10-701: Introduction to Machine Learning Lecture 11: Q-Learning and Policy Gradient RL

Henry Chai & Zack Lipton

10/04/23

Front Matter

Announcements

- HW2 released 9/20, due 10/4 (today!) at 11:59 PM
- HW3 released 10/4 (today!), due 10/11 at 11:59 PM
- Project details will be released on 10/13
 - You will have a choice between a more research-based project and a more implementation-focused project
 - You must work on the project in groups of 3 or 4;
 you may not work on the project alone.
- Recommended Readings
 - Mitchell, Chapter 13

Two big Q's

 What can we do if the reward and/or transition functions/distributions are unknown?

 How can we handle infinite (or just very large) state/action spaces? **Recall: Value** Iteration

• Inputs: R(s, a), p(s' | s, a), γ

• $V(s) \leftarrow \max_{a \in \mathcal{A}} Q(s, a)$

- Initialize $V^{(0)}(s) = 0 \forall s \in S$ (or randomly) and set t = 0
- While not converged, do:

• For $s \in S$ • For $a \in A$ $Q(s,a) = \underbrace{R(s,a)}_{s' \in S} + \gamma \sum_{s' \in S} \underbrace{p(s' \mid s,a)}_{V(s')}$

• For $s \in S$ $\pi^*(s) \leftarrow \operatorname*{argmax}_{a \in \mathcal{A}} R(s, a) + \gamma \sum_{s' \in S} p(s' \mid s, a) V(s')$ • Return π^*

Q*(s, a) w/ deterministic rewards

• $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

$$= R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a)V^*(s')$$

$$V^*(\underline{s')} = \max_{a' \in \mathcal{A}} Q^*(\underline{s',a'})$$

$$Q^*(s,a) = R(s,a) + \gamma \sum_{s' \in S} p(s' \mid s,a) \left[\max_{a' \in \mathcal{A}} Q^*(s',a')\right]$$

$$\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s,a)$$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Q*(s, a) w/ deterministic rewards and transitions • $Q^*(s, a) = \mathbb{E}[\text{total discounted reward of taking action } a \text{ in state } s, \text{ assuming all future actions are optimal}]$

 $= R(s,a) + \gamma V^*(\delta(s,a))$

• $V^*(\delta(s,a)) = \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$

 $Q^*(s,a) = R(s,a) + \gamma \max_{a' \in \mathcal{A}} Q^*(\delta(s,a),a')$

 $\pi^*(s) = \underset{a \in \mathcal{A}}{\operatorname{argmax}} Q^*(s, a)$

• Insight: if we know Q^* , we can compute an optimal policy π^* !

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 1: Online learning (table form) • Inputs: discount factor γ , an initial state s

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - Take a random action *a*

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update *Q*(*s*, *a*):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards and transitions

Algorithm 2: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

 $\Longrightarrow a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

- \longrightarrow Otherwise, with probability 1ϵ , take a random action a
 - Receive reward r = R(s, a)
 - Update the state: $s \leftarrow s'$ where $s' = \delta(s, a)$

• Update *Q*(*s*, *a*):

 $Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s',a')$

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) Inputs: discount factor γ, an initial state s, greediness parameter ε ∈ [0, 1], learning rate α ∈ [0, 1] ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

• While TRUE, do

• With probability ϵ , take the greedy action

 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

- Receive reward r = R(s, a)
- Update the state: $s \leftarrow s'$ where $s' \sim p(s' \mid s, a)$

• Update Q(s, a): $\rightarrow Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + \alpha \left(r + \gamma \max_{a'} Q(s', a')\right)$ Current Update w/

value

10/04/23

9

deterministic transitions

Learning $Q^*(s, a)$ w/ deterministic rewards

Algorithm 3: ϵ -greedy online learning (table form) • Inputs: discount factor γ , an initial state s, greediness parameter $\epsilon \in [0, 1]$, learning rate $\alpha \in [0, 1]$ ("trust parameter")

• Initialize $Q(s, a) = 0 \forall s \in S, a \in \mathcal{A} (Q \text{ is a } |S| \times |\mathcal{A}| \text{ array})$

- While TRUE, do
 - With probability ϵ , take the greedy action

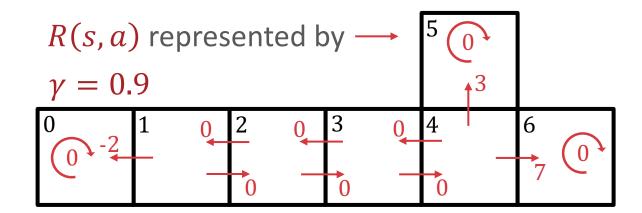
 $a = \underset{a' \in \mathcal{A}}{\operatorname{argmax}} Q(s, a')$

Otherwise, with probability $1 - \epsilon$, take a random action a

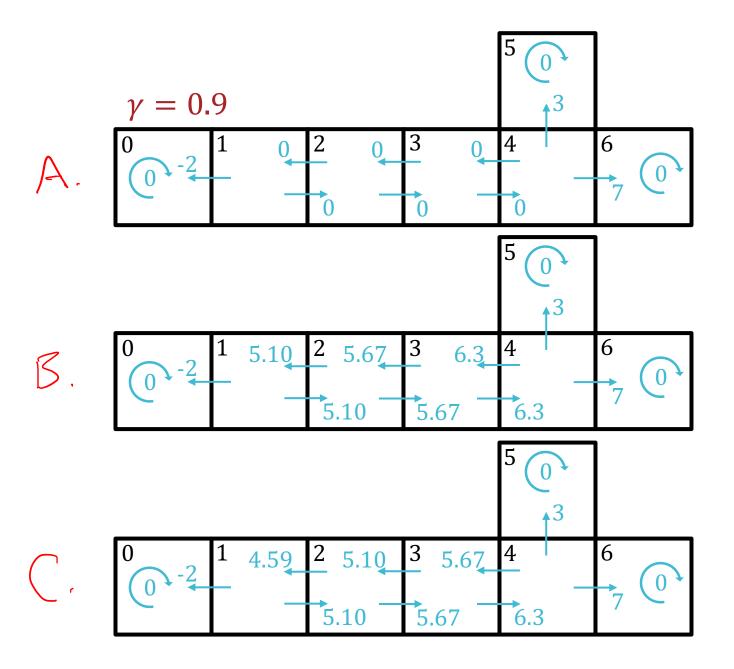
- Receive reward r = R(s, a)
- Update the state: s ← s' where s' ~ p(s' | s, a) Temporal
 Update O(s, a): difference

$$Q(s,a) \leftarrow Q(s,a) + \alpha \left(r + \gamma \max_{a'} Q(s',a') - Q(s,a) \right)$$

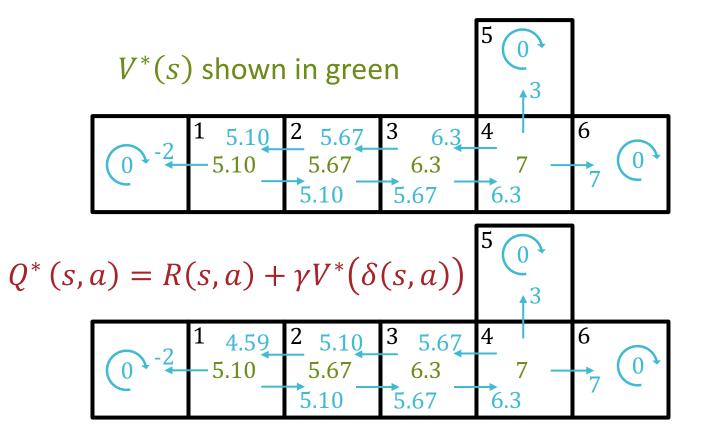
Current Temporal difference
value target

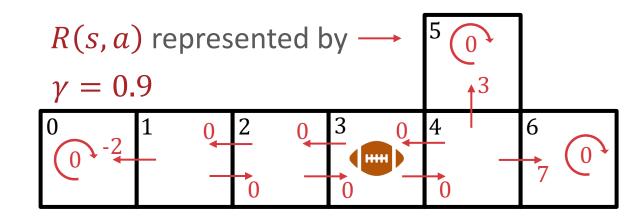


Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?

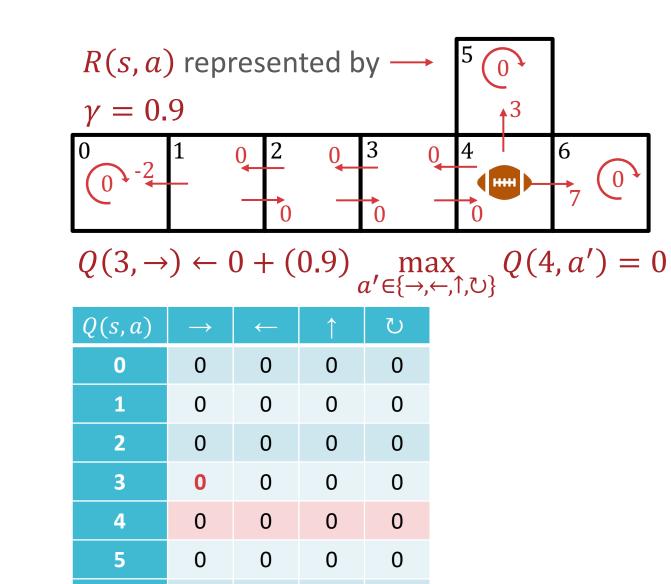


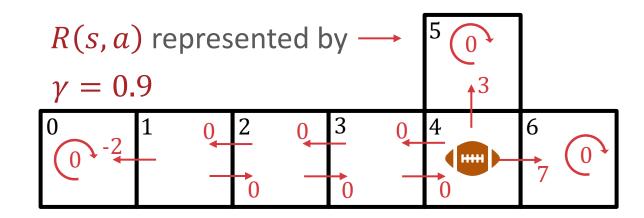
Which set of blue arrows (roughly) corresponds to $Q^*(s,a)$?



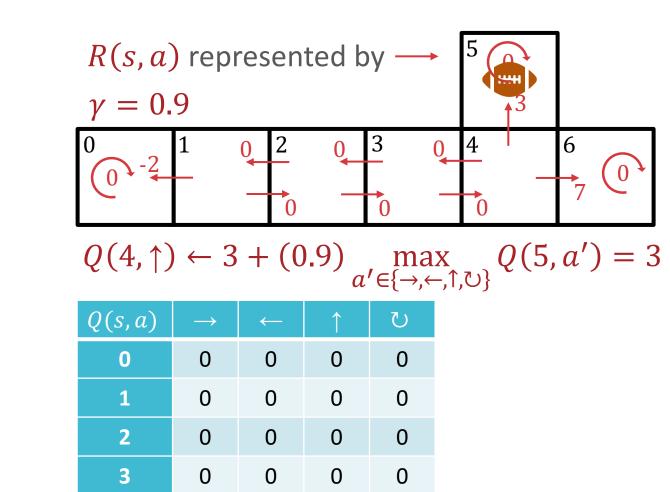


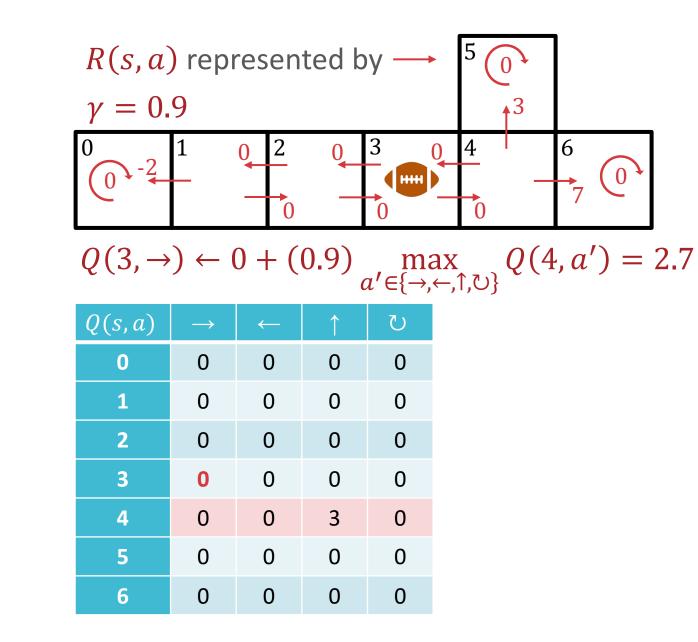
Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0

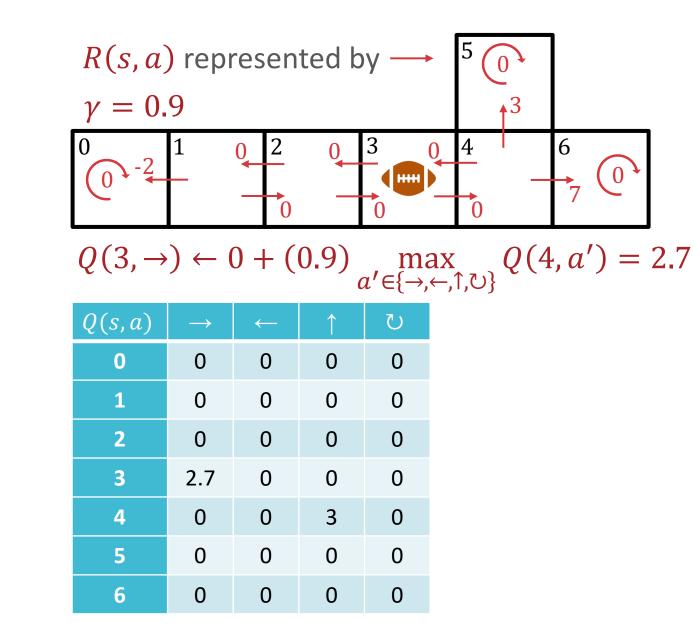




Q(s,a)	\rightarrow	\leftarrow	1	U
0	0	0	0	0
1	0	0	0	0
2	0	0	0	0
3	0	0	0	0
4	0	0	0	0
5	0	0	0	0
6	0	0	0	0







Learning Q*(s, a): Convergence • For Algorithms 1 & 2 (deterministic transitions), Q converges to Q^* if

- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- **2.** $\quad 0 \le \gamma < 1$
- **3**. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite

Learning Q*(s, a): Convergence • For Algorithm 3 (temporal difference learning), Q converges to Q^* if

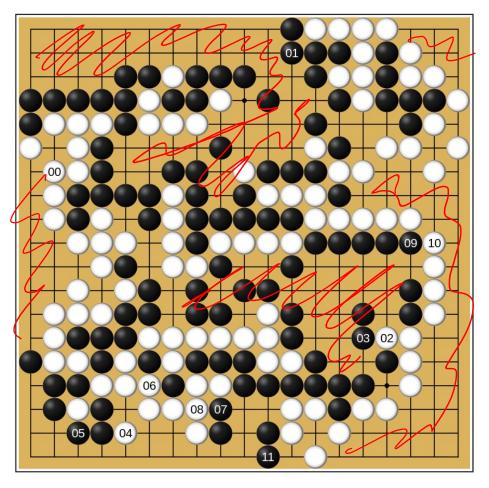
- 1. Every valid state-action pair is visited infinitely often
 - Q-learning is exploration-insensitive: any visitation strategy that satisfies this property will work!
- $2. \ 0 \le \gamma < 1$
- 3. $\exists \beta$ s.t. $|R(s, a)| < \beta \forall s \in S, a \in A$
- 4. Initial *Q* values are finite
- 5. Learning rate α_t follows some "schedule" s.t.

 $\sum_{t=0}^{\infty} \alpha_t = \infty$ and $\sum_{t=0}^{\infty} \alpha_t^2 < \infty$ e.g., $\alpha_t = 1/t+1$

Two big Q's

- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)

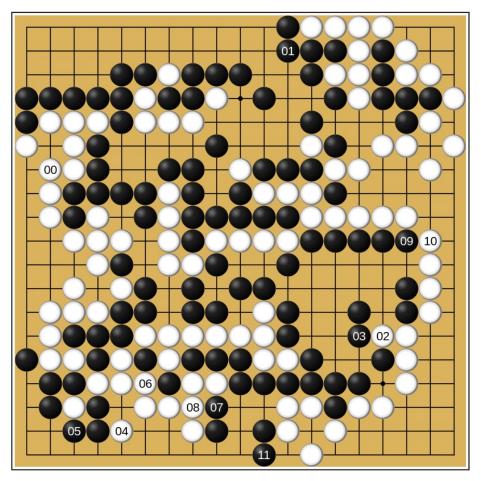


Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- How many legal Go board states are there?

of gloris & univose ~ 1000

AlphaGo (Black) vs. Lee Sedol (White) Game 2 final position (AlphaGo wins)



Source: https://en.wikipedia.org/wiki/AlphaGo versus Lee Sedol Source: https://en.wikipedia.org/wiki/Go and mathematics

10/04/23

Playing Go

- 19-by-19 board
- Players alternate placing black and white stones
- The goal is claim more territory than the opponent
- There are ~10¹⁷⁰ legal Go board states!

If of games of chess ~ 10120

24

Two big Q's

- What can we do if the reward and/or transition functions/distributions are unknown?
 - Use online learning to gather data and learn $Q^*(s, a)$
- How can we handle infinite (or just very large) state/action spaces?
 - Throw a neural network at it!

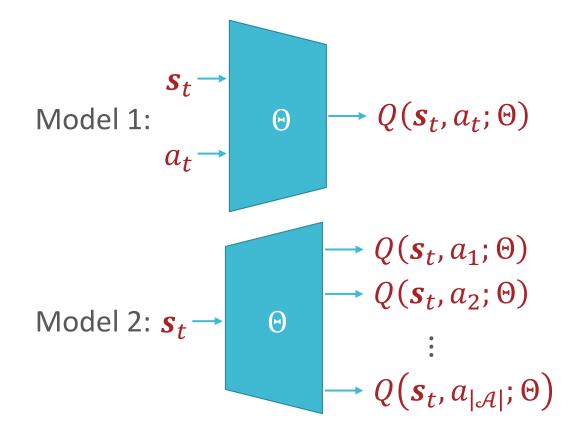
Deep Q-learning

• Use a parametric function, $Q(s, a; \Theta)$, to approximate $Q^*(s, a)$

- Learn the parameters using *stochastic* gradient descent (SGD)
- Training data (s_t, a_t, r_t, s_{t+1}) gathered online by the agent/learning algorithm

Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a *differentiable* function that approximates Q



Deep Q-learning: Loss Function • "True" loss $\ell(\Theta) = \sum_{s \in S} \sum_{a \in A} \left(Q^*(s, a) - Q(s, a; \Theta) \right)^2$

- 1. S too big to compute this sum
- 1. Use stochastic gradient descent: just consider one state-action pair in each iteration
- 2. Use temporal difference learning:
 - Given current parameters Θ^(t) the temporal difference target is

 $Q^*(s, a) \approx r + \gamma \max_{a'} Q(s', a'; \Theta^{(t)}) \coloneqq y$ • Set the parameters in the next iteration $\Theta^{(t+1)}$ such

• Set the parameters in the next iteration $\Theta^{(t+1)}$ such that $Q(s, a; \Theta^{(t+1)}) \approx y$

 $\rightarrow \ell(\Theta^{(t)}, \Theta^{(t+1)}) = \left(y - Q(s, a; \Theta^{(t+1)})\right)^2$

Deep Q-learning

Algorithm 4: Online learning (parametric form) • Inputs: discount factor γ , an initial state s_0 ,

learning rate α

• Initialize parameters $\Theta^{(0)}$

• For t = 0, 1, 2, ...

• Gather training sample (s_t, a_t, r_t, s_{t+1})

• Update $\Theta^{(t)}$ by taking a step opposite the gradient $\Theta^{(t+1)} \leftarrow \Theta^{(t)} - \alpha \nabla_{\Theta} \ell(\Theta^{(t)}, \Theta^{(t)})$

where

$$= 2 \left(y^{(0^{(t)})} Q(s, a; \Theta^{(t+1)}) \right) \nabla_{\Theta^{(t+1)}} Q(s, a; \Theta^{(t+1)})$$

Deep Q-learning: Experience Replay • SGD assumes i.i.d. training samples but in RL, samples are highly correlated

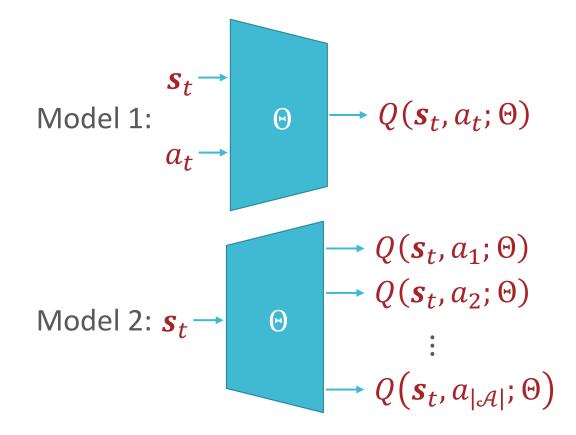
• Idea: keep a "replay memory" $\mathcal{D} = \{e_1, e_2, \dots, e_N\}$ of the N most recent experiences $e_t = (s_t, a_t, r_t, s_{t+1})$ (Lin, 1992)

 Also keeps the agent from "forgetting" about recent experiences

- Alternate between:
 - 1. Sampling some e_i uniformly at random from \mathcal{D} and applying a Q-learning update (repeat T times)
 - 2. Adding a new experience to \mathcal{D}
- Can also sample experiences from D according to some distribution that prioritizes experiences with high error (Schaul et al., 2016)

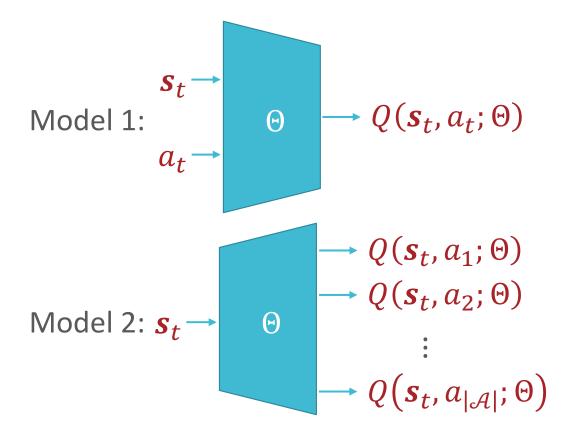
Deep Q-learning: Model

- Represent states using some feature vector $s_t \in \mathbb{R}^M$ e.g. for Go, $s_t = [1, 0, -1, ..., 1]^T$
- Define a *differentiable* function that approximates Q



What if instead of optimizing the Q-function, we could optimize the policy directly?

- Represent states using some feature vector $\mathbf{s}_t \in \mathbb{R}^M$ e.g. for Go, $\mathbf{s}_t = [1, 0, -1, ..., 1]^T$
- Define a *differentiable* function that approximates Q



Parametrized Stochastic Policies

- Represent states using some feature vector $\mathbf{s}_t \in \mathbb{R}^M$ e.g. for Go, $\mathbf{s}_t = [1, 0, -1, ..., 1]^T$
- Define a *differentiable* function that specifies a *stochastic* policy π_{Θ}
- Minimize the negative expected total reward w.r.t. Θ

$$\ell(\Theta) = -\mathbb{E}_{\pi_{\Theta}} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right]$$

$$\longrightarrow p(a_{1} | \boldsymbol{s}_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{1} | \boldsymbol{s}_{t})$$

$$\rightarrow p(a_{2} | \boldsymbol{s}_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{2} | \boldsymbol{s}_{t})$$

$$\vdots$$

$$\longrightarrow p(a_{|\mathcal{A}|} | \boldsymbol{s}_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{|\mathcal{A}|} | \boldsymbol{s}_{t})$$

Okay... but how on earth do we compute the gradient of this thing? • Represent states using some feature vector $\mathbf{s}_t \in \mathbb{R}^M$ e.g. for Go, $\mathbf{s}_t = [1, 0, -1, ..., 1]^T$

- Define a *differentiable* function that specifies a stochastic policy π_{Θ}
- Minimize the negative expected total reward w.r.t. Θ $\ell(\Theta) = -\mathbb{E}_{\pi_{\Theta}} \left[\mathbb{E}_{p(S'|S, a)} \left[\sum_{t=0}^{\infty} \gamma^{t} r_{t} \right] \right]$ $\rightarrow p(a_{1}|s_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{1}|s_{t})$ $\rightarrow p(a_{2}|s_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{2}|s_{t})$ \vdots $\rightarrow p(a_{|\mathcal{A}|}|s_{t}; \Theta) \coloneqq \pi_{\Theta}(a_{|\mathcal{A}|}|s_{t})$

Trajectories

- A trajectory $T = \{s_0, a_0, s_1, a_1, ..., s_T\}$ is one run of an agent through an MDP ending in a terminal state, s_T
- Our stochastic policy and the transition distribution induce a distribution over trajectories

$$P_{\Theta}^{(T)} = P(\xi_{S_0}, q_0, S_1, q_1, ..., S_T, S)$$

$$= P(S_0) \prod_{t=0}^{T-1} \pi(q_t|S_t) P(S_{t+1}|S_t, q_t)$$

$$= O_{S_0}^{(S_0)} \prod_{t=0}^{T-1} \pi(q_t|S_t) P(S_{t+1}|S_t, q_t)$$

$$= O_{S_0}^{(S_0)} \prod_{t=0}^{T-1} \pi(q_t|S_t) P(S_{t+1}|S_t, q_t)$$

35

• If all runs end at a terminal state, then we can rewrite

the negative expected total reward as

$$\ell(\Theta) = -\mathbb{E}_{p_{\Theta}(T = \{s_0, a_0, \dots, s_T\})} \left[\sum_{t=0}^{T-1} \gamma^t R(s_t, a_t) \right] \coloneqq -\mathbb{E}_{p_{\Theta}(T)}[R(T)]$$

$$\nabla_{\Theta} \ell(\Theta) = \nabla_{\Theta} \left(-\mathbb{E}_{p_{\Theta}(T)}[R(T)] \right) = \nabla_{\Theta} \left(-\int R(T) p_{\Theta}(T) \, dT \right)$$
$$= -\int R(T) \nabla_{\Theta} p_{\Theta}(T) \, dT$$
$$= -\int R(T) \nabla_{\Theta} \left(p(s_0) \prod_{t=0}^{T-1} p(s_{t+1}|s_t, a_t) \, \pi_{\Theta}(a_t|s_t) \right) dT$$

- Issues:
 - The transition probabilities $p(s_{t+1}|s_t, a_t)$ are unknown a priori
 - Computing $\nabla_{\Theta} p_{\Theta}(T)$ involves taking the gradient of a product

•

$$\nabla_{\Theta}\ell(\Theta) = \nabla_{\Theta}\left(-\mathbb{E}_{p_{\Theta}(T)}[R(T)]\right) = \nabla_{\Theta}\left(-\int R(T)p_{\Theta}(T) dT\right)$$

$$= -\int R(T)\nabla_{\Theta}p_{\Theta}(T) dT$$

$$= -\int R(T)\nabla_{\Theta}\left(p(s_{0})\prod_{t=0}^{T-1}p(s_{t+1}|s_{t},a_{t})\pi_{\Theta}(a_{t}|s_{t})\right)dT$$
• Insight:
$$\nabla_{\Theta}P_{\Theta}(T) = \frac{P_{\Theta}(T)}{P_{\Theta}(T)}P_{\Theta}(T) = P_{\Theta}(T)\nabla_{\Theta}\log P_{\Theta}(T)$$

$$\log P_{\Theta}(T) = \log P(s_{0}) + \frac{T^{-1}}{2}\log P(S_{t+1}|S_{t},a_{t}) + b_{0}T_{E}$$
(etc)
$$\nabla_{\Theta}\log P_{\Theta}(T) = \frac{T^{-1}}{t=0} + \nabla_{\Theta}\log T_{\Theta}(a_{t}|s_{t})$$

$$= \frac{T^{-1}}{t=0} + \nabla_{\Theta}\log T_{\Theta}(a_{t}|s_{t})$$

10/04/23

$$\nabla_{\Theta} \ell(\Theta) = \nabla_{\Theta} \left(-\mathbb{E}_{p_{\Theta}(T)}[R(T)] \right) = \nabla_{\Theta} \left(-\int R(T) p_{\Theta}(T) \, dT \right)$$
$$= -\int R(T) \nabla_{\Theta} p_{\Theta}(T) \, dT = -\int R(T) \nabla_{\Theta} (\log p_{\Theta}(T)) p_{\Theta}(T) dT$$
$$= -\mathbb{E}_{p_{\Theta}(T)}[R(T) \nabla_{\Theta} (\log p_{\Theta}(T))]$$

$$\implies \approx -\frac{1}{N} \sum_{n=1}^{N} R(\mathbf{T}^{(n)}) \nabla_{\Theta}(\log p_{\Theta}(\mathbf{T}^{(n)}))$$

(where $T^{(n)} = \{ \boldsymbol{s}_0^{(n)}, a_0^{(n)}, \boldsymbol{s}_1^{(n)}, a_1^{(n)}, \dots, \boldsymbol{s}_{T^{(n)}}^{(n)} \}$ is a sampled trajectory)

$$= -\frac{1}{N} \sum_{n=1}^{N} \left(\sum_{t=0}^{T^{(n)}-1} \gamma^{t} R\left(\boldsymbol{s}_{t}^{(n)}, a_{t}^{(n)}\right) \right) \left(\sum_{t=0}^{T^{(n)}-1} \nabla_{\Theta} \log \pi_{\Theta}\left(a_{t}^{(n)} \middle| \boldsymbol{s}_{t}^{(n)}\right) \right)$$

- Practical considerations:
 - Sampled trajectories/rewards can be highly variable, which leads to unstable estimates of the expectation
 - Can compare sampled rewards against a *baseline* by subtracting some constant value from *R*(T) (Peters and Schaal, 2008)
 - Policy gradient methods are *on-policy*: they require using the current (potentially bad) policy to sample (a lot of) trajectories...
 - Can use a surrogate policy and adjust gradient computation via *importance sampling*
 - Not compatible with deterministic policies (would require knowledge of the transition probabilities)

Key Takeaways

• We can use (deep) Q-learning when the reward/transition functions are unknown and/or when the state/action spaces are too large to be modelled directly

• Also guaranteed to converge under certain assumptions

• Experience replay can help address non-i.i.d. samples

- If our policy is parametrized, we can directly optimize the parameters using the policy gradient
 - The gradient can be expressed in a tractable way via the likelihood ratio method
 - We can approximate the gradient by sampling trajectories