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Front Matter
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� Announcements

� HW2 released 9/20, due 10/4 (today!) at 11:59 PM

� HW3 released 10/4 (today!), due 10/11 at 11:59 PM

� Project details will be released on 10/13

� You will have a choice between a more research-based 
project and a more implementation-focused project

� You must work on the project in groups of 3 or 4; 
you may not work on the project alone. 

� Recommended Readings

� Mitchell, Chapter 13

http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf


Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

310/04/23



� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎), 𝛾
� Initialize 𝑉 " 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉 𝑠'

� 𝑉 𝑠 ← max
(	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
(	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉 𝑠'

� Return 𝜋∗

Recall: Value 
Iteration
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𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 𝑉∗ 𝑠'

𝑉∗ 𝑠' = max
(!	∈	𝒜

	𝑄∗ 𝑠', 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 6
#!∈	𝒮

𝑝 𝑠'	|	𝑠, 𝑎 	 max
(!	∈	𝒜

	𝑄∗ 𝑠', 𝑎'

𝜋∗ 𝑠 = argmax
(	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!
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𝑄∗(𝑠, 𝑎) w/ 
deterministic 
rewards and 
transitions

610/04/23

� 𝑄∗ 𝑠, 𝑎 = 𝔼[total discounted reward of taking action 𝑎 in 
              state 𝑠, assuming all future actions are optimal]

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

� 𝑉∗ 𝛿 𝑠, 𝑎 = max
(!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎'

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 	 max
(!	∈	𝒜

	𝑄∗ 𝛿 𝑠, 𝑎 , 𝑎' 	

𝜋∗ 𝑠 = argmax
(	∈	𝒜

	𝑄∗ 𝑠, 𝑎 	

� Insight: if we know 𝑄∗, we can compute an optimal policy 𝜋∗!



Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 1: 
Online learning 
(table form) 

7

� Inputs: discount factor 𝛾, an initial state 𝑠

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� Take a random action 𝑎

� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'
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Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards and 
transitions

Algorithm 2: 
𝜖-greedy online 
learning (table 
form) 

8

� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1
         

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' = 𝛿 𝑠, 𝑎 	
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'

10/04/23
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' ∼ 𝑝 𝑠'	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 1 − 𝛼 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎'

Current 
value

Update w/ 
deterministic transitions

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 
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� Inputs: discount factor 𝛾, an initial state 𝑠,
    greediness parameter 𝜖 ∈ 0, 1 ,
         learning rate 𝛼 ∈ 0, 1  (“trust parameter”)

� Initialize 𝑄 𝑠, 𝑎 = 0	∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜 (𝑄 is a 𝒮 × 𝒜  array) 

� While TRUE, do
� With probability 𝜖, take the greedy action 

𝑎 = argmax
(!	∈	𝒜

	𝑄 𝑠, 𝑎'

Otherwise, with probability 1 − 𝜖, take a random action 𝑎
� Receive reward 𝑟 = 𝑅 𝑠, 𝑎
� Update the state: 𝑠 ← 𝑠' where 𝑠' ∼ 𝑝 𝑠'	 𝑠, 𝑎
� Update 𝑄 𝑠, 𝑎 : 

 𝑄 𝑠, 𝑎 ← 𝑄 𝑠, 𝑎 + 𝛼 𝑟 + 𝛾max
(!

𝑄 𝑠', 𝑎' − 𝑄 𝑠, 𝑎

Learning
𝑄∗(𝑠, 𝑎) w/
deterministic 
rewards 

Algorithm 3: 
𝜖-greedy online 
learning (table 
form) 

Current 
value

Temporal difference 
target

Temporal 
difference
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0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9

Learning
𝑄∗(𝑠, 𝑎): 
Example
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12

0

5

61 2 3 40

0

0

0

0

0 7

3

-2

0

0 0

Which set of 
blue arrows
(roughly) 
corresponds to 
𝑄∗(𝑠, 𝑎)?

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

0 61

0 61

5.10

5.10

𝛾 = 0.9
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Which set of 
blue arrows
(roughly)  
corresponds to 
𝑄∗(𝑠, 𝑎)?

𝑄∗ 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾𝑉∗ 𝛿 𝑠, 𝑎 	

5.10 5.67 6.3 7

5

2 3 4

5.10

5.67

5.67

6.3

6.3 7

3

-2

0

0 0

5.10 5.67 6.3 7

5

2 3 44.59

5.10 5.67

5.67

6.3 7

3

-2

0

0 0

61

61

5.10

5.10

𝑉∗ 𝑠  shown in green
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 0Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9

10/04/23
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 0 0

5 0 0 0 0

6 0 0 0 0

𝑄 4, ↑ ← 3 + 0.9 max
(!∈ →,←,↑,↻

𝑄 5, 𝑎' = 3Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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18

6

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 0 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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6

5

62 3 40

0

0

0

0

0 7

3

-2

0

0 0
0 1

𝑄(𝑠, 𝑎) → ← ↑ ↻
0 0 0 0 0

1 0 0 0 0

2 0 0 0 0

3 2.7 0 0 0

4 0 0 3 0

5 0 0 0 0

6 0 0 0 0

𝑄 3,→ ← 0 + 0.9 max
(!∈ →,←,↑,↻

𝑄 4, 𝑎' = 2.7Learning
𝑄∗(𝑠, 𝑎): 
Example

𝑅 𝑠, 𝑎  represented by 
𝛾 = 0.9
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Learning
𝑄∗(𝑠, 𝑎): 
Convergence

20

� For Algorithms 1 & 2 (deterministic transitions),             
𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite

10/04/23



Learning
𝑄∗(𝑠, 𝑎): 
Convergence

21

� For Algorithm 3 (temporal difference learning),              

𝑄 converges to 𝑄∗ if

1.  Every valid state-action pair is visited infinitely often 

� Q-learning is exploration-insensitive: any visitation 

strategy that satisfies this property will work!

2.  0 ≤ 𝛾 < 1 

3.  ∃	𝛽 s.t. 𝑅 𝑠, 𝑎 < 𝛽 ∀	𝑠 ∈ 𝒮, 𝑎 ∈ 𝒜

4.  Initial 𝑄 values are finite

5.  Learning rate 𝛼> follows some “schedule” s.t.    
∑>?"@ 𝛼> = ∞ and ∑>?"@ 𝛼>A < ∞ e.g., 𝛼> = ⁄B >CB 

10/04/23



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

2210/04/23



Playing Go

23

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
10/04/23

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� How many legal 
Go board states 
are there? 



Playing Go

24

AlphaGo (Black) vs. Lee Sedol (White) 
Game 2 final position (AlphaGo wins) 

Source: https://en.wikipedia.org/wiki/AlphaGo_versus_Lee_Sedol
10/04/23

� 19-by-19 board 
� Players alternate 

placing black and 
white stones

� The goal is claim 
more territory 
than the opponent

� There are ~10170  

legal Go board 
states!

Source: https://en.wikipedia.org/wiki/Go_and_mathematics



Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?

• Throw a neural network at it! 

2510/04/23



Deep 
Q-learning

� Use a parametric function, 𝑄 𝑠, 𝑎; Θ , to 

approximate 𝑄∗ 𝑠, 𝑎

� Learn the parameters using stochastic gradient 
descent (SGD)

� Training data 𝒔>, 𝑎>, 𝑟>, 𝒔>CB  gathered online by 
the agent/learning algorithm 

2610/04/23



� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a differentiable function that approximates 𝑄 

Deep 
Q-learning:
Model

27

𝒔>

𝑎>
Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

10/04/23



� “True” loss

ℓ Θ = 6
#	∈	𝒮

6
(	∈	𝒜

𝑄∗ 𝑠, 𝑎 − 𝑄 𝑠, 𝑎; Θ
A

1. Use stochastic gradient descent: just consider one 
state-action pair in each iteration

2. Use temporal difference learning: 
� Given current parameters Θ F  the temporal 

difference target is 
𝑄∗ 𝑠, 𝑎 ≈ 𝑟 + 𝛾max

(!	
𝑄 𝑠', 𝑎'; Θ > ≔ 𝑦

� Set the parameters in the next iteration Θ FCB  such 
that 𝑄 𝑠, 𝑎; Θ FCB ≈ 𝑦

ℓ Θ F , Θ >CB = 𝑦 − 𝑄 𝑠, 𝑎; Θ FCB
A

1. 𝒮 too big to compute this sum

Deep 
Q-learning:
Loss Function

28

2. Don’t know 𝑄∗ 

10/04/23



Deep 
Q-learning

Algorithm 4: 
Online learning 
(parametric 
form)

29

� Inputs: discount factor 𝛾, an initial state 𝑠",

    learning rate 𝛼

� Initialize parameters Θ "  

� For 𝑡 = 0, 1, 2,	 …
� Gather training sample 𝒔>, 𝒂>, 𝑟>, 𝒔>CB
� Update Θ >  by taking a step opposite the gradient

Θ >CB ← Θ > − 𝛼∇G "#$ ℓ Θ > , Θ >CB

where
∇G "#$ ℓ Θ > , Θ >CB

= 2 𝑦 − 𝑄 𝑠, 𝑎; Θ >CB ∇G "#$ 𝑄 𝑠, 𝑎; Θ >CB

10/04/23



Deep 
Q-learning:
Experience
Replay

30

� SGD assumes i.i.d. training samples but in RL, samples are 
highly correlated

� Idea: keep a “replay memory” 𝒟 = {𝑒1, 𝑒2, …	, 𝑒𝑁} of the 𝑁 
most recent experiences 𝑒𝑡 = 𝒔𝑡, 𝒂>, 𝑟>, 𝒔>CB  (Lin, 1992)

� Also keeps the agent from “forgetting” about recent 
experiences

� Alternate between:
1. Sampling some 𝑒𝑖 uniformly at random from 𝒟 and 

applying a Q-learning update (repeat 𝛵 times)

2. Adding a new experience to 𝒟

� Can also sample experiences from 𝒟 according to some 
distribution that prioritizes experiences with high error 
(Schaul et al., 2016)

10/04/23



� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a differentiable function that approximates 𝑄 

Deep 
Q-learning:
Model

31

𝒔>

𝑎>
Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

10/04/23



� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a differentiable function that approximates 𝑄 
What if instead 
of optimizing 
the Q-function, 
we could 
optimize the 
policy directly? 

32

𝒔>

𝑎>
Θ 𝑄 𝒔>, 𝑎>; Θ

𝒔> Θ

𝑄 𝒔>, 𝑎B; Θ
𝑄 𝒔>, 𝑎A; Θ

𝑄 𝒔>, 𝑎 𝒜 ; Θ
⋮

Model 1:

Model 2:

10/04/23



� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a differentiable function that specifies a 
stochastic policy 𝜋G

� Minimize the negative expected total reward w.r.t. ΘParametrized 
Stochastic 
Policies

33

𝒔> Θ

𝑝 𝑎B|𝒔>; Θ ≔ 𝜋G 𝑎B 𝒔>
𝑝 𝑎A|𝒔>; Θ ≔ 𝜋G 𝑎A 𝒔>

𝑝 𝑎 𝒜 |𝒔>; Θ ≔ 𝜋G 𝑎 𝒜 𝒔>
⋮

Model:

10/04/23

ℓ Θ = −𝔼H% 6
>?"

@

𝛾>𝑟> 	



� Represent states using some feature vector 𝒔> ∈ ℝD 
e.g. for Go, 𝒔> = 1, 0, −1,… , 1 E

� Define a differentiable function that specifies a 
stochastic policy 𝜋G

� Minimize the negative expected total reward w.r.t. Θ
Okay… but 
how on earth 
do we 
compute the 
gradient of this 
thing?

34

𝒔> Θ

𝑝 𝑎B|𝒔>; Θ ≔ 𝜋G 𝑎B 𝒔>
𝑝 𝑎A|𝒔>; Θ ≔ 𝜋G 𝑎A 𝒔>

𝑝 𝑎 𝒜 |𝒔>; Θ ≔ 𝜋G 𝑎 𝒜 𝒔>
⋮

Model:

10/04/23

ℓ Θ = −𝔼H% 𝔼I 𝑠' 𝑠, 𝑎 6
>?"

@

𝛾>𝑟>



Trajectories

� A trajectory Τ = 𝒔", 𝑎", 𝒔B, 𝑎B, … , 𝒔E  is one run of an 

agent through an MDP ending in a terminal state, 𝒔E

� Our stochastic policy and the transition distribution 
induce a distribution over trajectories 

𝑝G Τ = 𝑝 𝒔", 𝑎", 𝒔B, 𝑎B, … , 𝒔E	

𝑝G Τ = 𝑝 𝒔" i
>?"

EJB

𝑝 𝑠>CB 𝑠>, 𝑎> 𝜋G 𝑎> 𝒔>

� Requires a distribution over initial states 𝑝 𝒔"  e.g., 

uniform over all states, fixed or deterministic, etc…

� If all runs end at a terminal state, then we can rewrite 

the negative expected total reward as  
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ℓ Θ = −𝔼I% K? 𝒔&,(&,…,𝒔' 6
>?"

EJB

𝛾>𝑅 𝒔>, 𝑎> ≔ −𝔼I% K 𝑅 Τ



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)

10/04/23 36Source: https://citeseerx.ist.psu.edu/doc/10.1.1.129.8871 

∇Gℓ Θ = ∇G −𝔼I% K 𝑅 Τ = ∇G −j𝑅 Τ 𝑝G Τ 	𝑑Τ

∇Gℓ Θ = −j𝑅 Τ ∇G𝑝G Τ 	𝑑Τ

∇Gℓ Θ = −j𝑅 Τ ∇G 𝑝 𝒔" i
>?"

EJB

𝑝 𝑠>CB 𝑠>, 𝑎> 𝜋G 𝑎> 𝒔> 𝑑Τ

� Issues:
� The transition probabilities 𝑝 𝑠>CB 𝑠>, 𝑎>  are unknown a priori

� Computing ∇G𝑝G Τ  involves taking the gradient of a product 

https://citeseerx.ist.psu.edu/doc/10.1.1.129.8871


∇Gℓ Θ = ∇G −𝔼I% K 𝑅 Τ = ∇G −j𝑅 Τ 𝑝G Τ 	𝑑Τ

∇Gℓ Θ = −j𝑅 Τ ∇G𝑝G Τ 	𝑑Τ

∇Gℓ Θ = −j𝑅 Τ ∇G 𝑝 𝒔" i
>?"

EJB

𝑝 𝑠>CB 𝑠>, 𝑎> 𝜋G 𝑎> 𝒔> 𝑑Τ

� Insight:

∇G𝑝G Τ =
𝑝G Τ
𝑝G Τ

∇G𝑝G Τ = 𝑝G Τ ∇G log 𝑝G Τ

log 𝑝G Τ = log 𝑝 𝑠" +6
>?"

EJB

log 𝑝 𝑠>CB 𝑠>, 𝑎> + log 𝜋G 𝑎> 𝒔>

∇G log 𝑝G Τ = 6
>?"

EJB

∇G log 𝜋G 𝑎> 𝒔>

Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)
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No longer depends on 
𝑝 𝑠>CB 𝑠>, 𝑎> ! 



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)
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∇Gℓ Θ = ∇G −𝔼I% K 𝑅 Τ = ∇G −j𝑅 Τ 𝑝G Τ 	𝑑Τ

∇Gℓ Θ = −j𝑅 Τ ∇G𝑝G Τ 	𝑑Τ = −j𝑅 Τ ∇G log 𝑝G Τ 𝑝G Τ 𝑑Τ

∇Gℓ Θ = −𝔼I% K 𝑅 Τ ∇G log 𝑝G Τ

∇Gℓ Θ ≈ −
1
𝑁6
N?B

O

𝑅 Τ N ∇G log 𝑝G Τ N

(where Τ N = 𝒔"
N , 𝑎"

N , 𝒔B
N , 𝑎B

N , … , 𝒔E (
N 	is a sampled trajectory)

= −
1
𝑁
6
N?B

O

6
>?"

E ( JB

𝛾>𝑅 𝒔>
N , 𝑎>

N 6
>?"

E ( JB

∇G log 𝜋G 𝑎>
N 𝒔>

N



Likelihood 
Ratio 
Method 
a.k.a. 
REINFORCE 
(Williams, 
1992)

� Practical considerations:

� Sampled trajectories/rewards can be highly variable, 
which leads to unstable estimates of the expectation

� Can compare sampled rewards against a baseline 

by subtracting some constant value from 𝑅 Τ  
(Peters and Schaal, 2008) 

� Policy gradient methods are on-policy: they require 
using the current (potentially bad) policy to sample 

(a lot of) trajectories…

� Can use a surrogate policy and adjust gradient 
computation via importance sampling

� Not compatible with deterministic policies (would 
require knowledge of the transition probabilities)10/04/23 39



Key Takeaways

� We can use (deep) Q-learning when the reward/transition 

functions are unknown and/or when the state/action spaces 
are too large to be modelled directly

� Also guaranteed to converge under certain assumptions

� Experience replay can help address non-i.i.d. samples

� If our policy is parametrized, we can directly optimize the 
parameters using the policy gradient

� The gradient can be expressed in a tractable way via the 
likelihood ratio method 

� We can approximate the gradient by sampling trajectories
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