
Homework 4
Neural Networks

1 CMU 10-701: Introduction to Machine Learning (Fall 2023)

https://machinelearningcmu.github.io/F23-10701/
OUT: Wednesday, Oct 11th, 2023, 11:59pm

DUE: Wednesday, Oct 25th, 2023, 11:59pm

START HERE: Instructions

• Collaboration policy: Collaboration on solving the homework is allowed, after you
have thought about the problems on your own. It is also OK to get clarification (but
not solutions) from books or online resources, again after you have thought about
the problems on your own. There are two requirements: first, cite your collaborators
fully and completely (e.g., “Jane explained to me what is asked in Question 2.1”).
Second, write your solution independently: close the book and all of your notes, and
send collaborators out of the room, so that the solution comes from you only. See
the Academic Integrity Section in our course syllabus for more information: https:

//machinelearningcmu.github.io/F23-10701/#Syllabus.

• Late Submission Policy: See the late submission policy here:
https://machinelearningcmu.github.io/F23-10701/#Syllabus.

• Submitting your work:

– Gradescope: There will be two submission slots for this homework on Grade-
scope: Written and Programming.
For the written problems such as short answer, multiple choice, derivations, proofs,
or plots, we will be using the written submission slot. Please use the provided
template. The best way to format your homework is by using the Latex template
released in the handout and writing your solutions in Latex. However submissions
can be handwritten onto the template, but should be labeled and clearly legible. If
your writing is not legible, you will not be awarded marks. Each derivation/proof
should be completed in the boxes provided below the question, you should not
move or change the sizes of these boxes as Gradescope is expecting your
solved homework PDF to match the template on Gradescope. If you find you
need more space than the box provides you should consider cutting your solution
down to its relevant parts, if you see no way to do this, please add an additional
page at the end of the homework and guide us there with a ’See page xx for the
rest of the solution’.
You are also required to upload your code, which you wrote to solve the final
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question of this homework, to the Programming submission slot.
Regrade requests can be made after the homework grades are released, however
this gives the TA the opportunity to regrade your entire paper, meaning if addi-
tional mistakes are found then points will be deducted.

For multiple choice or select all that apply questions, shade in the box or circle in the
template document corresponding to the correct answer(s) for each of the questions. For
LATEXusers, use ■ and for shaded boxes and circles, and don’t change anything else. If an
answer box is included for showing work, you must show your work!
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Problem 1: Neural Nets: Written [30 pts]

Note: We strongly encourage you to do the written part of this homework before the
programming, as it will help you gain familiarity with the calculations you will have to code
up in the programming section. We suggest that for each of these problems, you write out
the equation required to calculate each value in terms of the variables we created (aj, zj, bk,
etc.) before you calculate the numerical value.

Note: For all questions which require numerical answers, round up your final answers to
four decimal places. For integers, you may drop trailing zeros.

Figure 1: A One Hidden Layer Neural Network

Network Overview

Consider the neural network with one hidden layer shown in Figure 1. The input layer
consists of 6 features x = [x1, ..., x6]

T , the hidden layer has 4 nodes z = [z1, ..., z4]
T , and the

output layer is ŷ = [ŷ1, ŷ2, ŷ3]
T that sums to one over 3 classes. We also add a bias to the

input, x0 = 1 and the hidden layer z0 = 1, both of which are fixed to 1.

We adopt the following notation:

1. Let α be the matrix of weights from the inputs to the hidden layer.

2. Let β be the matrix of weights from the hidden layer to the output layer.

3. Let αj,i represent the weight going to the node zj in the hidden layer from the node xi

in the input layer (e.g. α1,2 is the weight from x2 to z1)
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4. Let βk,j represent the weight going to the node yk in the output layer from the node
zj in the hidden layer.

5. We will use a sigmoid activation function (σ) for the hidden layer and a softmax for
the output layer.

Network Details

Equivalently, we define each of the following.

The input:

x = [x1, x2, x3, x4, x5, x6]
T (1)

Linear combination at first (hidden) layer:

aj = αj,0 +
6∑

i=1

αj,ixi, j ∈ {1, . . . , 4} (2)

Activation at first (hidden) layer:

zj = σ(aj) =
1

1 + exp(−aj)
, j ∈ {1, . . . , 4} (3)

Linear combination at second (output) layer:

bk = βk,0 +
4∑

j=1

βk,jzj, k ∈ {1, . . . , 3} (4)

Activation at second (output) layer:

ŷk =
exp(bk)
3∑

l=1

exp(bl)

, k ∈ {1, . . . , 3} (5)

Note that the linear combination equations can be written equivalently as the product of
the weight matrix with the input vector. We can even fold in the bias term α0 by thinking
of x0 = 1, and fold in β0 by thinking of z0 = 1.

Loss

We will use cross entropy loss, ℓ(ŷ,y). If y represents our target (true) output, which will be
a one-hot vector representing the correct class, and ŷ represents the output of the network,
the loss is calculated as (note that the log terms are in base e):

ℓ(ŷ,y) = −
3∑

k=1

yk log(ŷk) (6)
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1. [7 pts] In the following questions you will derive the matrix and vector forms of the
previous equations which define our neural network. These are what you should hope
to program in order to avoid excessive loops and large run times.

When working these out it is important to keep track of the vector and matrix dimen-
sions in order for you to easily identify what is and isn’t a valid multiplication. Suppose
you are given a training example: x(1) = [x1, x2, x3, x4, x5, x6]

T with label class 2, so
y(1) = [0, 1, 0]T . We initialize the network weights as:

α∗ =


α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,1 α4,2 α4,3 α4,4 α4,5 α4,6



β∗ =

β1,1 β1,2 β1,3 β1,4

β2,1 β2,2 β2,3 β2,4

β3,1 β3,2 β3,3 β3,4


We want to also consider the bias term and the weights on the bias terms (αj,0 and
βk,0). To account for these we can add a new column to the beginning of our initial
weight matrices.

α =


α1,0 α1,1 α1,2 α1,3 α1,4 α1,5 α1,6

α2,0 α2,1 α2,2 α2,3 α2,4 α2,5 α2,6

α3,0 α3,1 α3,2 α3,3 α3,4 α3,5 α3,6

α4,0 α4,1 α4,2 α4,0 α4,4 α4,5 α4,6



β =

β1,0 β1,1 β1,2 β1,3 β1,4

β2,0 β2,1 β2,2 β2,3 β2,4

β3,0 β3,1 β3,2 β3,3 β3,4


And we can set our first value of our input vectors to always be 1 (x

(i)
0 = 1), so our

input becomes:
x(1) = [1, x1, x2, x3, x4, x5, x6]

T

(a) [1 pt] By examining the shapes of the initial weight matrices, how many neurons
do we have in the first hidden layer of the neural network? (Not including the
bias neuron)
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(b) [1 pt] How many output neurons will our neural network have?

(c) [1 pt] What is the vector a whose elements are made up of the entries aj in
equation (2). Write your answer in terms of α and x(1).

(d) [1 pt] What is the vector z whose elements are made up of the entries zj in
equation (3)? Write your answer in terms of a.

(e) [1 pt] Select one: We cannot take the matrix multiplication of our weights β
and our vector z since they are not compatible shapes. Which of the following
would allow us to take the matrix multiplication of β and z such that the entries
of the vector b = βz are equivalent to the values of bk in equation (4)?

Remove the last column of β

Remove the first row of z

Append a value of 1 to be the first entry of z

Append an additional column of 1’s to be the first column of β

Append a row of 1’s to be the first row of β

Take the transpose of β

(f) [2 pt]What are the entries of the output vector ŷ? Your answer should be written
in terms of b1, b2, b3.

6



2. [7 pts] We will now derive the matrix and vector forms for the backpropagation algo-
rithm.

dℓ

dα
=


dJ
dα10

dJ
dα11

. . . dJ
dα1M

dJ
dα20

dJ
dα21

. . . dJ
dα2M

...
...

. . .
...

dJ
dαD0

dJ
dαD1

. . . dJ
dαDM


Recall that ℓ is our loss function defined in equation (6)

(a) [1 pt] The derivative of the softmax function with respect to bk is as follows:

dŷl
dbk

= ŷl(I[k = l]− ŷk)

where I[k = l] is an indicator function such that if k = l then it it returns value
1 and 0 otherwise. Using this, write the derivative dℓ

dbk
in a smart way such that

you do not need this indicator function. Write your solutions in terms of ŷk, yk.

(b) [1 pt] What are the elements of the vector dℓ
db
? (Recall that y(1) = [0, 1, 0]T )

(c) [1 pt] What is the derivative dℓ
dβ
? Your answer should be in terms of dℓ

db
and z.

(d) [1 pt] Explain in one short sentance why must we go back to using the matrix
β∗ (The matrix β without the first column of ones) when calculating the matrix
dℓ
dα
?
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(e) [1 pt] What is the derivative dℓ
dz
? Your answer should be in terms of dℓ

db
and β∗

(f) [1 pt] What is the derivative dℓ
da

in terms of dℓ
dz

and z

(g) [1 pt] What is the matrix dℓ
dα
? Your answer should be in terms of dℓ

da
and x(1).

Prediction

When doing prediction, we will predict the argmax of the output layer. For example,
if ŷ is such that ŷ1 = 0.3, ŷ2 = 0.2, ŷ3 = 0.5 we would predict class 3 for the input x.
If the true class from the training data x was 2 we would have a one-hot vector y with
values y1 = 0, y2 = 1, y3 = 0.

3. [8 pts] We initialize the weights as:

α∗ =


2 1 −1 −1 0 −2
0 1 0 −1 1 3
−1 2 1 3 1 −1
1 3 4 2 −1 2



β∗ =

2 −2 2 1
3 −1 1 2
0 −1 0 1


And weights on the bias terms (αj,0 and βj,0) are initialized to 1.
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You are given a training example x(1) = [1, 0, 1, 0, 1, 0]T with label class 2, so y(1) =
[0, 1, 0]T . Using the initial weights, run the feed forward of the network over this train-
ing example (without rounding during the calculation) and then answer the following
questions.

(a) [1 pt] What is the value of a1?

(b) [1 pt] What is the value of z1?

(c) [1 pt] What is the value of a3?

(d) [1 pt] What is the value of z3?

(e) [1 pt] What is the value of b2?

(f) [1 pt] What is the value of ŷ2?

(g) [1 pt] Which class value we would predict on this training example?

(h) [1 pt] What is the value of the total loss on this training example?
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4. [3 pts] Now use the results of the previous question to run backpropagation over the
network and update the weights. Use the learning rate η = 1.

Do your backpropagation calculations without any rounding then answer the following
questions: (in your final responses round to four decimal places)

(a) [1 pt] What is the updated value of β2,1?

(b) [1 pt] What is the updated weight of the hidden layer bias term applied to y1
(i.e. β1,0)?

(c) [1 pt] What is the updated value of α3,4?
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5. [5 pts] Let us now introduce regularization into our neural network. For this question,
we will incorporate L2 regularization into our loss function ℓ(ŷ,y), with the parameter
λ controlling the weight given to the regularization term.

(a) [1 pt] Write the expression for the regularized loss function of our network af-
ter adding L2 regularization (Hint: Remember that bias terms should not be
regularized!)

(b) [1 pts] Compute the regularized loss for training example x(1). Assume λ = 0.01
and use the weights as initialized in question 3 (before backpropagation)

(c) [1 pts] For a network which uses the regularized loss function, write the gradient

update equation for αj,i . You may use ∂ℓ(ŷ,y)
∂αj,i

to denote the gradient update w.r.t

non-regularized loss and η to denote the learning rate.

(d) [2 pts] Select all that apply: Based on your observations from previous ques-
tions, which of the following statements are true?

□ The non-regularized loss is always higher than the regularized loss

□ As weights become larger, the regularized loss increases faster than the
non-regularized loss

□ On adding regularization to the loss function, gradient updates for the
network become larger

□ When using large initial weights, weight values decrease more rapidly for
a network which uses regularized loss

□ None of the above
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Problem 2: Neural Nets: Programming [50 pts]

Figure 2: Random Images of Each of 10 classes in Fashion-MNIST

Your goal in this assignment is to label images of fashion articles by implementing a neural
network from scratch. You will implement all of the functions needed to initialize, train,
evaluate, and make predictions with the network. Important: You must use PyTorch
to complete this assignment. However, you are not allowed to directly use built-
in PyTorch modules (e.g., nn.Linear, nn.Sigmoid, nn.Softmax, etc...) for the
module implementations. Same for the corresponding forward() and backward()
function implementations.)

The Fashion-MNIST dataset is comprised of 70,000 images of fashion articles and their
respective labels. There are 60,000 training images and 10,000 test images, all of which are
28 pixels by 28 pixels. The images belong to the following 10 categories – [T-shirt, Trouser,
Pullover, Dress, Coat, Sandal, Shirt, Sneaker, Bag, Ankle boot].

Dataset format In the file nn implementation code/base experiment.py there are lines
for downloading the dataset and converting it to the torch.data.Dataset format. More
information about torch.data.Dataset and torch.data.Dataloader can be found in this
tutorial; you may use these classes to operate with data and batches.

Model Definition

Preliminaries

In this section, you will implement a single-hidden-layer neural network with a sigmoid acti-
vation function for the hidden layer, and a softmax on the output layer. For this particular
problem, the input vectors x are of length M = 28 × 28, the hidden layer z consist of D
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hidden units, and the output layer ŷ represents a probability distribution over the K = 10
classes. In other words, each element ŷk of the output vector ŷ represents the probability of
x belonging to the class k.

Following the notation from the written section we have:

• For the output layer:

ŷk =
exp(bk)∑K
l=1 exp(bl)

, k ∈ {1, . . . , K}, (softmax activation)

bk = βk,0 +
D∑
j=1

βkjzj, k ∈ {1, . . . , K}, (pre-activation)

• For the hidden layer:

zj =
1

1 + exp(−aj)
, j ∈ {1, . . . , D}, (σ − activation)

aj = αj,0 +
M∑
i=1

αjixi, j ∈ {1, . . . , D}, (pre-activation)

It is possible to compactly express this model by assuming that x0 = 1 is a bias feature
on the input and that z0 = 1 is also fixed. In this way, we have two parameter matrices
α ∈ RD×(M+1) and β ∈ RK×(D+1). The extra 0th column of each matrix (i.e. α·,0 and β·,0)
hold the bias parameters. With these considerations we have,

ŷk =
exp(bk)∑K
l=1 exp(bl)

, k ∈ {1, . . . , K}

bk =
D∑
j=0

βkjzj, k ∈ {1, . . . , K}

zj =
1

1 + exp(−aj)
, j ∈ {1, . . . , D}

aj =
M∑
i=0

αjixi, j ∈ {1, . . . , D}
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Objective function

Since the output corresponds to a probabilistic distribution over the K classes, the objective
(cost) function we will use for training our neural network is the average cross entropy,

J(α,β) = − 1

N

N∑
n=1

K∑
k=1

y
(n)
k log(ŷ

(n)
k ) (7)

over the training dataset,

D = {(x(n),y(n))}, for n ∈ {1, . . . N}

In Equation (7), J is a function of the model parameters α and β because ŷ
(n)
k is implicitly

a function of x(n), α, and β since it is the output of the neural network applied to x(n). As
before, ŷ

(n)
k and y

(n)
k present the k-th component of ŷ(n) and y(n) respectively.

To train the network, you should optimize this objective function using stochastic gradient
descent (SGD), where the gradient of the parameters for each training example is computed
via backpropagation, though typically you should shuffle your data during SGD you are not
to do so here, and instead you are to loop through the dataset in the order it is given.

Implementation

To help you get started, we are providing you with the following guide. This is a recom-
mended approach but is absolutely not required.

Defining layers

Just to recap, your network architecture should look like the following: Linear→ Sigmoid

→ Linear → Softmax. The size of the input is 784. The first linear layer can have 785 nodes
to include bias term. The final (output) layer should have 10 nodes (one corresponding to
each integer from 0 - 9). The hidden layer will have D = 256 nodes (excluding bias term).

Again, you are not allowed to directly use built-in PyTorch modules (e.g.,
nn.Linear, nn.Sigmoid, nn.Softmax, etc...) for the module implementations. In-
stead, you should complete the methods defined for you all in custom functions.py to
implement your own versions of these layers.

Be aware of numerical issues! log(x) is problematic when x → 0. Similarly exp(x) may
overflow when it is huge. Think of using log to avoid some exponential calculations and
dividing both numerator and denominator by a large value to avoid overflowing:

exi∑
exj

=
exi−b∑
exj−b
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Pseudo-code for Training Loop

For epoch in epochs :
f o r x , y in t ra in x , t r a i n y :

Pass x through a l l the forward l a y e r s and get the l o s s
Pass the output though a l l the backward l a y e r s
Update weights and b i a s e s

compute the average t r a i n i n g l o s s f o r the epoch
compute t e s t l o s s
compute t e s t accuracy

You can follow the steps mentioned above or approach it any other way.

Important Tips

• The training loss you report should not be aggregated throughout an epoch, rather
you should compute the loss on the whole training set at the end of each epoch.

• The final loss value to report when asked should be averaged across all batches.

• When performing mini-batch gradient descent, you should take the mean of the loss
within a batch before applying the update.

• Do NOT shuffle the training or test data, otherwise your outputs won’t match our
reference solutions.

Programming Submission

NOTE: Initial weights and biases are provided in the file
nn implementation code/weights.pt. Use the following hyper-parameters:

• Learning rate = 0.01

• Number of epochs = 15

• Width of hidden layer = 256 (excluding bias)

We have provided the outputs of the first five nodes of each layer and the updated weights
for the first data point in the first epoch in the folder check. Use these to verify your
implementation.

1. [1 pt] Linear : What is the value of a10 for first data point in first epoch?

2. [1 pt] Sigmoid : What is the value of z20 for first data point in first epoch?
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3. [1 pt] What is the predicted class for the first data point x1 after the first forward
pass in the first epoch. Remember that our y values go from 0 to 9.

4. [4 pts] What are the values of βk,0 for k ∈ {1, . . . , K} (bias terms of the second layer)
at the end of third epoch? Report numbers till 4 places of decimal and in the correct
order.

5. [4 pts] List the average test loss at the end of each epoch. Report numbers till 4 places
of decimal.

6. [4 pts] List the test accuracy at the end of each epoch. Report numbers till 4 places
of decimal.

7. [2 pts] Run the model for 100 epochs, report the average final training loss and the
test accuracy. Report numbers till 4 places of decimal.

Training Loss:

Test Accuracy:
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8. [4 pts] Now train your model for 100 epochs and plot the confusion matrix for both
the training and test sets. A confusion matrix is a common way of representing the
types of mistakes being made in a multi-class classification setting. Each element of the
matrix is a count of the number of data points with a particular true label that your
model predicted as being from a particular class. Your matrix should have true labels
on the rows and predicted labels on the columns e.g., the second entry in the fourth
row should show the count for the number of times class 3 was wrongly predicted as
1; the diagonal elements correspond to correct predictions.

9. [4 pts] For each of the classes, display the first data point from the test set which was
wrongly classified (you can find a code snippet to display an image given a vector in
the utils folder).
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10. [6 pts] For the experiments until now, we were using stochastic gradient descent (SGD)
i.e. batch size = 1. In this section, you will modify your code to enable training on
batches of data, i.e., mini-batch gradient descent. For each batch size in [1, 10, 50,
100], run your model for 100 epochs. Plot two graphs of epoch vs loss, one for training
and one for test loss, which have the epoch number on the x-axis and the loss value
on the y-axis. Plot one line for each batch size on both figures; please make sure your
graphs are properly labelled and include a legend showing the color for each batch size.

11. [2 pts] Based on the plots in the previous part, what do you observe about the effect
of increasing batch sizes? Also, how does this relate to the learning rate? (Explain in
1-2 lines)

12. [2 pts] Based on the plots in the part 10 of the programming question, what do you
think is the best next step given the trends of different batch sizes? (Explain in 1-2
lines)
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13. [15 pts] Now we want to give you a chance to experiment with the model by fur-
ther exploring the hyperparameters. Produce three pairs of plots similar to the ones
requested in the batch size experiment, each one varying a different hyperparameter.
For each experiment, you must

(a) describe the hyperparameter you varied,

(b) list the values you set the hyperparameter to,

(c) detail the setting of all the other hyperparameters, and

(d) analyze your results in terms of the hyperparameter that you varied.

Experiment 1
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Experiment 2
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Experiment 3
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1 Collaboration Questions

1. (a) Did you receive any help whatsoever from anyone in solving this assignment?

(b) If you answered ‘yes’, give full details (e.g. “Jane Doe explained to me what is
asked in Question 3.4”)

2. (a) Did you give any help whatsoever to anyone in solving this assignment?

(b) If you answered ‘yes’, give full details (e.g. “I pointed Joe Smith to section 2.3
since he didn’t know how to proceed with Question 2”)

3. (a) Did you find or come across code that implements any part of this assignment?

(b) If you answered ‘yes’, give full details (book & page, URL & location within the
page, etc.).
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