- CNNs & Modern CNNs
 - Define and compare canonical image tasks
 - Understand how (color) images are represented for ML tasks
 - Identify key challenges associated with this representation that make traditional ML methods inappropriate for working with images
 - Define a convolutional layer
 - Justify their use for image tasks in terms of translation invariance and locality
 - Compute cross-correlations
 - Define padding/stride and justify their use in convolutional layers
 - Describe how convolutional layers operate on multiple input/output channels
 - Compute parameter counts for convolutional layers given a description of the hyperparameters
 - Define pooling and justify the inclusion of pooling layers in CNNs
 - Define data augmentation and justify its use in training CNNs
 - Define batch normalization and justify its use in training CNNs
 - Describe the relationship between batch normalization and dropout
 - Describe how batch normalization operates during inference
 - Define an inception block and describe how they make use of 1x1 convolutions do reduce the output dimensionality
 - Describe the intuition behind residual connections in a residual network (ResNet)
- Unsupervised Learning
 - Describe the K-means model and objective function
 - Compute the update rule for the K-means algorithm
 - Define K-means++ and describe how it addresses nonconvexity of the K-means objective function
 - Prove that for linear projections, minimizing the reconstruction error and maximizing the variance are equivalent objectives
 - Describe the relationship between eigenvectors of the covariance matrix and principal components of a dataset
 - Visually identify the principal components of a dataset
 - Prove that principal component analysis is an inner product method
 - Describe the architecture of an autoencoder and how they are trained
- Deep Generative Models (VAEs and GANs)
 - Compare & contrast generative and discriminative models
 - Define denoising autoencoders and identify what shortcoming of vanilla autoencoders they address
 - Define sparse autoencoders and identify what shortcoming of vanilla autoencoders they address
 - Describe the primary issue with sampling from an autoencoder
 - Compare & contrast autoencoders and variational autoencoders (VAEs)

- Describe the role of each term in the VAE training objective from the "neural network perspective"
 - Define the reparameterization trick and describe why it is necessary when training VAEs
- Prove that the ELBO objective function used to train VAEs is a lower bound of the evidence
- Describe the roles of a discriminator and a generator in a generative adversarial network (GAN)
- Identify the role of each term in the GAN objective function
- Define the issue of mode collapse as it pertains to training GANs
- Describe the intuition behind an UpConvolutional architecture and justify its use in a GAN
- Define progressive growing in the context of GANs and identify its primary benefits
- Compare & contrast the architectures/objective functions of GANs and BEGANs
- Compare & contrast the architectures/objective functions of GANs and SD-GANs
- Describe how conditional generation extends the image generation task and how this difference affects the training of the generator in a GAN
 - Formulate image-to-image tasks as conditional generation
- Describe the architecture and objective function used by contrastive language-image pretraining (CLIP)
- RNNs
 - Given a description of a machine learning task, determine if it is a one-to-one, one-to-many, many-to-one or many-to-many task
 - Define a sequence model
 - Define an autoregressive model in the context of sequence modeling
 - Justify the use of autoregressive modeling for natural language tasks
 - Define a recurrent layer and explain why they are appropriate for sequence data
 - Describe how RNNs are trained via backprop through time
 - Describe how RNNs can be used to generate text by sampling
 - Define vanishing and exploding gradients and explain why RNNs are particularly susceptible to these issues
 - Define gradient clipping
 - Define a long-short term memory (LSTM) cell and describe the role of all the components (internal state, input gate and output gate, forget gate)
 - Compare & contrast an LSTM cell and a gated recurrent unit (GRU)
 - Define a bi-directional RNN (BRNNs) and identify tasks that would be more appropriate for BRNNs over RNNs
 - Define padding and bucketing in the context of training RNNs and identify situations when they would be beneficial/necessary

- Attention & Transformers
 - Define an encoder-decoder architecture for sequence-to-sequence tasks and describe the role of the encoder and the decoder
 - Compare & contrast common metrics for evaluating language models (perplexity, BLEU, ROUGE, METEOR)
 - Identify the two main issues with RNN/LSTM language models (as presented in lecture)
 - Describe the high-level intuition behind neural attention and how it addresses the issue of single vector encodings for sequences
 - Compare & contrast self-attention and attention
 - Define scaled dot-product attention
 - Describe the role of keys, values and queries in scaled dot-product attention
 - Compute the dimensionality of outputs and intermediate quantities for self-attention layers
 - Compare & contrast multi-head attention and attention with a single head
 - Define a positional embedding and justify their use in Transformers
 - Identify the tradeoff between word-based and character-based tokenizations
 - Define subword embedding and describe how they address this tradeoff
 - Define masking and justify its use in Transformer models for language modeling
- Pretraining, Fine-tuning & In-context Learning
 - Describe the architecture and training process of ELMO and explain how it was adapted to different tasks
 - Describe the architecture and training process of BERT and explain how it was adapted to different tasks
 - Compare & contrast language modeling and masked language modeling
 - Define transfer learning and explain how the training process of T5 allows it to achieve SoTA performance on a variety of benchmarks
 - Define prompt engineering
 - Define chain-of-thought prompting
 - Define retrieval augmented generation
 - Define soft prompt tuning
 - Define in-context learning and explain the relationship between few-shot, one-shot and zero-shot prompting
 - Define low rank adaptation and justify its use in fine-tuning large language models
 - Define reinforcement learning from human feedback and justify its use in fine-tuning large language models

- Robustness
 - Compare & contrast targeted and untargeted attacks
 - Define adversarial training
 - Define the domain adaptation problem and identify potential goals in this setting
 - Intuitively explain the relationship between classification error and class distribution at training time vs. test time
 - Define covariate and label shift in terms of conditional probabilities
 - Define a confusion matrix and prove that a classifier's column-normalized confusion matrix is label distribution invariant (under some assumptions).
- Fairness
 - Identify characteristics of a word-embedding that are indicative of different forms of bias
 - Compare & contrast disparate treatment and disparate impact
 - Define the following conditions in the context of algorithmic bias: demographic parity, separation, and calibration.
 - Identify the impossibility relationship between these three conditions
 - Describe the key findings of the Propublica expose of the COMPASS software in terms of these conditions
 - Identify whether some method for achieving a fairness condition is a pre-processing or a training constraints/modification
- Interpretability
 - Describe (at a high-level) how the following entities/methods can be used to perform global feature attribution: linear model feature weights, single-feature ablation, permutation-based importance tests, and Shapley values
 - Describe the primary issue with applying these methods on image data
 - Describe the approach behind LIME and identify a key challenge when using it to interpret a model's behavior
 - Describe the approach behind SHAP and identify a key challenge when using it to interpret a model's behavior
 - Describe the approach behind integrated gradients and identify a key challenge when using it to interpret a model's behavior
 - Describe the approach behind counterfactual explanations and identify potential challenges when using it to interpret a model's behavior