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Front Matter

� Announcements

� HW2 released 9/20, due 10/4 (Wednesday) at 11:59 PM

� HW3 released 10/4 (Wednesday), due 10/11 at 11:59 PM

� Project details will be released on 10/13

� You will have a choice between a more research-based 
project and a more implementation-focused project

� You must work on the project in groups of 3 or 4; 
you may not work on the project alone. 

� Recommended Readings

� Mitchell, Chapter 13
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http://www.cs.cmu.edu/~tom/files/MachineLearningTomMitchell.pdf


Learning 
Paradigms

� Supervised learning - 𝒟 = 𝒙 ! , 𝑦 !
!"#
$

� Regression - 𝑦 ! ∈ ℝ
� Classification - 𝑦 ! ∈ 1,… , 𝐶

� Reinforcement learning - 𝒟 = 𝒔 ! , 𝒂 ! , 𝑟 !
!"#
$
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Reinforcement 
Learning: 
Examples

4

Source: https://techobserver.net/2019/06/argo-ai-self-driving-car-research-center/

Source: https://www.cnet.com/news/boston-dynamics-robot-dog-spot-finally-goes-on-sale-for-74500/

Source: https://www.wired.com/2012/02/high-speed-trading/

Source: https://twitter.com/alphagomovie
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AlphaGo
10/02/23 5Source: https://www.youtube.com/watch?v=WXuK6gekU1Y&ab_channel=DeepMind



Reinforcement 
Learning: 
Problem 
Formulation

� State space, 𝒮

� Action space, 𝒜

� Reward function 

� Stochastic, 𝑝 𝑟	 𝑠, 𝑎)

� Deterministic, 𝑅: 	𝒮	×	𝒜 → ℝ

� Transition function

� Stochastic, 𝑝 𝑠%	 𝑠, 𝑎)

� Deterministic, 𝛿: 	𝒮	×	𝒜 → 𝒮
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Reinforcement 
Learning: 
Problem 
Formulation

� Policy, 𝜋 ∶ 𝒮 → 𝒜

� Specifies an action to take in every state

� Value function, 𝑉&: 	𝒮 → ℝ

� Measures the expected total payoff of starting in 

some state 𝑠 and executing policy 𝜋, i.e., in every 
state, taking the action that 𝜋 returns 
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Toy Example

� 𝒮 =	all empty squares in the grid

�𝒜 = {up, down, left, right}

� Deterministic transitions

� Rewards of +1 and -1 for entering 
the labelled squares

� Terminate after receiving either 
reward
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Is this policy optimal?
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Toy Example

Figure courtesy of Eric Xing



Markov 
Decision 
Process (MDP)

� Assume the following model for our data:

1. Start in some initial state 𝑠'

2. For time step 𝑡:
1. Agent observes state 𝑠(
2. Agent takes action 𝑎( = 𝜋 𝑠(
3. Agent receives reward 𝑟( ∼ 𝑝 𝑟	 𝑠(, 𝑎()

4. Agent transitions to state 𝑠()# ∼ 𝑝 𝑠%	 𝑠(, 𝑎()	

3. Total reward is

� MDPs make the Markov assumption: the reward and 
next state only depend on the current state and action.

12

?
("'

*

𝛾(𝑟(	
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Reinforcement 
Learning: 
3 Key 
Challenges

1. The algorithm has to gather its own training data

2. The outcome of taking some action is often stochastic 
or unknown until after the fact

3. Decisions can have a delayed effect on future 

outcomes (exploration-exploitation tradeoff)
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MDP Example: 
Multi-armed bandit

� Single state: 𝒮 = 1

� Three actions: 𝒜 = 1, 2, 3

� Deterministic transitions

� Rewards are stochastic
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Reinforcement 
Learning: 
Objective 
Function

� Find a policy 𝜋∗ = argmax
&

	 𝑉& 𝑠 	∀	𝑠 ∈ 𝒮

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state            
           𝑠 and executing policy 𝜋 forever]

� 𝑉& 𝑠 = 𝔼, -!	 -,	0)[𝑅 𝑠' = 𝑠, 𝜋 𝑠' 	

�  −	+ 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯]

𝑉& 𝑠 =?
("'

*

𝛾(𝔼, -!	 -,	0) 𝑅 𝑠(, 𝜋 𝑠( 	

� where 0 < 𝛾 < 1 is some discount factor for future rewards
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Value Function: 
Example

17

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

0

5

61 2 3 4

𝛾 = 0.9
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Value Function: 
Example

18

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9
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Value Function: 
Example

19

7

3

−2

𝑅 𝑠, 𝑎 =

−2	if	entering	state	0 safety 	
3	if	entering	state	5 Zield	goal 	
7	if	entering	state	6	(touch	down)
	0	otherwise	

𝛾 = 0.9
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 i

j

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#
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Value 
Function

� 𝑉& 𝑠 = 𝔼[discounted total reward of starting in state 𝑠 and       

                         executing policy 𝜋 forever]

� = 𝔼[𝑅 𝑠', 𝜋 𝑠' + 	𝛾𝑅 𝑠#, 𝜋 𝑠# + 𝛾2𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠' = 𝑠

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾𝔼[𝑅 𝑠#, 𝜋 𝑠# + 𝛾𝑅 𝑠2, 𝜋 𝑠2 +	… |	𝑠' = 𝑠]

� = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ∑-"∈	𝒮 𝑝 𝑠#	|	𝑠, 𝜋 𝑠 i

j

𝑅 𝑠#, 𝜋 𝑠# +

	 +𝛾𝔼 𝑅 𝑠2, 𝜋 𝑠2 +⋯ 	𝑠#] 	

V& s = 𝑅 𝑠, 𝜋 𝑠 + 𝛾 ?
-"∈	𝒮

𝑝 𝑠#	|	𝑠, 𝜋 𝑠 𝑉& 𝑠#

24Bellman equations10/02/23



Optimality

� Optimal value function:

𝑉∗ 𝑠 = max
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

� System of 𝒮  equations and 𝒮  variables

� Optimal policy:

𝜋∗ 𝑠 = argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉∗ 𝑠%

25

Immediate 
reward

(Discounted) 
Future reward
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Fixed 
Point 
Iteration

� Iterative method for solving a system of equations

� Given some equations and initial values
𝑥# = 𝑓# 𝑥#, … , 𝑥!

⋮
𝑥! = 𝑓! 𝑥#, … , 𝑥!

𝑥#
' , … , 𝑥!

'

� While not converged, do

𝑥#
()# ← 𝑓# 𝑥#

( , … , 𝑥!
(

⋮

𝑥!
()# ← 𝑓! 𝑥#

( , … , 𝑥!
(
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Fixed Point Iteration:
Example

𝑥# = 𝑥#𝑥2 +
1
2
	

𝑥2 = −
3𝑥#
2

𝑥#
' = 𝑥2

' = 0

p𝑥# =
1
3
, p𝑥2 = −

1
2

10/02/23 27

𝑡 𝑥!
" 𝑥#

"

0 0 0
1 0.5 0
2 0.5 -0.75
3 0.125 -0.75
4 0.4063 -0.1875
5 0.4238 -0.6094
6 0.2417 -0.6357
7 0.3463 -0.3626
8 0.3744 -0.5195
9 0.3055 -0.5616

10 0.3284 -0.4582
11 0.3495 -0.4926
12 0.3278 -0.5243
13 0.3281 -0.4917
14 0.3386 -0.4922
15 0.3333 -0.5080



Value Iteration

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 

	 𝑉 ()# 𝑠 ← max
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 ( 𝑠%

� 𝑡 = 𝑡 + 1

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 ( 𝑠%

� Return 𝜋∗

28

𝑄 𝑠, 𝑎
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Synchronous
Value Iteration

29

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly) and set 𝑡 = 0
� While not converged, do:

� For 𝑠 ∈ 𝒮 
� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 ( 𝑠%

� 	𝑉 ()# 𝑠 ← max
0	∈	𝒜

	𝑄 𝑠, 𝑎

� 𝑡 = 𝑡 + 1
� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 ( 𝑠%

� Return 𝜋∗
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Asynchronous
Value Iteration

30

� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝑉 ' 𝑠 = 0	∀	𝑠 ∈ 𝒮 (or randomly)

� While not converged, do:
� For 𝑠 ∈ 𝒮 

� For	𝑎 ∈ 𝒜

	 𝑄 𝑠, 𝑎 = 𝑅 𝑠, 𝑎 + 𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� 𝑉 𝑠 ← max
0	∈	𝒜

	𝑄 𝑠, 𝑎

� For 𝑠 ∈ 𝒮 

	 𝜋∗ 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉 𝑠%

� Return 𝜋∗
10/02/23



31

� Theorem 1: Value function convergence

𝑉 will converge to 𝑉∗ if each state is “visited” 

infinitely often (Bertsekas, 1989)

� Theorem 2: Convergence criterion 

if max
-	∈	𝒮

𝑉 ()# 𝑠 − 𝑉 ( 𝑠 < 𝜖, 

then max
-	∈	𝒮

𝑉 ()# 𝑠 − 𝑉∗ 𝑠 < 289
#:9

 (Williams & Baird, 1993) 

� Theorem 3: Policy convergence

The “greedy” policy, 𝜋 𝑠 = argmax
0	∈	𝒜

	𝑄 𝑠, 𝑎 , converges to the 

optimal 𝜋∗ in a finite number of iterations, often before 

the value function has converged! (Bertsekas, 1987) 

Value Iteration
Theory
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� Inputs: 𝑅 𝑠, 𝑎 , 𝑝(𝑠’	|	𝑠, 𝑎)
� Initialize 𝜋 randomly 

� While not converged, do:
� Solve the Bellman equations defined by policy 𝜋

	 V& s = 𝑅 𝑠, 𝜋 𝑠 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝜋 𝑠 𝑉& 𝑠%

�Update 𝜋

	 −	 𝜋 𝑠 ← argmax
0	∈	𝒜

	𝑅 𝑠, 𝑎 + 	𝛾 ?
-!∈	𝒮

𝑝 𝑠%	|	𝑠, 𝑎 𝑉& 𝑠%

� Return 𝜋

32

Policy Iteration
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� In policy iteration, the policy improves in each iteration. 

� Given finite state and action spaces, there are finitely 
many possible policies

� Thus, the number of iterations needed to converge 
is bounded!

� Value iteration takes 𝑂 𝒮 2 𝒜  time / iteration

� Policy iteration takes 𝑂 𝒮 2 𝒜 + 𝒮 ;  time / iteration

� However, empirically policy iteration requires fewer 
iterations to converge

33

Policy Iteration
Theory
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Two big Q’s
1. What can we do if the reward and/or transition 

functions/distributions are unknown? 

• Use online learning to gather data and learn 𝑄∗ 𝑠, 𝑎

2. How can we handle infinite (or just very large) 

state/action spaces?
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Key Takeaways

� In reinforcement learning, we assume our data comes from a 

Markov decision process

� The goal is to compute an optimal policy or function that 
maps states to actions

� Value function can be defined in terms of values of all other 
states; this is called the Bellman equations

� If the reward and transition functions are known, we can 
solve for the optimal policy (and value function) using value 
or policy iteration

� Both algorithms are instances of fixed point iteration and 
are guaranteed to converge (under some assumptions)
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