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1 Linear Regression

In this section, we will consider the following linear regression model:

For each data point in D = {(xi, yi)}ni=1,

yi = wTxi + ϵ where yi, ϵ ∈ R and w,xi ∈ Rd+1

In matrix notation, we can express this linear relationship for all data points as:

y = Xw + ϵ where y, ϵ ∈ Rn,X ∈ Rn×(d+1), and w ∈ Rd+1

1.1 Ordinary Least Squares (OLS)

In class, we saw that one way to optimize w is to minimize the least squares error:

w∗
LS = argmin

w
||y −Xw||22

= argmin
w

(y −Xw)T (y −Xw)

1. Derive the least squares optimal solution w∗
LS. You may assume any matrix inversion

that naturally appears is possible.

We can solve by setting the derivative w.r.t w of the minimized statement to 0

∂

∂w
(y −Xw)T (y −Xw) =

∂

∂w
(yTy − (Xw)Ty − yT (Xw) + (Xw)TXw)

In this situation, we can look at how to derive and/or combine the matrix products
above. For yTy the derivative is just 0, due to it not involving w. Since Xw is size
n x 1 and y is size n x 1, (Xw)Ty and yT (Xw) are both scalars so they can just be
combined.

=
∂

∂w
(yTy − (Xw)Ty − yT (Xw) + (Xw)TXw)

=
∂

∂w
(−2(Xw)Ty + (Xw)TXw)
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If we expand out Xw, we get a n x 1 vector [x1w
T ,x2w

T , ...,xnw
T ] where xi is the ith

row of x.

Then, expanding (Xw)TXw, we get the scalar (x1w
T )2 + ...+ (xnw

T )2

Deriving by w for each i, we get 2(xiw
T )xi. This scalar sum is equivalent to 2XTXw

Thus, we have the final derivative:

=
∂

∂w
(−2(Xw)Ty + (Xw)TXw)

=− 2XTy + 2XTXw

(1)

Solving for −2XTy + 2XTXw = 0, we get that w = (XTX)−1XTy
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2. Now let us consider the following: In general, when we have some matrix A ∈ Rm×n and
b ∈ Rn, the orthogonal projection of b onto the column space of A can be done using
the projection matrix A(ATA)−1AT . With this in mind, what can we say about w∗

LS?

Notice that since w∗
LS = (XTX)−1XTy, we have

ŷ = X(XTX)−1XTy

This shows that ŷ is an orthogonal projection of y onto the column space of X. That is,
from a geometric perspective, we are finding the value of w that gives us this orthogonal
projection matrix when minimizing the least squares error.
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2 Gradient Descent

Gradient descent (GD) is one of the most commonly used optimization algorithms in machine
learning. Here we will go over 1) why we are using gradients in the first place and 2) why
stochastic gradient descent (SGD) works.

2.1 Gradient Points in the Direction of Steepest Ascent

In class, we saw a pictorial sketch of why gradient descent makes sense; we will discuss it
more formally here.

One way of thinking about this is that for a differentiable multivariate function f : Rd → R,
the gradient at point x ∈ Rd (i.e. ∇f(x)) points in the direction of steepest ascent at x.

Recall from calculus that we define the directional derivative with respect to some unit vector
u ∈ Rd as

Duf(x) = lim
h→0

f(x+ hu)− f(x)

h

In words, the directional derivative describes how the function value instantaneously changes
if we step along the direction of u from point x. With some calculation, one can show that

Duf(x) = uT∇f(x)
= ||u||||∇f(x)|| cos θ (∵ inner product)

where θ is the angle between u and ∇f(x). We know ||u|| = 1, and it is easy to see that
when θ = 0, Duf(x) is maximized.

Thus, at each point, we should step in the direction of the gradient to maximally increase
the function value (gradient ascent). Meanwhile, we should step in the direction opposite of
the gradient to maximally decrease the function value (gradient descent). Whether we want
to use gradient ascent or descent will depend on whether we want to maximize or minimize
some objective function.

2.2 Stochastic Gradient Descent

In lecture, you are introduced with the concept of gradient descent (GD). However, the
stochastic gradient descent (SGD) is more common in practice than the vanilla GD, as the
gradient updates in SGD are computationally cheaper when working with large datasets but
still lead to good, generalizable solutions (often even better). An in-depth discussion of SGD
is beyond the scope of this course, but here we will see why it makes sense at a high level.

Suppose we have some ML model (e.g., linear regression, logistic regression, neural network)
and we want to optimize the parameters w of that model using data D = {(xi,yi)}ni=1. And
let’s say that our loss function is

Ltotal =
1

n

n∑
i=1

L(xi,yi)
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which is an average of the loss L for each data point (xi,yi) across our dataset.

Now, we want to use the following SGD algorithm to iteratively update wt:

1. Randomly sample (without replacement) m indices from {1, . . . , n}. Call the set of
sampled indices B.

2. Calculate the loss using the sampled data points

L̃ = 1
m

∑n
i=1 L(xi,yi) 1[i ∈ B]︸ ︷︷ ︸

indicator

3. Update wt+1 ← wt − η ∂L̃
∂w

Based on this setup, answer the question below.

1. In statistics, the bias of an estimator (or bias function) is the difference between this
estimator’s expected value and the true value of the parameter being estimated.

Bias(θ̂, θ) = Ex|θ[θ̂ − θ]

An estimator or decision rule with zero bias is called unbiased. Show that the stochastic
gradient is an unbiased estimator of the gradient, i.e. show that:

E

[
∂L̃
∂w

]
=

∂L
∂w(

Hint: E
[
1[i ∈ B]

]
= p(i ∈ B). Also check out the remark below if you need better

intuition.
)

E

[
∂L̃
∂w

]
=

1

m

n∑
i=1

∂L(xi,yi)

∂w
E
[
1[i ∈ B]

]
=

1

m

n∑
i=1

∂L(xi,yi)

∂w

m

n

=
1

n

n∑
i=1

∂L(xi,yi)

∂w

=
∂L
∂w

The fact that the stochastic gradient is an unbiased estimator of the full-batch gradient
is an important justification for using SGD. In fact, showing unbiasedness is generally
important in many stochastic algorithms.

Remark: Randomly choosing the data points for updating the parameters at each iteration
is what makes SGD stochastic. Try comparing ∂L

∂w
and ∂L̃

∂w
; you should notice that since we

are only using a random subset of all of our training points to calculate the gradient, ∂L̃
∂w

can
be thought of as an approximation of ∂L

∂w
.
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3 Naive Bayes

3.1 Review

Simple probabilistic classifier most commonly used for text classification. Called Naive
Bayes because it applies Bayes Theorem with a naive assumption of conditional indepen-
dence: features in X = (X1, X2, . . . , Xd) are conditionally independent given the label
Y = {1, 2, . . . , k}, where k are the number of classes. The Naive Bayes model assigns
probabilities p(Yk|X) for each class k.

p(Yk|X) =
p(X|Yk)p(Yk)

p(X)
=

p(X, Yk)

p(X)
=

p(X1, X2, . . . , Xd, Yk)

p(X)
, by Bayes Thm

p(X1, X2, . . . , Xd, Yk) = p(X1|X2, . . . , Xd, Yk)p(X2, . . . , Xd, Yk) = p(X1|·)p(X2|·) . . . p(Xd|Yk)

After chain rule, apply naive assumption all features in X are conditionally independent,
given the label Yk.

p(Xi|Xi+1, . . . , Xd, Yk) = p(Xi|Yk)

Thus, p(Yk|X) =
p(Yk, X)

p(X)
=

p(Yk)

p(X)

d∏
i=1

p(Xi|Yk)

3.2 Simple Example

Suppose that there are d binary features (X1, X2, . . . , Xd). Assume d is even. Consider the
following pairing of the d features:

(X1, X2), (X3, X4), . . . , (Xd−1, Xd)

For each of the above pairs (Xi, Xi+1), assume Xi and Xi+1 are dependent. However,
assume the 2 pairs (Xi, Xi+1) and (Xj, Xj+1) are themselves independent when i ̸= j given
the class.

If the class-conditional distribution of each pair of features is known (as well as the class
prior), is it possible to construct a classification algorithm using the Naive Bayes approach?
If it’s possible, how would you do it? If it’s not possible, why is it not?
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Since the features are all pairwise independent, we can construct a truth table for each
of the pairs of features, since the distribution is known. I.e P (X1 = 0, X2 = 0, Y1 =
1), P (X1 = 0, X2 = 1, Y1 = 1), etc. Then we can use the Naive Bayes assumption to
calculate P (Y1|X1, ...Xn) = P (X1, X2|Y1)P (X3, X4|Y1)...P (Xn−1Xn|Y1, where each of the
values are known since the distribution of each pair is known. This is analogous to letting a
separate random variable represent the distribution Xk, Xk+1 for each k.

3.3 Gaussian Contour Plots

For a one-dimensional Gaussian, the probability density looks similar to bell curve. For
a two-dimensional Gaussian, if both coordinates are independent of one another then the
density concentrates in circles. If the two coordinates are not independent, then the density
will look elliptical like in the figure above.

For each dataset below, determine if the Naive Bayes assumption is valid. Assume that the
data given the class label is distributed as a multivariate Gaussian.

FIRST DATASET: Given that the class label is 1 (all the orange points), we see that the
data appears to be distributed circularly, meaning the two coordinates are independent.
From our assumption that it is a multivariate Gaussian, we conclude that conditioning on
the class label being 1 does indeed make the features independent of one another. The same
logic holds for the blue points.

SECOND DATASET: Given that the class label is 1, we see that the coordinates are not in-
dependent of one another. The Naive Bayes assumption will build a linear decision boundary
assuming that it is a circle, which will diminish our performance. Similar logic holds for the
blue points. Covariance matrix has non-zero values for cov(x1, x2) meaning not independent.
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3.4 Exam Style Practice Problems

1. In a Naive Bayes problem, suppose we are trying to compute P (Y |X1, X2, X3, X4).
Furthermore, suppose X2 and X3 are identical (i.e., X3 is just a copy of X2). Finally,
assume X2 is not independent of Y . Which of the following are true in this case?
Select all correct answers.

(a) Naive Bayes will learn identical parameter values for P (X2|Y ) and P (X3|Y ).

(b) Naive Bayes will predict P (Y |X1, X2, X3, X4) < P (Y |X1, X2, X4).

(c) Naive Bayes will predict P (Y |X1, X2, X3, X4) > P (Y |X1, X2, X4).

(d) None of the above

(a),(b)

Naive Bayes will learn identical parameter values for P (X2|Y ) and P (X3|Y ) - this is
because in Naive Bayes features are considered independent of each other, hence the
estimated probabilities for these identical features will be the same. Naive Bayes will
output probabilities P (Y |X1, X2, X3, X4) that are closer to 0 and 1 than they would
be if we removed the feature corresponding to X3 - consider the expression.

P (Y |X1, X2, X3, X4) =
P (Y,X1, X2, X3, X4)

P (X1, X2, X3, X4)
=

P (X1|Y )P (X2|Y )P (X3|Y )P (X4|Y )P (Y )

P (X1, X2, X3, X4)

The denominator does not change - as the features are identical, P (X1, X2, X3, X4) is
the same as P (X1, X2, X4). The numerator however is multiplied by a number P (X3|Y )
which is lesser than 1. Hence the output probabilities are different.

2. Gaussian Naive Bayes, in general, can learn non-linear decision boundaries. Consider
the simple case where we have just one real-valued feature X1 ∈ IR from which we wish
to infer the value of label Y ∈ {0, 1}. The corresponding generative story would be:

Y ∼ Bernoulli(ϕ)
X1 ∼ Gaussian(µy, σ

2
y)

where the parameters are the Bernoulli parameter ϕ and the class-conditional Gaussian
parameters µ0, σ

2
0, µ1, σ

2
1 corresponding to Y = 0 and Y = 1 , respectively.

Consider a linear decision boundary in one dimension described by the rule: if X1 > c,
then Y = 1, else Y = 0, where c is a real-valued threshold. Is it possible (in the 1D
case) to construct a Gaussian Naive Bayes classifier with a decision boundary that
cannot be expressed by a rule in the above form? Select all correct answers.

(a) Yes, this can occur if the Gaussians are of equal means and equal variances.

(b) Yes, this can occur if the Gaussians are of equal means and unequal variances.

(c) Yes, this can occur if the Gaussians are of unequal means and equal variances.

(d) Yes, this can occur if the Gaussians are of unequal means and unequal variances.
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(e) No, it is not possible.

(b),(d)

Yes, this can occur if the Gaussians are of equal means and unequal variances. We then have
two decision boundaries, as you can see from the figure below. Recall that we choose the
class to be the one that gives higher probability at any x.
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4 MLE and MAP

4.1 Definitions

• Likelihood: L(θ) = P(D|θ) and l(θ) = logP(D|θ)

• Posterior: P(θ|D) = P(D|θ)P(θ)
P(D)

∝ P(D|θ)P(θ)

• MLE estimate: θMLE = argmaxθ P(D|θ) = argmaxθ logP(D|θ)

• MAP estimate: θMAP = argmaxθ P(D|θ)P(θ) = argmaxθ logP(D|θ) + logP(θ)

4.2 Gaussian MLE

Given that we have i.i.d samples D = {x1, ..., xN}, where each point is identically dis-
tributed according to a Gaussian distribution, find the MLE for the mean and variance.

Hint: p(x|µ, σ) = 1
σ
√
2π
e−

(x−µ)2

2σ2

Solution:

µ∗ = argmax
µ

P(D|µ, σ)

= argmax
µ

n∏
i=1

P(xi|µ, σ)

= argmax
µ

n∏
i=1

(
1

σ
√
2π
· exp

(
−(xi − µ)2

2σ2

))

= argmax
µ

{
ln

((
1

σ
√
2π

)n)
+

n∑
i=1

−(xi − µ)2

2σ2

}

Then we can solve for µ∗ by solve for ∂/∂µ (since the function is concave)

∂

∂µ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

−
(
(xi − µ)2

2σ2

)}
=

1

2σ2
· 2

n∑
i=1

(xi − µ)

Hence, we have µ∗ be the solution of

n∑
i=1

(xi − µ) = 0

That is, we have µ∗ = 1
n
·
∑n

i=1 xi.
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For σ∗, we have something similar here

σ∗ = argmax
σ

P(D|µ, σ)

= · · · (same as above)

= argmax
σ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

(
−(xi − µ)2

2σ2

)}

We can solve σ∗ by solving ∂/∂σ = 0.

∂

∂σ

{
n ln

(
1

σ
√
2π

)
+

n∑
i=1

(
−(xi − µ)2

2σ2

)}
= −n

σ
+

(
n∑

i=1

(xi − µ)2

)
· 1
σ3

Hence, we have the solution of σ∗ being the solution of

−n

σ
+

(
n∑

i=1

(xi − µ)2

)
· 1
σ3

That is,

(σ∗)2 =
1

n

n∑
i=1

(xi − µ)2
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