
10-701: Introduction to
Machine Learning
Lecture 10:
Reinforcement Learning
Henry Chai

7/24/23

Front Matter

� Announcements

� HW2 released 9/20, due 10/4 (Wednesday) at 11:59 PM

� HW3 released 10/4 (Wednesday), due 10/11 at 11:59 PM

� Project details will be released on 10/13

� You will have a choice between a more research-based
project and a more implementation-focused project

� You must work on the project in groups of 3 or 4;
you may not work on the project alone.

� Recommended Readings

� Mitchell, Chapter 13

10/02/23 2

http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf

Learning
Paradigms

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ
� Classification - 𝑦 ! ∈ 1,… , 𝐶

� Reinforcement learning - 𝒟 = 𝒔 ! , 𝒂 ! , 𝑟 !
!"#
$

10/02/23 3

Reinforcement
Learning:
Examples

4

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
10/02/23

AlphaGo
10/02/23 5Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind

Reinforcement
Learning:
Problem
Formulation

� State space, 𝒮

� Action space, 𝒜

� Reward function

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic, 𝑅: 	𝒮	×	𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠%	 𝑠, 𝑎)

� Deterministic, 𝛿: 	𝒮	×	𝒜 → 𝒮

610/02/23

Reinforcement
Learning:
Problem
Formulation

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉&: 	𝒮 → ℝ

� Measures the expected total payoff of starting in

some state 𝑠 and executing policy 𝜋, i.e., in every
state, taking the action that 𝜋 returns

710/02/23

Toy Example

� 𝒮 =	all empty squares in the grid

�𝒜 = {up, down, left, right}

� Deterministic transitions

� Rewards of +1 and -1 for entering
the labelled squares

� Terminate after receiving either
reward

10/02/23 8Figure courtesy of Eric Xing

Is this policy optimal?

10/02/23 9

Toy Example

Figure courtesy of Eric Xing

Markov
Decision
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠'

2. For time step 𝑡:
1. Agent observes state 𝑠(
2. Agent takes action 𝑎(= 𝜋 𝑠(
3. Agent receives reward 𝑟(∼ 𝑝 𝑟	 𝑠(, 𝑎()

4. Agent transitions to state 𝑠()# ∼ 𝑝 𝑠%	 𝑠(, 𝑎()	

3. Total reward is

� MDPs make the Markov assumption: the reward and
next state only depend on the current state and action.

12

?
("'

*

𝛾(𝑟(

10/02/23

Reinforcement
Learning:
3 Key
Challenges

1. The algorithm has to gather its own training data

2. The outcome of taking some action is often stochastic
or unknown until after the fact

3. Decisions can have a delayed effect on future

outcomes (exploration-exploitation tradeoff)

1310/02/23

MDP Example:
Multi-armed bandit

� Single state: 𝒮 = 1

� Three actions: 𝒜 = 1, 2, 3

� Deterministic transitions

� Rewards are stochastic

10/02/23 14

Reinforcement
Learning:
Objective
Function

� Find a policy 𝜋∗ = argmax
&

	 𝑉& 𝑠 	∀	𝑠 ∈ 𝒮

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state
 𝑠 and executing policy 𝜋 forever]

� 𝑉& 𝑠 = 𝔼, -!	 -,	0)[𝑅 𝑠' = 𝑠, 𝜋 𝑠' 	

� −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯]

𝑉& 𝑠 =?
("'

*

𝛾(𝔼, -!	 -,	0) 𝑅 𝑠(, 𝜋 𝑠(

� where 0 < 𝛾 < 1 is some discount factor for future rewards

1610/02/23

Value Function:
Example

17

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9

10/02/23

Value Function:
Example

18

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

10/02/23

Value Function:
Example

19

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9

10/02/23

Value
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and

 executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 i

j

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#

2010/02/23

Value
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and

 executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 i

j

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#

24Bellman equations10/02/23

Optimality

� Optimal value function:

𝑉∗ 𝑠 = max
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

� System of 𝒮 equations and 𝒮 variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

25

Immediate
reward

(Discounted)
Future reward

10/02/23

Fixed
Point
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥# = 𝑓# 𝑥#, … , 𝑥!

⋮
𝑥! = 𝑓! 𝑥#, … , 𝑥!

𝑥#
' , … , 𝑥!

'

� While not converged, do

𝑥#
()# ← 𝑓# 𝑥#

(, … , 𝑥!
(

⋮

𝑥!
()# ← 𝑓! 𝑥#

(, … , 𝑥!
(

2610/02/23

Fixed Point Iteration:
Example

𝑥# = 𝑥#𝑥2 +
1
2
	

𝑥2 = −
3𝑥#
2

𝑥#
' = 𝑥2

' = 0

p𝑥# =
1
3
, p𝑥2 = −

1
2

10/02/23 27

𝑡 𝑥!
" 𝑥#

"

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080

Value Iteration

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮

	 𝑉 ()# 𝑠 ← max
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 (𝑠%

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 (𝑠%

� Return 𝜋∗

28

𝑄 𝑠, 𝑎

10/02/23

Synchronous
Value Iteration

29

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 (𝑠%

� 	𝑉 ()# 𝑠 ← max
0	∈	𝒜

	𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 (𝑠%

� Return 𝜋∗
10/02/23

Asynchronous
Value Iteration

30

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly)

� While not converged, do:
� For 𝑠 ∈ 𝒮

� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� 𝑉 𝑠 ← max
0	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� Return 𝜋∗
10/02/23

31

� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited”

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion

if max
-	∈	𝒮

𝑉 ()# 𝑠 − 𝑉 (𝑠 < 𝜖,

then max
-	∈	𝒮

𝑉 ()# 𝑠 − 𝑉∗ 𝑠 < 289
#:9

 (Williams & Baird, 1993)

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
0	∈	𝒜

	𝑄 𝑠, 𝑎 , converges to the

optimal 𝜋∗ in a finite number of iterations, often before

the value function has converged! (Bertsekas, 1987)

Value Iteration
Theory

10/02/23

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝜋 randomly

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

	 V& s = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝜋 𝑠 𝑉& 𝑠%

�Update 𝜋

	 −	 𝜋 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉& 𝑠%

� Return 𝜋

32

Policy Iteration

10/02/23

� In policy iteration, the policy improves in each iteration.

� Given finite state and action spaces, there are finitely
many possible policies

� Thus, the number of iterations needed to converge
is bounded!

� Value iteration takes 𝑂 𝒮 2 𝒜 time / iteration

� Policy iteration takes 𝑂 𝒮 2 𝒜 + 𝒮 ; time / iteration

� However, empirically policy iteration requires fewer
iterations to converge

33

Policy Iteration
Theory

10/02/23

Two big Q’s
1. What can we do if the reward and/or transition

functions/distributions are unknown?

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large)

state/action spaces?

3410/02/23

Key Takeaways

� In reinforcement learning, we assume our data comes from a

Markov decision process

� The goal is to compute an optimal policy or function that
maps states to actions

� Value function can be defined in terms of values of all other
states; this is called the Bellman equations

� If the reward and transition functions are known, we can
solve for the optimal policy (and value function) using value
or policy iteration

� Both algorithms are instances of fixed point iteration and
are guaranteed to converge (under some assumptions)

10/02/23 35

