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1 Review: Bayesian Networks

A Bayesian network (a.k.a. directed acyclic graph (DAG) or directed graphical model)
represents a family of probability distributions over random variables X1, . . . , Xn

which satisfy the conditional independence assumptions represented by its net-
work structure. Each node in the network corresponds to a random variable, and each
directed edge represents the dependency between two variables.

X1 X2 X3

X4 X5 X6

Figure 1: Example Bayesian network with 6 random variables X1, . . . , X6.

More specifically, we make the assumption that a random variable is independent of any
of its non-descendants given its parents (local Markov assumption). As a consequence,
the set of conditional independence assumptions lead to a compact factorization of the joint
distribution. Using the chain rule and the conditional independence assumptions, we can
represent the joint distribution as:

P (X1, . . . , Xn) = P (Xn|Xn−1, . . . , X1) · · ·P (X2|X1)P (X1) (1)

=
n∏

i=1

P (Xi|Parents(Xi)) (2)

Thus, to fully characterize the probability distribution represented by a Bayesian network, all
we need to do is learn the parameters of the conditional probabilities P (Xi|Parents(Xi)) ∀i ∈
[n].
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2 Conditional Independence

Given a Bayesian network, we are often interested in testing whether two random variables
in the network are dependent under certain conditions/observations. In this section, we will
go through a simple v-structure example and d-separation.

2.1 Simple Example

Sprinkler Rain

Grass Wet

(a) Unobserved

Sprinkler Rain

Grass Wet

(b) Observed

Figure 2: A Bayesian network that encodes the dependencies between three random events/-
variables: 1) the sprinkler was on; 2) it rained; 3) the grass is wet. The sprinkler being on
and raining have the common effect of making the grass wet.

1. Based on the network in Fig. 2(a), how can we represent the joint probability of the
three random events, i.e. P (Sprinkler,Grass Wet,Rain)?

P (Sprinkler,Grass Wet,Rain) = P (Grass Wet|Sprinkler,Rain) · P (Sprinkler) · P (Rain)

2. As in Fig. 2(b), suppose we find that the grass is indeed wet. Given this observation,
are the events that the sprinkler was on and that it rained independent of each other?

No. Given that the grass is wet, the two events are dependent, i.e. the probability of
one event is affected by what the other event is. More formally, we are saying

P (Sprinkler,Rain|Grass Wet) ̸= P (Sprinkler|Grass Wet) · P (Rain|Grass Wet)
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or identically,
Sprinkler ⊥̸⊥ Rain|Grass Wet

Here is one way to see why this is true: Given that the grass is wet, let us assume that
it didn’t rain. In this case, since we know that the grass is wet, the probability that the
sprinkler was on becomes higher.
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2.2 d-separation

d-separation is a criterion that we can use to easily test whether two random variables in
a Bayesian network are conditionally independent. Using d-separation, all we need to do is
check whether there exists an “unblocked” path between the two nodes that we are testing.
If there exists such a path, then they are d-connected, or conditionally dependent. If all
paths are “blocked,” they are d-separated, or conditionally independent.

Figure 3: (I) Cascade, (II) Common Cause, (III) Common Effect (v-structure)

1. Do Bayesian networks A and B below encode the same set of conditional independence
assumptions? If not, write down an independence assumption that holds for one but not
for the other.

Yes, i.e. X1 ⊥⊥ X2|Y
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2. Do Bayesian networks C and D below encode the same set of conditional independence
assumptions? If not, write down an independence assumption that holds for one but not
for the other.

No. X1 ⊥⊥ X2|Y holds for C but not for D.

3. In the Bayesian network below, what are relationships (independent or not) between the
following random variables, assuming X3 is observed?

Figure 4

• X1 X4 | X3

• X1 X2 | X3

• X4 X5 | X3

⊥⊥, ⊥̸⊥, ⊥⊥
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3 Additional Practice Problems

3.1 Problem 1

Consider the Bayesian network below to solve the following questions. We use (X ⊥⊥ Y |Z)
to denote the fact that X and Y are independent given Z.

Figure 5

1. Write down the factorization of the joint distribution for the given Bayesian network.

P (A,B,C,D,E, F,G,H) = P (A)P (B)P (C|A)P (D|A,B)P (E|B)P (F |C,D,H)

· P (G|D,E)P (H|G)

2. Are there any pairs of points that are independent? If your answer is yes, please list out
all such pairs.

Answer: Yes. (C, E), (C, B), (A, E), (A, B).

3. Does (B ⊥⊥ C|A,D) hold? Briefly explain.
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Answer: It holds. We can see this by checking all possible paths between B and C and
using d-separation.

4. Does (B ⊥⊥ F |A,D) hold? Briefly explain.

Answer: It does not hold. The path B, E, G, H, F is still unblocked.

5. Assuming that there are d = 10 values that each of these variables can take (say 1 to
10), how many parameters do we need to model the full joint distribution without using
the knowledge encoded in the graph (i.e. no independence/conditional independence
assumptions)? How many parameters do we need for the Bayesian network for such
setting? (you do not need to provide the exact number, a close approximation or a tight
upper/lower bound will do).

Answer: Naive Approach: 108. Bayesian Network: about 10 × 2 + 102 × 3 + 103 × 2 +
104 × 1 = 12320.

3.2 Problem 2

Consider the Bayesian network below to solve the following questions.

Figure 6

1. Write down the factorization of the joint distribution for the given Bayesian network.

p(a, b, c, d, e, f, g) = p(a)p(b|a)p(c|b)p(d|c, f)p(e|d)p(f |g)p(g)
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2. Let X = {c}, Y = {b, d}, Z = {a, e, f, g}. Is X ⊥⊥ Z|Y ? If yes, explain why. If not,
show a path from X to Z that is not blocked.

No. c → d → f is not blocked

3. Suppose you are allowed to choose a set W such that W ⊂ Z. Define Z∗ = Z \W and
Y ∗ = Y ∪W . What is the smallest set W such that X ⊥⊥ Z∗|Y ∗ is true?

W = {f} is the smallest subset. Y ∗ is then a Markov Blanket of node c.

4. From the graph, we can see that a ⊥⊥ c, d|b. Prove that this implies a ⊥⊥ c|b.

Note that
a ⊥⊥ c, d|b ⇒ p(a, c, d|b) = p(a|b)p(c, d|b)

p(a, c|b) =
∑
d

p(a, c, d|b)

=
∑
d

p(a|b)p(c, d|b)

= p(a|b)
∑
d

p(c, d|b)

= p(a|b)p(c|b)
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