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1 Decision Trees

1.1 Entropy

Recall from lecture that the entropy of a distribution for a discrete random variable X is
defined as

H(X) =
∑
c

−P (X = c) log2 P (X = c)

Let us define a random variable X ∈ {0, K − 1}. Define αk = P (X = k). Show that the
uniform distribution maximizes the entropy, that is:

max
P

H(X) = P (X = k) =

{
1
K

if k ∈ {0, K − 1}
0 else

HINT: You will want to introduce a Lagrange multiplier constraint to enforce that the
probability terms sum to 1. This constraint is of the form

∑
k αk = 1.

We start by writing the entropy, which is the function that we want to maximize, along with
the Lagrange multiplier and constraint:

f(x) =
∑
k

−αk log2 αk + λ

(∑
k

αk − 1

)

We take the derivative with respect to a specific αk:

d

dαk

f(x) =
d

dαk

[∑
k

−αk log2 αk + λ

(∑
k

αk − 1

)]
= − logαk − 1 + λ

Setting to 0 and solve for αk:

− logαk − 1 + λ = 0

−1 + λ = logαk

α∗
k = eλ−1
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Note that the right hand side does not depend on k, so αk = eλ−1,∀k. This means that all
αk are equal to each other, and with the additional constraint that they must sum to 1, we
conclude that αk =

1
K
,∀k.
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1.2 KL Divergence

A concept that may be useful for your homework is the KL divergence, a measure of the
difference between two probability distributions. For discrete distributions p, q with support
{1, . . . , n}, the KL divergence is:

D(p∥q) =
n∑

i=1

p(i) log
p(i)

q(i)

Show then, that D(p∥q) ≥ 0 for all p, q.

Hint: You may use this inequality without proof: x− 1 ≥ log(x).

Proving that D(p||q) ≥ 0 is equivalent to proving
∑n

i=1 p(i) log
q(i)
p(i)

≤ 0. Using the given
inequality:

n∑
i=1

p(i) log
q(i)

p(i)
≤

n∑
i=1

p(i)

(
q(i)

p(i)
− 1

)
=

n∑
i=1

q(i)− p(i)

Since p(i) and q(i) are normalized, the sum over all events for both is 1. As such:

n∑
i=1

p(i) log
q(i)

p(i)
≤

n∑
i=1

q(i)−
n∑

i=1

p(i) = 0

1.3 Decision Tree Decision Boundaries

1. Can a decision tree perfectly classify all of the points in the figure below? Can it
perfectly learn the decision boundary (portrayed as a circle in red)?
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A decision tree can perfectly classify the points above, but the depth of the tree would
be huge. This is because the decision boundary of a decision tree must be axis-aligned.
This means that we cannot perfectly learn a decision boundary that is described by a
circle.

2. Consider the dataset below with 400 total points consisting of three clusters of red
points with 36, 64, and 36 points going from bottom left to top right. The mutual
information represents how much we gain, in terms of reducing the entropy, from
knowing something about an attribute: I(Y ;X) = H(Y )−H(Y |X), where H(Y |X) =∑

k p(X = k)H(Y |X = k) represents the conditional entropy. Starting with the base
predictor, what is the information gain (or mutual information) of the split X1 < 3?

There are 136 red points and 400 − 136 = 264 blue points. If we let Y denote the
observed label distribution, then H(Y ) = −136

400
log2

136
400

− 264
400

log2
264
400

≈ .925. For
points such that X1 < 3, there are 36 red points and 84 blue points for a total of
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120 points. So H(Y |X1 < 3) = − 36
120

log2
36
120

− 84
120

log2
84
120

≈ .881. For points with
X1 >= 3, there are 100 red points and 180 blue points for a total of 280 points. So
H(Y |X1 ≥ 3) = −100

280
log2

100
280

− 180
280

log2
180
280

≈ .94. The total conditional entropy is
H(Y |X1) = 120

400
(.881) + 280

400
(.94) = .9223, so the mutual information is I(Y ;X1) =

H(Y )−H(Y |X1) = .0027.

3. What is the mutual information of the split X2 < 3 (we are performing this split
AFTER the previous split, i.e. on the points with X1 < 3).

There are 120 points in this split and from above we know the entropy is .881. Note
that the additional split of X2 < 3 perfectly classifies the data in this region. Letting
Y ′ denote the distribution of points with X1 < 3, we have that the information gain is
IG(Y ′|X2) = H(Y ′)−H(Y ′|X2) = .881− 36

120
(0) + 84

120
(0) = .881.
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4. Draw out a decision tree that could perfectly classify the points in the figure from
Question 2. Why can we exactly learn the decision boundary in this case?

x1 < 3

x2 < 3

red blue

x2 < 3

blue

x1 < 7

x2 < 7

red blue

x2 < 7

blue red

Y

Y N

N

Y N

Y

Y N

N

Y N

We can exactly learn the decision boundary because it is axis-aligned.
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2 kNNs in Higher Dimensions

2.1 Distance between Points

In this problem we investigate the behavior of the kNN algorithm as the dimension of the
datapoints increases. We use the standard Euclidian notion of distance, that is:

dq(X, Y ) =

√√√√ q∑
i=1

(Xi − Yi)2

Let X and Y be two independent samples drawn uniformly from the q-dimensional unit
hypercube. That is, for each dimension i, Xi, Yi ∼ U [0, 1], and each dimension for a given
point is independent of its other dimensions. Show that the expected value of dq(X, Y ) (the
expected distance between the random variables X and Y ) approaches infinity as the number
of dimensions q approaches infinity.

HINT 1: Recall the Strong Law of Large Numbers, which tells us that the average of i.i.d
random variables converges almost surely to its expectation.

HINT 2:
∫ 1

x=0

∫ 1

y=0
(x− y)2dxdy = 1

6

Let us denote the two points as X and Y , where X, Y ∼ U [0, 1]q. The distance between
them is dq(X, Y ) =

√∑q
i=1(Xi − Yi)2. Squaring both sides and dividing by the number of

dimensions, we get:

dq(X, Y )2

q
=

1

q

q∑
i=1

(Xi − Yi)
2

Because we sampled indepdently from the unit hypercube, each dimension is independent of
all other dimensions, so by the SLLN the right side converges almost surely to its expectation:

lim
q→∞

1

q

q∑
i=1

(Xi − Yi)
2 a.s.−−→ E[(Xi − Yi)

2] =

∫ 1

x=0

∫ 1

y=0

(x− y)2dxdy =
1

6

Therefore,

lim
q→∞

dq(X, Y )2

q
= lim

q→∞

1

q

q∑
i=1

(Xi − Yi)
2 =

1

6

lim
q→∞

dq(X, Y ) =

√
q

6

Counterintuitively, we see that the expected distance between two uniformly sampled points
goes to infinity as the number of dimensions increases.
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2.2 Sample Complexity

In the previous section we showed that the expected squared distance for two points sampled
from a hypercube grows infinitely large with the dimension q. However, for kNN algorithms,
we are interested in the distance not to any randomly sampled point, but to the nearest
neighbors of a given point.

Consider a point x sampled from one of the edges of a unit hypercube as defined before.
Suppose we sample n points {x1, . . . xn} with replacement from the unit cube. Then, how
many points would we need to sample to ensure the probability that the distance from x to
its nearest neighbor xi is at least

√
d is less than some fixed δ > 0?

HINT: Use the fact that 1− x < e−x

Note that the probability that mini ∥x− xi∥ can be expressed as:

P[min
i

∥x− xi∥ ≥
√
d] =

n∏
i=1

P[∥x− xi∥ ≥
√
d] =

(∑q
k=d

(
q
k

)
2q

)n

=

(
1−

∑d−1
k=0

(
q
k

)
2q

)n

Using the hint and letting
∑d−1

k=0

(
q
k

)
= sd−1, we have:

P[min
i

∥x− xi∥ ≥
√
d] ≤ e−sd−1n/2

q

To ensure that this quantity is less than δ, we have:

e−sd−1n/2
q

< δ

n >
2q

sd−1

log
1

δ

Note that sd−1 = O(qd−1) for d small. As such, for small d, we need a huge number of
samples to ensure that the distance to the nearest neighbor of x is less than

√
d
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