, back-propagation, for
networks of neurone-like units. The procedure repeatedly adjusts
the weights of the connections in the network so as to minimize a
measure of the difference between the actual output vector of the
net and the desired output vector. As a result of the weight
adjustments, internal *hidden’ units which are not part of the input
or output come to represent important features of the task domain,
and the regularities in the task are captured by the interactions
of these unmits. The ability to create useful new features distin-
guishes back-propagation from earlier, simpler methods such as
the perceptron-convergence procedure’.

Tharae have hsaan manv attemnte tan Ascion calf_arcanizine

more difficult when we introduce hidden units whose actual or
desired states are not specified by the task. (In perceptrons,
there are ‘feature analysers’ between the input and output that
are not true hidden units because their input connections are
fixed by hand, so their states are completely determined by the
input vector: they do not learn representations.) The learning
procedure must decide under what circumstances the hidden
units should be active in order to help achieve the desired
input-output behaviour. This amounts to deciding what these
units should represent. We demonstrate that a general purpose
and relatively simple procedure is powerful enough to construct
appropriate internal representations.

The simplest form of the learning procedure is for layered
networks which have a layer of input units at the bottom; any
number of intermediate layers; and a layer of output units at
the top. Connections within a layer or from higher to lower
layers are forbidden, but connections can skip intermediate
layers. An input vector is presented to the network by setting
the states of the input units. Then the states of the units in each
layer are determined by applying equations (1) and (2) to the
connections coming from lower layers. All units within a layer
have their states set in parallel, but different layers have their
states set sequentially, starting at the bottom and working
upwards until the states of the output units are determined.

The total input, x;, to unit j is a linear function of the outputs,



Jordan Nets with Recurrent Nets 1986

Figure 5: A recurrent neural network as proposed by

Edge to next
- o o) time step

Jordan

1986

|. Output

units are connected to special units that at the next time step feed into them-

selves and into hidden units.



Finding Structure in Time:
Seeds of Language Modeling and Modern RNNs

Figure 6: A recurrent neural network as described by Elman| [1990]. Hidden
units are connected to context units, which feed back into the hidden units at
the next time step.



Yann LeCun trains ConvNets for OCR (1989)

Convolution Layer 2
Convolution Layer 1

Input ing Laver 2
] l | Pooling Layer 2 FC |
] l Pooling Layer | (120) FS(‘.‘?. FC 3
l 84) (10
32 __ U--" po - - - - [’
L o == T-—~="- f=- - aram
32 Ll 28 14 ﬂum-““ - s Param i";(’)‘:’(’)"‘ —850
7% 12 0 g =48120
S=1, F=5, S=1,F=2, S=1, F=5, S=1,F=2,
K=6, P=(), K=6, P=(), K=16, P=0, K=16, P=(),
Param=150 Param=0

Param=2400 Param=0



Yamaguchi introduce Max-Pooling (1990)

* Applied in neural network for speech recognition
(“speaker-independent isolated word recognition”)

Qutput

2 x 2 Max
Pooling




1990s— “Textbook ML” comes into focus

« Supervised learning
Predict y given x

* Unsupervised learning
Uncover the structure of x,
without pre-specifying any
prediction task

* Reinforcement learning
Learn a policy to optimize a
delayed reward signal




1991 LeNet Applied for OCR
1995 Adopted by Banks (for check-reading

5,058,179

1

HIERARCHICAL CONSTRAINED AUTOMATIC
LEARNING NETWORK FOR CHARACTER
RECOGNITION

CROSS-REFERENCE TO RELATED
APPLICATION

This application is related to U.S. patent application
Ser. No. 444,455 filed Nov. 30, 1989 and commonly
assigned herewith.

TECHNICAL FIELD

This invention relates to the field of pattern recogni-
tion and, more particularly, to massively parallel, con-
strained networks for optical character recognition.

BACKGROUND OF THE INVENTION

Computation systems based upon adaptive learning
with fine-grained parallel architectures have moved out
of obscurity in recent years because of the growth of
computer-based information gathering, handling, ma-
nipulation, storage, and transmission. Many concepts
applied in these systems represent potentially efficient
approaches to solving problems such as providing auto-
matic recognition, analysis and classification of charac-
ter patterns in a particular image. Ultimately, the value
of these techniques in such systems depends on their
effectiveness or accuracy relative to conventional ap-
proaches.

0

5

20

30

2

SUMMARY OF THE INVENTION

Highly accurate, reliable optical character recogni-
tion is afforded by a hierarchically layered network
having several layers of parallel constrained feature
detection for localized feature extraction followed by
several fully connected layers for dimensionality reduc-
tion. Character classification is also performed in the
ultimate fully connected layer. Each layer of parallel
constrained feature detection comprises a plurality of
constrained feature maps and a corresponding piurality
of kernels wherein a predetermined kernel is directly
related to a single constrained feature map. Undersam-
pling occurs from layer to layer.

In an embodiment according to the principles of the
invention, the hierarchical network comprises two lay-
ers of constrained feature detection followed by two
fully connected layers of dimensionality reduction.
Each constrained feature map comprises a plurality of
units. Units in each constrained feature map of the first
constrained feature detection layer respond as a func-
tion of both the corresponding kernel for the con-
strained feature map and different portions of the pixel
image of the character captured in a receptive field
associated with the unit. Units in each feature map of
the second constrained feature detection layer respond
as a function of both the corresponding kernel for the
constrained feature map and different portions of an
individual constrained feature map or a combination of
several constrained feature maps in the first constrained



1997 — Invention of LSTM RNNSs
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Hochreiter and Schmidhuber [1997]



https://arxiv.org/pdf/1506.00019.pdf

2010—The Rise
of Modern Deep
Learning

Scientists See Promise in Deep-
Learning Programs

'% Give this article A~ N

e 2008 Graves/Schmidhuber
make strides in
handwriting
recognition/generation

e 2010 Dahl/Hinton Win
Kaggle Competition for
predicting drug binding
sites




2012 Khrizhevsky/Sutskever/Hinton win ImageNet Challenge
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Figure 2: An illustration of the architecture of our CNN, explicitly showing the delineation of responsibilities
between the two GPUs. One GPU runs the layer-parts at the top of the figure while the other runs the layer-parts
at the bottom. The GPUs communicate only at certain layers. The network’s input is 150,528-dimensional, and
the number of neurons in the network’s remaining layers is given by 253 440-186,624-64,896-64,896—43,264-
4096—4096-1000.



“Human-level control through deep
reinforcement learning” 2013

LETTER

doi:10.1038/nature14236

Human-level control through deep reinforcement

learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness!, Marc G. Bellemare!, Alex Graves’,
Martin Riedmiller!, Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen!, Charles Beattie', Amir Sadik’, Ioannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis'

The theory of reinforcement learning provides a normative account',
deeply rooted in psychological’ and neuroscientific’ perspectives on
animal behaviour, of how agents may optimize their control of an
environment. To use reinforcement learning successfully in situations
approaching real-world complexity, however, agents are confronted
with a difficult task: they must derive efficient representations of the
environment from high-dimensional sensory inputs, and use these
to generalize past experience to new situations. Remarkably, humans

agent is to select actions in a fashion that maximizes cumulative future
reward. More formally, we use a deep convolutional neural network to
approximate the optimal action-value function

2
Q' (s,a) = m}xE[n +yreity et s =s, ai=a, n],
which is the maximum sum of rewards r, discounted by y at each time-

step t, achievable by a behaviour policy = = P(als), after making an
observation (s) and taking an action (a) (see Methods)".

oooOo 5 |




DeepMind’s AlphaGo Masters Go

ARTICLE

Mastering the game of Go with deep
neural networks and tree search

David Silver'*, Aja Huang'*, Chris J. Maddison!, Arthur Guez!, Laurent Sifre!, George van den Driessche!,

Julian Schrittwieser’, Ioannis Antonoglou', Veda Panneershelvam', Marc Lanctot!, Sander Dieleman', Dominik Grewe!,
John Nham?, Nal Kalchbrenner!, Ilya Sutskever?, Timothy Lillicrap!, Madeleine Leach!, Koray Kavukcuoglu',

Thore Graepel' & Demis Hassabis'

do0i:10.1038/nature16961

The game of Go has long been viewed as the most challenging of classic games for artificial intelligence owing to its
enormous search space and the difficulty of evaluating board positions and moves. Here we introduce a new approach
to computer Go that uses ‘value networks’ to evaluate board positions and ‘policy networks’ to select moves. These deep
neural networks are trained by a novel combination of supervised learning from human expert games, and reinforcement
learning from games of self-play. Without any lookahead search, the neural networks play Go at the level of state-
of-the-art Monte Carlo tree search programs that simulate thousands of random games of self-play. We also introduce a
new search algorithm that combines Monte Carlo simulation with value and policy networks. Using this search algorithm,
our program AlphaGo achieved a 99.8% winning rate against other Go programs, and defeated the human European Go
champion by 5 games to 0. This is the first time that a computer program has defeated a human professional player in the
full-sized game of Go, a feat previously thought to be at least a decade away.



Industrial Applications in Healthcare

Reward
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Optimism rises for new era of self-driving

Convolutional Encoder-Decoder

Output

Pooling Indices N

»>,

RGB Image B Conv + Batch Normalisation + ReLU Segmentation
I Pooling I Upsampling Softmax

https://www.youtube.com/watch?v=9e2x4dDRB-k



https://www.youtube.com/watch?v=9e2x4dDRB-k

2014—Leaps in Commercial
Speech Recognition (DeepSpeech)

pi (( &

T 7

Hannun et al, 2014




Concerns arise about
Fairness/Transparency/Privacy
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Sequence(-to-Sequence) Modeling

one to one one to many many to one many to many many to many




2012—Early Experiments with Deep RNNs + Language Modeling

target chars: ‘e’ i “” ‘0"
1.0 0.5 0.1 0.2
2.2 0.3 0.5 -1.5
BpLtlayer -3.0 -1.0 1.9 =0.1 while he was giving attention to the second advantage of school
4.1 1.2 11 L. building a 2-for-2 stool killed by the Cultures saddled with a half-
T T T T W hy suit defending the Bharatiya Fernall ’s office . Ms . Claire Parters
B will also have a history temple for him to raise jobs until naked
00 i W e Prodiena to paint baseball partners , provided people to ride both
hidden layer | 0.1 - [ VV_hh of Manhattan in 1978 , but what was largely directed to China in
0.9 0.1 03 0.7 1946 , focusing on the trademark period is the sailboat yesterday
and comments on whom they obtain overheard within the 120th

T T T T anniversary , where many civil rights defined , officials said early
W_xh . .
- that forms , ” said Bernard J. Marco Jr. of Pennsylvania , was
1 0 0 0 monitoring New York
: 0 1 0 0
input layer 0 0 1 1
0 0 0 0
input chars:  “h” “e” I I

image credit: Karpathy, text from Sutskever Martens, Hinton 2012



http://karpathy.github.io/2015/05/21/rnn-effectiveness/

Fast-forward to 2023

write a rap about introduction to machine learning, CMU course 10701 in the style of Biggie
Smalls (but with no curse words).

(Verse 1)

Yo, it's the intro to the ML scene,

CMU course 10701, where the knowledge is clean,
Binary classifications and decision trees,

Algorithms flowin' like a cool breeze.

From supervised learning to the unsupervised kind,
Neural networks in your mind, it's a gold mine.
Regression, clustering, and all in between,

This course got it all, if you know what | mean.

(Chorus)
Machine Learning, ML, the future's so bright,
CMU 10701, we're taking flight.

Biggie style, no curses, just pure insight,

Step into the class, and hold on tight.




Jnalighed Seqg-to-Seq Models
for Natural Language Translation (2014)

o

LSTM2 LSTM2
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2014/5 Image Captioning

START “straw” “hat”

Human: “A green monster kite soaring in a sunny sky.”
Computer model: “A man flying through the air while riding a

snowboard.” ( )



2014 Generative Adversarial Networks
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Generative Adversarial Networks (GANs) are a way to
make a generative model by having two neural networks
compete with each other.

The discriminator tries to
distinguish genuine data
from forgeries created by
the generator.

(Xreal data)] ( Xfa,ke ]

)
Q
C
®

The generator turns
random noise into
G immitations of the data,
in an attempt to fool the

( Z (noise) | discriminator.

Figure credit: Chris Olah



https://twitter.com/ch402/status/793911806494261248

Earlier GAN results




Rapid progress in image quality

https://www.youtube.com/watch?v=XOxxPcy5Gr4



https://www.youtube.com/watch?v=XOxxPcy5Gr4

Conditional
Diffusion Models

Prompt: Anthropomorphic
majestic blobfish knight, portrait,
finely detailed armor, cinematic
lighting, intricate filigree metal
design, 4k, 8k, unreal engine,
octane render

Image via
https://www.blueshadow.art/mid|j
ourney-prompt-commands/



https://www.blueshadow.art/midjourney-prompt-commands/
https://www.blueshadow.art/midjourney-prompt-commands/




The Rise of Foundation Models

e 2017—ELMO pretrains forwards and backwards LSTMS for contextualized
representations, fine-tunes on downstream tasks

 2018—BERT trained on web crawl to learn representations useful for
downstream classification with surprisingly little fine-tuning

* 2018 —0penAl releases GPT, a general web-scale language model
* 2019—0penAl releases GPT2
e 2020—0OpenAl releases GPT3

* 2021—0penAl releases Dall-E, setting off rapid progress on text-to-image
synthesis

e 2021—0penAl releases CLIP, multimodal text + image embeddings
e 2022—0penAl releases ChatGPT
e 2023—O0penAl releases GPT4



New Paradigms Emerge

Prompt engineering could be the hottest
job in tech, with a paycheck to match

Time to fire up your generative Al of choice

April 18, 2023 - 1:55 pm
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BY JOBBIO
= New chat . Zalando - Ansbach
Technical Support
Manager - 1st Level
ChatGPT (m/w/d)

0" Examples

HERO Software - Home
Office

Mitarbeiter
Telefonverkauf (w/m/d)

Explain quantum computing in simple terms* — HERO

"Got any creative ideas for a 10 year old's birthday?"
-

"He
low do | make an HTTP request in Javascript?* —



The emerging repertoire

e Zero-shot prompting
“The following is a movie review: ....
The sentiment of of the review was (positive/negative): ”

* Few-shot prompting / In-Context learning
X1:...,Y1: ..., X2:...,,Y2: ..., X3:...,,Y3:

* Chain-of-Thought reasoning

Getting to final answer by means of a sequence of intermediate reasoning
steps.

* Task-specific fine-tuning



What’s new, What's the same?

* The role of data—it’s possible in an unprecedented way, to get
models to perform complex behaviors, without any additional
training. This out-of-the-box capability is fascinating. Still,
performance matters, and data/expertise are needed to guide the
process.

* In many tasks, when clean data is available, fine-tuning models for
narrow tasks still dominates.

* Many old skills remain relevant. Lots of capabilities require training
models. There’s also a new repertoire emerging where intuitions for
prompts can be as important as intuitions for architectures (or feature
engineering before that).



